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Abstract

We present computer simulation results on the dynamic propensity (as defined by
Widmer-Cooper et al 2004 Phys. Rev. Lett. 93 135701) in a Kob—Andersen binary

Lennard-Jones liquid system consisting of 8788 particles. We compute the spatial correlation
function for the dynamic propensity as a function of both the reduced temperature 7', and the
time scale on which the particle displacements are measured. For T < 0.6, we find that
non-zero correlations occur at the largest length scale accessible in our system. We also show
that a cluster-size analysis of particles with extremal values of the dynamic propensity, as well
as 3D visualizations, reveal spatially correlated regions that approach the size of our system as
T decreases, consistently with the behavior of the spatial correlation function. Next, we define
and examine the ‘coordination propensity’, the isoconfigurational average of the coordination
number of the minority B particles around the majority A particles. We show that a significant
correlation exists between the spatial fluctuations of the dynamic and coordination propensities.
In addition, we find non-zero correlations of the coordination propensity occurring at the largest
length scale accessible in our system for all 7" in the range 0.466 < T < 1.0. We discuss the
implications of these results for understanding the length scales of dynamical heterogeneity in

glass-forming liquids.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Glass-forming liquids are remarkable for the extraordinary
sensitivity of their transport properties to changes in state vari-
ables, such as temperature 7 [1]. Properties such as viscosity
are commonly found to vary over 14 orders of magnitude in
supercooled liquids between the melting temperature and the
glass transition. Yet in the same interval of T, it is also
typical that only modest changes occur in the average liquid
structure. One of the central questions in the study of the glass
transition is whether this enormous dynamical response can be
understood in terms of structural change [2].

Much recent interest has focused on the emergence
and growth of dynamical heterogeneity (DH) in supercooled
liquids, that is, spatially extended domains in which molecules
are more or less mobile, relative to the bulk average [3].
The growth of these dynamical domains as 7 decreases
seems to occur in the absence of a growing structural length
scale. At the same time, the simulation work of Widmer-
Cooper et al has shown that key aspects of DH are indeed
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structural in origin [4-6]. They do so through the use of the
‘isoconfigurational (IC) ensemble’, a simulation procedure in
which a given liquid configuration is analyzed by conducting
a set of runs all initiated from the same configuration, but in
which particle velocities are randomized [4]. Analysis of the
‘dynamic propensity’, a particle’s displacement averaged over
all the runs of the IC ensemble, reveals spatial heterogeneity
that can only be due to structural properties of the initial
configuration, because the influence of the initial velocities has
been averaged out. Simultaneously, there has been significant
progress in identifying exactly which local structural properties
(e.g. potential energy, soft vibrational modes, medium-
range order) may be correlated to DH in several simulated
liquids [6-10].

There have also been important recent advances in our
understanding of the length scales associated with DH. Several
recent works have quantified the length scale of DH as
found in computer simulations of the Kob—Andersen (KA)
liquid [11], an 80:20 binary mixture of A and B Lennard-Jones
particles which has received much attention in simulations of
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glass-forming liquids in general [12], and in the analysis of
dynamical heterogeneity in particular [13-23]. A number of
studies have estimated the characteristic length scale & for DH
from the behavior of the four-point structure factor Si(q,t)
(the Fourier transform of a four-point density correlation
function) at small wavenumber ¢ [17-23]. These studies
confirm that & increases as T decreases, and yield estimates
of & ranging from 1 to 5 particle diameters in the T region
accessible to simulations. At the same time, these studies
emphasize the challenges associated with finding & from the
small-g behavior of S4(g, t), due to the limitations of system
size.

Sastry and coworkers have recently evaluated & for DH in
the KA liquid both from a finite-size scaling analysis, and from
the behavior of S4(gq,t) [21-23]. At a reduced temperature
of T = 0.6, they found § = 2.6. However, at the same T
they showed that finite-size effects continue to influence the
estimate of & as obtained from Si(q, t) up to a system size
of approximately N = 350000 particles, and that even larger
system sizes would be required to accurately evaluate & from
S4(q,t) at lower T. In a cubic simulation box with sides of
length L, a system of N = 350000 particles at the density
studied (p = 1.2) has a maximum accessible length scale of
L/2 ~ 33, i.e. more than an order of magnitude larger than
& = 2.6. The difference between & and the size of the system
required to accurately compute it demonstrates there exist
phenomena that influence DH on length scales many times the
value of &. This highlights the care that must be taken when
interpreting the meaning of length scales associated with DH.

In addition, Berthier and Jack have evaluated & for the
dynamic propensity in the KA liquid as obtained from the
four-point structure factor, generalized so as to quantify the
spatial correlations of the dynamics in the IC ensemble [19].
They report values of & for the dynamic propensity ranging
from 1 to 2. For the same 7T, the values of & found using
conventional averaging fall in exactly the same range. The
similarity in the values of £ obtained from conventional and IC
averaging suggests that these two approaches probe the same
fundamental length scale. The study of Berthier and Jack is the
only one of which we are aware that reports £ as obtained from
the dynamic propensity. Yet their results demonstrate that the
dynamic propensity is a relevant measure for improving our
understanding of the spatial correlations associated with DH.

In this paper, we present simulation results exploring the
nature of the spatial correlations of the dynamic propensity
in the KA liquid. In the investigations summarized above,
the four-point structure factor S;(q, t) plays a central role.
In order to complement and illuminate these investigations,
here we focus instead on quantifying the spatial correlations
of the dynamic propensity in real space. We exploit several
approaches: (i) an evaluation of a real-space correlation
function; (ii) a cluster-size analysis of a subset of particles
with extremal values of the dynamic propensity; and (iii) 3D
visualizations of the spatial variation of the dynamic propensity
field. As shown below, over a wide range of 7 we find
that significant correlations in the dynamic propensity occur
at distances larger than might be expected, given the values of
& obtained previously by analyzing S4(q, 7).

In addition, we investigate the use of IC averaging
for quantities other than the particle displacements. The
IC ensemble was originally developed to separate out the
configurational contribution to DH. However, as we show
below, we find that IC averaging is also a useful tool for
elucidating the nature of spatial correlations of local structural
properties. In the present work, we focus on the local
coordination number of the minority B particles around the
majority A particles, and define a ‘coordination propensity’
analogous to the dynamic propensity (see below).

In a liquid system, any local property that is a function of
particle positions, such as the coordination number, is subject
to a random noise contribution due to thermal motion. This
‘thermal broadening’ acts to reduce the magnitude of spatial
correlations of local structural properties, just as the Debye—
Waller factor lowers the intensity of Bragg scattering in a
crystalline solid. As we show below, when we use IC averaging
to evaluate the spatial correlation of the coordination number,
the thermal contribution is largely averaged out, resulting
in a stronger correlation than that found using conventional
averaging.  Subtle features of the structural correlations,
especially at long range, are thus revealed. A further advantage
of this approach is that using IC averaging to quantify the
spatial correlations of both dynamical and structural properties
allows us to seek the connections between the two within a
single methodological framework.

In a previous analysis of simulated water, we found that
the IC average of a molecule’s potential energy correlated
well with its dynamic propensity, suggesting a link between
average structure and dynamics at the local level [8]. Here we
apply this approach to the KA liquid, focusing instead on the
coordination number. Analogous to our results for water, we
find a good spatial correlation between the dynamic propensity
and the coordination propensity. Surprisingly, we also find that
the magnitude of the spatial correlations of the coordination
propensity exceed those of the dynamic propensity, with the
most dramatic differences occurring at high 7. We discuss
the implications of this finding for understanding the relevant
length scales of the KA liquid.

2. Simulation methods

Our model system is the KA liquid, consisting of an 80:20
mixture of N = 8788 A and B particles, interacting via a
potential Vog = 4ea/3[(<70(/3/r)12 — (amg/r)6] with o, B €
{A,B}. All quantities are reported here in reduced units,
with length, energy and time given relative to oaa, €aa and
(mo?,/48ean)"/? respectively, where m is the mass of the
particles. The potential parameters are oaa = 1.0, ean = 1.0,
OBB = 088, €BB — 05, OAB = 0.8 and EAB = 1.5 [11] The
potential is truncated and shifted at a cutoff radius of 2.5. All
simulations are conducted in a cubic cell having sides of length
L with periodic boundary conditions and volume fixed to give
a density of 1.2. The simulation time step is Az = 0.01. In all
cases below, we restrict our attention to the properties of the A
particles.

We study the liquid using the IC ensemble method at
T = 1.0, 0.6, 0.5 and 0.466. At each T we generate ten
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independent starting configurations. We first equilibrate a
random configuration at 7 = 5.0 for at least 28 000 time steps,
then reset 7 to the desired value, controlling 7' throughout
with a Berendsen thermostat. Each system is equilibrated
for at least 207, where 1, is the value of the a-relaxation
time at that 7. We then use each starting configuration to
initiate M = 500 runs of an IC ensemble by randomizing the
velocities of all particles according to a Maxwell-Boltzmann
distribution, while leaving the particle coordinates unchanged.
The IC ensemble runs are carried out in the microcanonical
ensemble.

Let r2(i, k, t) be the squared displacement of the ith A
particle at time ¢ in run k of an IC ensemble. The ‘dynamic
propensity’ of each A particle at time ¢ is defined in [4] as the

value of
M
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We evaluate (riz)iC for each A particle as a function of 7.
For reference, we show in figure 1 the mean squared

displacement in the IC ensemble,
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NAM ;; (i, k1), )

and the non-Gaussian parameter,
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where N, is the number of A particles. Both quantities show
the characteristic pattern of a glass-forming liquid in which
DH occurs [15]. (r?) develops a plateau at low 7T indicating
the onset of molecular caging, and « displays an increasingly
prominent maximum as 7" decreases.

Motivated by the results of [8], we also analyze a structural
property of the system using the same IC averaging employed
to find the dynamic propensity. Specifically, we examine the
chemical composition of the nearest neighbor environment of
the A particles. Let n(i, k,t) be the number of B particles
found within a distance of »r = 1.2 (the first minimum of
the A-B radial distribution function) of the ith A particle at
time ¢ in run k of an IC ensemble. We define the ‘coordination
propensity’ of each A particle at time ¢ as

3

>
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3. Spatial correlation functions

We define the spatial correlation function of the propensity as
follows. Ata given time 7, each A particle i has associated with
it a value of (r[z)iC and (n;)i.. f welet x(i, 1) = (rl.z)iC or (1; )ic,
then a spatial correlation function C(r, ) for either propensity

can be specified via the following definitions:
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Figure 1. (a) Mean squared displacement (+) and (b) non-Gaussian
parameter « as a function of time, for 7 = 1.0 (triangles), 0.6
(diamonds), 0.5 (squares), and 0.466 (circles).

Sx(i,t) =x(i,t) — (x(1)), (6)
Na
([Bx()]*) = NLA ;[&c(i, N1, 7
_ (6x (i, 1)0x(j, 1))
CCD=mor ®

where (6x(i,1)0x(j,t)) is the average of the product
0x(i,t)8x(j,t) for all pairs of A particles i and j such that
[r; — r;| falls within an interval of width Ar centered on r.
We use Ar = 0.1. Note that the position of each particle is
its position in the starting configuration of the chosen IC run.
All the results for C(r, t) presented below are averaged over
the ten independently-initialized IC runs. So defined, C(r, 1)
measures the average spatial correlation in the fluctuation of
the propensity (evaluated at time ¢) from its mean value, for
particles separated by a distance 7 in the initial configuration. If
we use x(i,t) = (riz)ic, we denote the correlation function for
the dynamic propensity as Cq(r, t). If x (i, t) = (n;)ic, then the
correlation function for the coordination propensity is denoted
Ce(r,1).

Figures 2 and 3 respectively show the behavior of Cy(r, t)
and C.(r, t) as a function of both r and ¢, for all four 7 studied
here. Figures 4 and 5 show the same data in semi-log form.
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Figure 2. Spatial correlation function of the dynamic propensity. At
each T, we show the variation of Cy(r, t) with r for each ¢ studied.
The ¢ values of the curves correspond to the times of the data points
in figure 1. The curves for the smallest times decay rapidly to zero.
At intermediate times, the magnitude of the correlation for a given
value of r reaches a maximum. The curve for the largest ¢ is plotted
as a thick black line.

Focusing first on the behavior of Cy(r, 1), at all T we
find that the » dependence of the correlation decays quickly
to zero for small values of . However, as ¢ increases to values
corresponding to the vicinity of the maximum in ¢, both the
magnitude and range of the correlation increases, reflecting the
increasing prominence of DH on this time scale. At the longest
times studied here, the magnitude of the correlation for a given
value of r passes through a maximum and begins to decrease.
This effect is most apparent in our data at 7 = 1.0 and 0.5. We
illustrate this behavior in figure 6, where we show the value of
Cq(r,t) at r = 1.0, the position of the first maximum in the
A-A radial distribution function. We note that the maxima of
the curves in figure 6 occur more than an order of magnitude
later in time than the corresponding maxima of « shown in
figure 1(b).

We also note that the ¢ dependence of the curves in figure 6
is qualitatively similar to that found previously for x4, the
dynamic susceptibility associated with S4(q,t); see e.g. the
inset of figure 1(a) in [21]. However, similar to the comparison
with figure 1(b) above, the maxima of the curves in figure 6
occur more than an order of magnitude later in time than the
corresponding maxima of yy.
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Figure 3. Spatial correlation function of the coordination propensity.
At each T, we show the variation of C.(r, t) with r for each ¢
studied. The ¢ values of the curves correspond to the times of the
data points in figure 1. The curves for the smallest times decay
rapidly to zero. At intermediate times, the magnitude of the
correlation for a given value of r reaches a maximum. The curve for
the largest 7 is plotted as a thick black line.

The qualitative pattern of behavior we find for Cy(r, t)
is what we would expect based on previous work [13-23]:
Similar to conventional measures of DH, spatial correlations
of the dynamic propensity are most pronounced on an
intermediate time scale, and both this time scale, and the
maximum strength of the correlations, grow as T decreases.
However, two quantitative aspects of the behavior of Cq(r, 1)
are noteworthy. First, as shown in figure 4, while Cq4(r, 1)
appears to decay exponentially with r for small ¢, at
larger ¢ corresponding to the maximum in the magnitude
of the correlations, the r dependence is distinctly non-
exponential. Second, at the largest r accessible in our system
(i.e. approaching r = L/2 = 9.7), negative correlations occur,
and become more prominent as 7' decreases. We note that an
error analysis over our ten independent starting configurations
confirms that Cy(r, t) = 0 lies outside the statistical error bars
of the correlations at large r and ¢. The functional form of the
r dependence of Cq4(r, t) for large ¢ is therefore not simple,
e.g. exponential decay. The behavior depicted in figure 2 also
shows that for 7" < 0.6, Cq4(r, t) has not reached its asymptotic
limit for large r on the scale of the system studied here. Indeed,
the occurrence of negative correlations suggests that Cqy(r, 1)
may have the form of a damped oscillation extending out to
much larger distances than those probed in our system.
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Figure 4. Same data as in figure 2, but presented on a semi-log plot.

Turning next to the behavior of C.(r, t), we find a similar
pattern of behavior as that found for Cy(r, t). The magnitude
and range of the correlations initially increase as ¢ increases
(figure 3). The magnitude of the correlation (at a given r)
then passes through a maximum and decreases for large ¢
(figure 6(b)). We also find that the r dependence of C.(r, t) is
increasingly non-exponential as ¢ increases (figure 5), and that
negative correlations occur at the largest values of r (figure 3).

As anticipated in the introduction, we see in figures 3
and 6(b) the result of applying IC averaging to a local structural
property. While Cq(r, ) shows negligible correlations at small
t, C.(r, t) exhibits a non-zero correlation of the coordination
number for nearby particles even at the smallest ¢ (figure 3).
The limit of C.(r, t) as t — 0 corresponds to the conventional
spatial correlation function that could be computed from
instantaneous snapshots of the system configuration. These
correlations are of rather short range, extending out to
approximately the second-neighbor shell before dying out
completely. However, when evaluated using IC averaging, the
spatial correlations of the coordination number initially grow
in magnitude as the time ¢ at which the averaging is carried
out increases. This reflects the fact that averaging over initial
momenta in an IC ensemble, and evaluating correlations of
the propensity on a time scale longer than the vibrational time
and shorter than 7,, suppresses the influence of thermal noise
on the structural correlation function. The existence of non-
zero structural correlations at much longer range are thereby
revealed.
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Figure 5. Same data as in figure 3, but presented on a semi-log plot.
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Figure 6. Magnitude of the correlation evaluated atr = 1, as a
function of ¢, for (a) the dynamic propensity, and (b) the coordination
propensity.

A notable qualitative difference between the behavior of
Cq(r,t) and C.(r,t) is that the magnitude and range of the
correlations revealed by C. (7, t) at intermediate time are large
at all 7, including at our highest 7T = 1.0. Indeed, there
is very little 7 dependence in the maximum values of the
curves plotted in figure 6(b). At all 7', the behavior of C.(r, t)
suggests that the r dependence of the correlation has not
asymptotically vanished on the scale of the system studied
here.
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Figure 7. Mean cluster size as a function of ¢ for (a) mobile clusters,
(b) immobile clusters, (c) clusters of A particles with low B
coordination, and (d) clusters of A particles with high B
coordination, all evaluated in the IC ensemble.

The non-trivial r dependence of the correlation functions
shown in figures 2 and 3 (including the possibility of
negative correlations) does not lend itself to a straightforward
quantification of a characteristic length scale from either
Cq(r,t) or C.(r, t). Indeed, it seems that systems much larger
than that studied here would be required to determine the
full range of r over which significant non-zero correlations
occur. This observation is consistent with the much larger
system sizes found in [21-23] to be required for the accurate
evaluation of &.

4. Cluster-size analysis

As an alternative to evaluating a characteristic length scale
from our spatial correlation functions, we explore the typical
size of the correlations using a cluster-size analysis of a subset
of particles having extremal values of the dynamic propensity.
This approach was widely used in earlier work on DH, and
while more qualitative in nature, succeeded in capturing many
of the key trends for how the size of DH correlations grow as
T decreases [8, 15, 24].

To this end, we identify the particles having the highest
10% of (riz)iC values at a given ¢, and then find the clusters of
‘mobile particles’ formed by this subset. Clusters are defined
by the criterion that two particles of the subset that are also
within » = 1.4 of one another (the position of the first

T=0.466 _

6

10" 10 10° 10

10" 10 t10 10

Figure 8. Mean cluster size as a function of ¢ for (a) mobile clusters
and (b) immobile clusters, as measured in single simulations runs.

minimum of the A—A radial distribution function) in the initial
configuration are assigned to the same cluster. The number-
averaged mean cluster size of a set of N, clusters is

s= L > nN (), 9)

N. %
where A (n) is the number of clusters of size n. We evaluate S
for the clusters of mobile particles defined above, and denote
it as Sy. We conduct the same analysis on the lowest 10% of
(r[z)iC values, and find the mean cluster size of this ‘immobile’
subset S;. Figures 7(a) and (b) show the ¢ dependence of
Sm and S;, where the data are averaged over the ten starting
configurations used at each 7.

For comparison, we also evaluate S for the DH that occurs
in single simulation runs. That is, we separately analyze
each of the M = 500 runs of one IC ensemble at each
T, and evaluate, as a function of 7, the mean cluster size
Sm of the clusters formed by the particles having the largest
10% of displacements as measured from their position in the
starting configuration. These mobile clusters correspond to
the ‘strings’ documented e.g. in [15]. We then obtain the
average of the Sy, curves over all 500 runs (figure 8(a)). The
corresponding cluster-size analysis of the smallest 10% of
displacements in individual runs gives S as a function of ¢
(figure 8(b)).

Figures 7(a), (b) and 8 allow us to compare the DH
as revealed by both IC and conventional averaging, for both
mobile and immobile domains. The ¢ dependence of all
curves follows the behavior for DH found in earlier work (see
e.g. [24]). At small ¢, S has the value expected for a random
choice of 10% of the A particles (approximately S, = 2.135),
consistent with no spatial correlations. However, on the time
scale of structural relaxation a maximum occurs, indicating
significant clustering of mobile and immobile particles. At
large ¢, the DH begins to dissipate and S decreases toward
S, = 2.135. This pattern of behavior is entirely consistent
with that found for the correlation function Cq4(r, t). Also, the
t dependence of Sy and Sy is quite similar to that found for the
magnitude of Cy(r, t) for r = 1 depicted in figure 6.
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We note that the time scale on which maxima occur in
figures 7(a), (b) and 8 is almost a decade later for immobile
domains than for mobile domains at the lowest 7. This is
true for both IC and conventional averaging, and highlights the
occurrence of a distribution of correlation times in the system,
the extreme values of which are sampled by the mobile and
immobile subsets [15].

Figures 7(a), (b) and 8 also show that at the lowest
T, the maxima of S occur about an order of magnitude
later in time for IC averaging as compared to conventional
averaging. This difference illustrates that the dynamical
correlations that occur during individual system trajectories
(e.g. string-like particle motions) make a distinct contribution
to the spatial correlations of the dynamics, in addition to
the configurationally determined influence quantified by the
dynamic propensity.

The monotonic increase in S™* (the maximum value of
S) as T decreases quantifies the growth of DH on cooling.
We denote the maximum value of Sy in figure 7(a) as
Sy similarly, S{™, S7#* and S denote the maxima in
figures 7(b), 8(a) and (b) respectively. The T dependence
of §™¥ for all data in figures 7 and 8 is plotted in figure 9
as a function of (T — T.)/T., where T. = 0.435 is the
critical temperature of mode coupling theory for the KA liquid.
Figure 9 shows that the sizes of the mobile and immobile
clusters found using the IC ensemble are as much as an order
of magnitude larger than the DH found when analyzing single
runs. Also, the T dependence of S™ is quite different for
the two kinds of averaging. Sp®* and S™* follow a power
law [15]', while Sji™ and S"* do not. Indeed, the most notable
behavior in figure 9 is that Si™ and S[™* both initially grow
faster than a power law on cooling, but then at the lowest T
their growth seems to saturate. This behavior is consistent with
the size of the largest clusters becoming ‘capped’ by the size
of the system at the lowest 7. Hence, as in the case of Cq(r, 1),
our cluster-size analysis suggests that the size of the correlated
domains of the dynamic propensity exceed our system size as
T decreases.

We have also carried out the same cluster-size analysis
on the coordination propensity. We show in figure 7(c) the
time dependence of the mean cluster size S; of the 10%
of A particles with the lowest values of (n;);.. Figure 7(d)
shows Sy, the mean cluster size of the 10% of A particles
with the highest values of (n;)i.. The time evolution of
S; and Sy in figure 7 is similar to Sy and Sy, with the
notable exception that the values of §;™ and S7*™ (shown
in figure 9) are nearly independent of 7', and are larger than
or comparable to Sy™ and S for all T. That is, the
size of the domains with high and low B coordination (as
quantified by the coordination propensity) remains large at
all 7, including at high T where the mobile and immobile
domains (as quantified by the dynamic propensity) are an order
of magnitude smaller. These findings are consistent with the
comparison of the Cq4(r, t) and C.(r, t) correlation functions
presented in the previous sections. We also note that the

' While power law growth of the size of mobile clusters in single runs is well
known, our results show that the immobile clusters also exhibit a power law
growth with approximately the same exponent as for mobile clusters.
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Figure 9. Maximum value S™ of the mean cluster size for each of
the curves plotted in figures 7 and 8, as a function of (T — T¢)/T,
where 7, = 0.435. Shown are the maximum values of §; (filled
squares), Sy, (filled circles), S; (open squares), Sy (open circles), Sy
(up triangles), and S, (down triangles). S, = 2.135 has been
subtracted from all the data to reflect the value of S™* in excess of its
value for a random choice of 10% of the A particles. For the open
symbols, the standard deviation of the data over the ten starting
configurations is less than or comparable to the symbol size.

instantaneous spatial correlations in the local coordination of A
particles (observed in the ¢+ — 0 limit of C.(r, 1)) are reflected
inthet — 0limitof Sy and Sy in figure 7. In this limit, S; and
Sy approach values that are distinctly greater than the random
value S, = 2.135, reflecting the presence of instantaneous
correlations of the local coordination.

5. Visualizing the dynamic and coordination
propensity

In the top panels of figure 10 we visualize the spatial variation
of the dynamic propensity for one starting configuration at
each T, at the value of ¢ corresponding to Sy, where the
clusters are most prominent. Our procedure is based on that
used in [8]. Particles in the top (bottom) 50% of (riz)iC values
are represented as green (red) spheres, with each sphere plotted
at the position of the particle in the initial configuration. The
radius of each sphere represents the rank order of (riz)ic: the
larger a green (red) sphere is, the larger (smaller) is its value of
(riz)ic. See the caption of figure 10 for complete details of the
visualization procedure.

Note that these visualizations represent all the A particles
in the system, not just those in the top or bottom 10% of (riz)iC
values that are used in the previous section to define clusters
and obtain the mean cluster size. Nonetheless, the pattern
of heterogeneity observed in figure 10 is entirely consistent
with the cluster-size analysis presented in figure 7, and with
the behavior of the spatial correlation functions in figure 2.
At T = 1.0 the arrangement of red and green spheres is
nearly random, while at the lowest T, very large mobile and
immobile domains have emerged. At both 7" = 0.5 and 0.466,
the domains are strikingly large, and are comparable to the
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T=0.466 T=0.5

T=1.0

T=0.6

Figure 10. Spatial variation of (rf)ic (top panels) and (n;);. (bottom panels) at each T'. To make each top panel, the values of (rf)ic, evaluated
at the time of the maximum of Sy, are assigned to each A particle at its position in the initial configuration of the IC ensemble. These values
are sorted and assigned an integer rank R; from 1 to N, from smallest to largest. Each A particle is then plotted as a green sphere of radius

0 = Ry exp{[(R; — N)/(1 — N)]1og(Ryax/Rumnin)}, where Ry.x = 0.5 and Ry, = 0.01. The ranks R; are then reversed (i.e. assigned from
largest to smallest), and each A particle is also plotted as a red sphere of radius o. The color observed for each particle therefore indicates
which of the green or red spheres is larger. The result presents the rank of (r?);. on an exponential scale, such that the largest green spheres
represent the most mobile A particles, and the largest red spheres the most immobile. The bottom panels are created in exactly the same way
as the top panels, but with (rl.z)iC replaced by (n;);., and where the time is chosen to be the maximum of S, at each 7'. In the bottom panels, the
largest yellow spheres represent the A particles with the lowest B coordination, and the largest blue spheres the A particles with the highest B

coordination.

system size. This is consistent with the possibility that finite-
size effects are responsible for the saturation of the values of
Sy and S{"™™ observed at low T in figure 9.

The spatial variation of the coordination propensity (n;)ic
is visualized in the bottom panels of figure 10 for the same
initial configurations shown in the top panels, with ¢ chosen
at the time of S7". In all other respects, the coordination
propensity values are represented in the same way as the
dynamic propensity values, except that the particles in the top
(bottom) 50% of (n;)i. values are represented as blue (yellow)
spheres, instead of green (red). These visualizations confirm
that the size of the domains with low and high B coordination
remain large at all 7', including at high 7 where the mobile and
immobile domains are much smaller.

Further, figure 10 illustrates that the locations of the
mobile and immobile domains that emerge on cooling
approximately correspond with the domains of low and high
B coordination that are prominent at all 7. This spatial
correspondence suggests a correlation between average local
dynamics and average local structure that would be consistent
with expectation: given the attractive interaction between
A and B particles, an A particle with lower-than-average
B coordination will be less tightly bound by its neighbors,
and thus potentially more mobile, than one with higher-than-
average B coordination.

6. Discussion

Our main result is to present a quantification of the correlations
of the dynamic propensity as they occur in real space. As
shown above, these correlations continue to have a significant
r dependence on the largest length scales accessible in
our system of N = 8788 particles. Previous simulation
studies [13-19] of the KA liquid that address DH typically
consider systems for which N ranges from 1000 to 8000
particles, and so our system is comparable to the largest
systems in this range. The notable exceptions are the
recent works that study systems of N = 27000 [20] and
350000 [21-23] particles.

Our work shows that a definitive study of the correlations
of the dynamic propensity should be undertaken in a system
much larger than that used here. This includes studies
conducted at high T, i.e. up to twice 7, or even higher. If
it is true that the length scale of the dynamic propensity and
the length scale of DH as found in conventional averaging are
the same, then our results support the finding of [21-23] that
systems very much larger than ours are required in order to
study DH in a regime that is beyond the influence of finite-
size effects, even at high 7. The same conclusion is even
more strongly supported by the behavior of the coordination
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propensity; these correlations span our system size at all T
studied, including 7 = 1.0.

Whether the finite-size effects found here for the dynamic
propensity also influence the behavior of other dynamical
properties, such as the structural relaxation time t,,, remains to
be determined. For the KA liquid, significant finite-size effects
for 7, have recently been reported that become prominent
in the same range of 7 in which we find that the spatial
correlations of the dynamic propensity reach the scale of our
system [25]. Clarification of such finite-size effects merits
continued investigation.

We emphasize that since our main results are based on
IC averaging, the structural triggers for individual correlated
dynamical events occurring in a single simulation run (e.g. the
‘strings’ of [15]) are not specifically addressed here. IC
averaging quantifies the tendency for a particular property (a
displacement or a coordination number) to be observed, but
has very limited predictive power for any given run [19].

It is also important to recognize that the correlations
exposed via IC averaging are properties of the initial
configuration from which the runs of the IC ensemble are
generated. That is, they are static correlations in the sense that
they are a property determined by the configuration of particles
in an instantaneous snapshot of the system [4]. At the same
time, the role of the subsequent dynamical evolution of the
ensemble of systems initiated from the original configuration
in revealing these correlations cannot be ignored. It is the
sensitivity of the dynamics to the initial configuration that
reveals the spatial heterogeneity observed in the propensity. In
short, IC averaging provides us with a dynamically-revealed
static correlation, but a static correlation nonetheless. In this
light, the large-scale correlations (that is, large compared to
our system size) that we observe in the dynamic propensity,
and especially in the coordination propensity at 7 = 1.0,
indicate the existence of subtle configurational fluctuations in
the KA liquid that are larger than has perhaps been generally
appreciated. The nature of these structural fluctuations clearly
merits further study, for example, in terms of fluctuations of
local composition or medium-range order that occur without
accompanying density fluctuations, as examined in the recent
work of Tanaka et al [10].

In all glass-forming liquids, the increasing sensitivity of
dynamics to structure as 7 decreases makes it inevitable that
local dynamical fluctuations (i.e. DH) will occur on a scale at
least up to the size of any local structural fluctuations that are
present. The spatial extent of the fluctuations we find in the
coordination propensity are comparable to our system size at
all 7 studied, and as described above, these fluctuations are
necessarily structural in origin. Our results therefore suggest
that the occurrence of DH in the KA liquid can be understood
as a response, progressively emerging as 7" decreases, of the
local dynamics to subtle but large-scale structural fluctuations
that are already well-established at high 7T'.

Indeed, it is possible to interpret our results for the
coordination propensity as an indication that the KA liquid in
our simulations is forming very large-scale regions of distinct
chemical order, or even, in the extreme case, is undergoing
compositional phase separation. In this extreme, the

appearance of DH is entirely to be expected: compositionally
distinct regions will necessarily have distinct dynamics. At
the same time, our data for the spatial correlation function
of the coordination number as obtained from conventional
averaging (i.e. the + — 0 limit of C.(r,t) in figure 3)
remain short-ranged at all 7', and so are not consistent with
a simple phase separation picture. This suggests that the
propensity correlations presented above, though of large size,
are more subtle in nature, and merit further investigation.
A study of finite-size effects, and/or simulations of a much
larger system than that considered here, would greatly assist
in clarifying the thermodynamic and dynamical significance of
these correlations.
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