Supplemental Midterm Exam: Electricity and Magnetism 322
 November 22, 2002

Open book. Point values are given with each question. Total exam is worth 60 points.

1. (a) State Legendre's equation as a function of u. (2)
(b) If solutions to Legendre's equation are given by power series

$$
\begin{equation*}
P_{\ell}(u)=\sum_{n=0}^{\infty} C_{n} u^{n} \tag{1}
\end{equation*}
$$

what is the relationship between the C_{n} for different values of ℓ. If ℓ is constrained to be a non-negative integer calculate the value of $C_{\ell+2}$ i.e. C_{n+2} when $n=\ell$. (8)
(c) The first Legendre polynomial is given to be $P_{1}(\cos \theta)=\cos \theta$. If we assume separable solutions of Laplace's equation in spherical polar coordinates so that

$$
\begin{equation*}
V(r, \theta, \phi)=R(r) P_{\ell}(\cos \theta) . \tag{2}
\end{equation*}
$$

What are the two solutions of $R(r)$ and $V(r, \theta, \phi)$ that solve Laplace's equation for $\ell=1$. What are the names that we have given to these solutions? (hint: it isn't George!) (10)
(d) Show that $V(r, \theta, \phi)=\frac{\cos \theta}{r^{2}}$ is a solution of Laplace's equation in spherical polar coordinates. (8)
2. Consider a spherical capacitor with concentric spheres of radius a (inner) and b (outer). The outer sphere has a potential of $V_{0} a / b$ and the inner sphere has a potential of V_{0}.
(a) What is the natural coordinate system to describe $V(\vec{x})$? Can you use symmetry to reduce the number of dependent variables? (5)
(b) Use the FISHTANK method to solve the electrostatic problem between the spheres and give $V(\vec{x})$ in this region. How would your answer be modified if the outer sphere was grounded and the inner sphere were held at $V_{0} \frac{b-a}{b}$? Would you expect the electric field to change? Why or why not? (12)
(c) If $\vec{E}(\vec{x})=\frac{V_{0 a}}{r^{2}} \hat{r}$ what is σ on the inner sphere? What is the total charge on the inner sphere? (7)
(d) Calculate the internal energy as a function of V_{0} using the integral

$$
\begin{equation*}
U=\frac{\epsilon_{0}}{2} \int_{r=a}^{r=b} E^{2} d^{3} x=\frac{\epsilon_{0}}{2} \int_{a}^{b} E(r)^{2}\left(4 \pi r^{2}\right) d r \tag{3}
\end{equation*}
$$

(I have changed the volume integral to a 1-D integral involving r only.) (8)

