Midterm Exam: Electricity and Magnetism 322 November 20, 2002

Open book. Point values are given with each question. Total exam is worth 60 points.

- 1. (a) State and sketch the first three Legendre polynomials as a function of u. (10)
 - (b) You know that the $P_{\ell}(\cos \theta)$ give the θ dependence for separable solutions of Laplace's equation in spherical polar coordinates so that

$$V(r,\theta,\phi) = R(r)P_{\ell}(\cos\theta).$$
(1)

What are the solutions of R(r) that solve Laplace's equation in this case? State the $V(r, \theta, \phi)$ solutions explicitly for $\ell = 1$. What are the names we give to these two solutions? (hint: it isn't George!) (12)

- (c) Show that $V(r, \theta, \phi) = r \cos \theta$ is a solution of Laplace's equation in spherical polar coordinates. (8)
- 2. Consider a parallel plate capacitor with a plate separation of d much less than its lateral size. The lower plate sits in the xy-plane and is grounded. The upper plate has a potential of V_0 .
 - (a) What is the natural coordinate system to describe $V(\vec{x})$? Can you use symmetry to reduce the number of dependent variables? (5)
 - (b) Use the FISHTANK method to solve the electrostatic problem between the plates and give $V(\vec{x})$ in this region. How would you answer be modified if the lower plate were held at $-V_0/2$ and the upper plate were held at $V_0/2$? Would you expect the electric field to change? Why or why not? (10)
 - (c) If $\vec{E}(\vec{x}) = -\frac{V_0}{d}\hat{k}$ what is σ on the upper and lower plates? (5)
 - (d) Calculate the internal energy as a function of V_0 using the integral

$$U = \frac{1}{2} \int \rho V d^3 x = \frac{1}{2} \int \sigma V dA \tag{2}$$

evaluated on the upper plate. The upper plate has a total area of A. (5)

(e) What is the capacitance of a parallel plate capacitor? Show that it agrees with $C = 2U/V_0^2$ (5)