
Solutions for Midterm Exam: Electricity and Magnetism 322

October 14, 2005

I didn’t expect you to include all of the explanation that I have here.

1. (a) Give the definition of a vector in Einstein summation notation. Also give the dot product
and cross product using Einstein summation notation. (4)

Answer: If Ai are the Cartesian components of a vector ~A and Rij is the rotation matrix

that describes the transformation between unprimed and primed coordinates then ~A is
a vector if

A′
i = RijAj . (1)

We are using Einstein summation convention so repeated indices (j in this case) are
summed from 1 to 3. The dot product (which gives a scalar) between vectors ~A and ~B
with Einstein summation convention

~A · ~B = AiBi (2)

and the i-th component of the cross product

( ~A × ~B)i = εijkAjBk (3)

where εijk is the Levi-Civita alternating tensor.

(b) If ~x = 3ı̂ − 2̂ +
√

3 k̂ what are x1, x2, and x3? (2)

Answer: x1 = 3, x2 = −2, and x3 =
√

3. Just a check to see if you understand the
notation and prepare you for the next question.

(c) Consider a counter clockwise rotation of π/6 about the z-axis. The elements of the
rotation matrix are R11 = R22 =

√
3/2, R12 = −R21 = 1/2, R33 = 1 and all other

elements are equal to zero. What is x′
1? (4)

Answer: ~x is a vector (indeed, it is the prototype) so it obeys equation 1.

x′
1 = R11x1 + R12x2 + R13x3

=

√
3

2
(3) +

1

2
(−2) + (0)(

√
3)

=
3
√

3 − 2

2
(4)

(d) You perform a further rotation of 20 degrees counterclockwise about the new y-axis.
What is |~x ′′|? (the two primes refer to the two transformations) (2)

Answer: This was a very difficult question if you failed to recognize that |~x| is a scalar.
It is of course a scalar and unaffected by rotations so

|~x ′′| = |~x| =
√

x2
1
+ x2

2
+ x2

3
=

√
9 + 4 + 3 = 4. (5)

2. (a) State Gauss’ Law in integral and differential form. (2)

Answer:
∮

~E · d ~A =
Qenc

ε0

(6)

∇ · ~E =
ρ

ε0

(7)
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(b) According to Coulomb’s Law the electric field of a point charge at the origin is

~E(~x) =
1

4πε0

q

r2
r̂ (8)

Show that this is consistent with Gauss’ Law in integral form if we choose a sphere of
radius r centred on the origin as our Gaussian surface. Justify/very briefly explain any
assumptions. (6)

Answer: On the sphere of radius r, ~E is a constant and according to equation 8 is
1

4πε0

q
r2 r̂. The normal vector that gives the direction of the differential area element is r̂

so that d ~A = r̂dA. Now we can evaluate the LHS of equation 6
∮

~E · d ~A =
1

4πε0

q

r2

∮

sphere
r̂ · r̂dA =

1

4πε0

q

r2

∮

sphere
dA =

1

4πε0

q

r2
4πr2 =

q

ε0

(9)

since “q” is enclosed this is consistent with the RHS.

(c) Give the above expression for the electric field in Cartesian coordinates (can just state
it). (2)

Answer:

~E(~x) =
q

4πε0

xı̂ + y̂ + zk̂

(x2 + y2 + z2)
3

2

(10)

(d) Give a sketch of the vector field in the x − y plane (similar to what you have seen in
class, not the tangent line kind) where the length of the vector at each location indicates
the magnitude and direction of the vector field at that point. (2)

Answer: Looks like vectors emanating radially outward from the origin with a decrease
in vector length as you move farther from the origin.

3. (a) What must ∇× (−∇V ) be equal to? Calculate it explicitly to demonstrate this fact for

V (~x) =
1

4πε0

q

r
=

1

4πε0

q
√

x2 + y2 + z2
(11)

using either Cartesian or spherical polar coordinates. (6)

Answer: ∇ × (−∇V ) must be equal to 0 since it is the curl of a gradient. For this
particular form

−∇V = −r̂
∂

∂r

(

1

4πε0

q

r

)

− θ̂

r

∂

∂θ
(. . .) − φ̂

r sin θ

∂

∂φ
(. . .)

=
1

4πε0

q

r2
r̂ (12)

(The 2nd and 3rd terms have no θ or φ dependence and they vanish.) Doing the same
operation in Cartesian coordinates will give you equation 10.

Taking the curl in spherical polars, putting in zeroes for the θ and φ components.

∇×
(

1

4πε0

q

r2
r̂

)

=
r̂

r sin θ

{

(
∂

∂θ
(0) − ∂

∂φ
(0)

}

+
θ̂

r

{

1

sin θ

∂

∂φ

(

1

4πε0

q

r2

)

− ∂

∂r
(0)

}

+
φ̂

r

{

∂

∂r
(r(0)) − ∂

∂θ

(

1

4πε0

q

r2

)}

= 0 (13)
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The non-zero terms above have neither θ nor φ dependence. In the calculation with
Cartesian coordinates you do end up with non-zero terms but once you subtract (∂Ez/∂y−
∂Ey/∂z, for example) the terms cancel each other.

(b) We know that −∇2V = 0 for r 6= 0. Using the Dirac delta function and your knowledge
of the Green’s function state what −∇2(1

r
) (or equivalently −∇2( 1

|~x|)) is for all points,

including the origin. (4)

Answer: From our knowledge of Green’s function, G(~x, ~x′) = 1

|~x−~x′| , as pertains to
Poisson’s equation we know that

−∇2G = −∇2

(

1

4πr

)

= δ3(r) (14)

when ~x′ = ~0 Just multiplying by 4π we find that

−∇2

(

1

r

)

= 4πδ3(r). (15)

4. Setup (with a diagram) but don’t solve the Coulomb’s Law formulation for the x-component
of the electric field at (x, 0, 0) of a charged line of uniform linear charge density λ that runs
along the z-axis from 0 to `. (Hint: the explicit expression for the x-component of ~E is ı̂ · ~E)
(8)

Answer: this is pretty much out of the book and notes (look there for the diagram). The
only difference is that the integral runs from 0 to `. The Coulomb’s Law formulation says

~E(~x) =
1

4πε0

∫

d3x′ρ(~x′)
~x − ~x′

|~x − ~x′|3 (16)

and the integral is formally over all space as we integrate the source coordinates. The key
first step is to parametrize the charge distribution. We can paramatrize a line with just one
variable and taking the hint that it runs along the z-axis we will choose z ′ as our parameter
and 0 to ` as our integration range (there is no charge anywhere else so that is why we
don’t integrate over all space). Other shapes and sizes of charge distributions would suggest
different parametrization variables and different coordinate systems. The differential charge
element d3x′ ρ becomes dz′λ for a uniformly charged line. We now need to choose a set of
unit vectors to describe ~x and ~x′ in terms of x, y, z, and z ′. The problem states that the field
point is on the x-axis so ~x = xı̂. The source points are all along the z-axis so ~x ′ = z′k̂. So
the elements of the integrand are

~x − ~x′ = xı̂ − z′k̂ (17)

|~x − ~x′| =
√

x2 + z′2. (18)

If we just want Ex then ~E · ı̂ leaves (~x − ~x′) · ı̂ = x in the numerator of the integrand. x and
λ are not functions of z ′ so they come out of the integral.

Ex =
λ

4πε0

x

∫ `

0

dz′

(x2 + z′2)
3

2

(19)
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