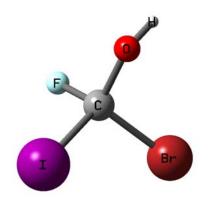
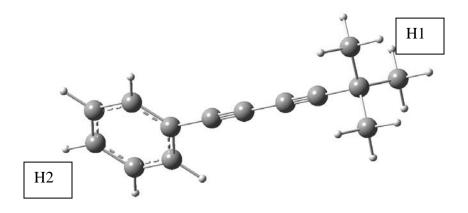
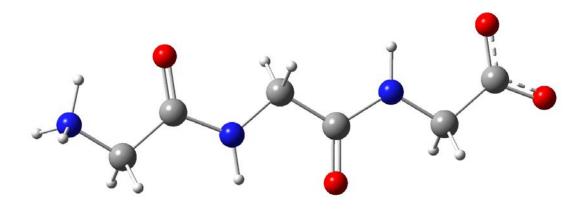
2011

Computational Lab #1

Gaussian Viewer 03

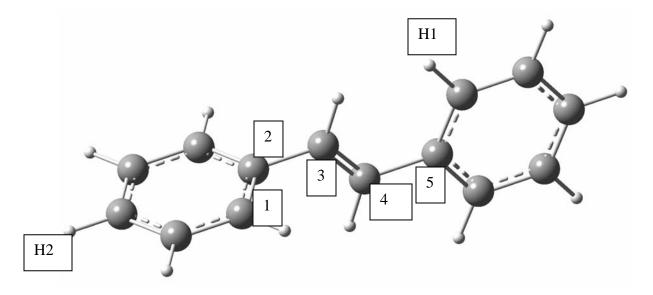
I. Build the structures (<u>exactly</u> as shown), save the images and insert them in your lab report (Word file). Fill the table below:


Table #1. Bond lengths and distances between atoms, in Å, bond angles and dihedral angles, in deg, predicted by Gaussian Viewer

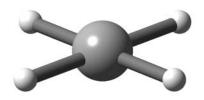
	Distance	Angle
C-O		
C-Br		
C-I		
C-F		
O-H		
I-C-Br		
H-O-C		
І-С-О-Н		
F-C-I-Br		

II. Build the structure as shown below. Report the H1-H2 distance?


III. Build the polypeptide as shown below (use the template).

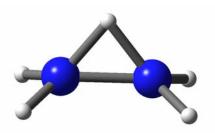
Report the distance between the two most remote atoms.

Report the N-C-C bond angle for the N-terminus.


IV. Build the structure shown below.

Set the 1234 dihedral angle to zero Set the C4-C5 distance to 1.48 Å

What is the distance between H1 and H2?


V. Symmetry. Build the following structures. Be sure that you have a proper symmetry group.

D_{4h} (square planar methane)

 $C_{4\nu} \ \ (square \ pyramidal \ methane)$

Transition state structure (C2v) for the !,2 proton shift for protonated hydrazine $(NH_2NH_2H^{\scriptscriptstyle +})$