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INTRODUCTION: The service is considered the first attack action in volleyball 
games. Most types of services can be recognized through the athlete’s posture 
before he hits the ball. Frequently this information is not enough to prepare an 
adequate reception. Erratic behavior seems to appear along the trajectory 
hindering the reception. This work focuses on the characterization of the service 
ball's trajectories.  
The interaction between the ball and the air is treated by fluid mechanics. Other 
authors have analyzed volleyball throwing. For example KAO et al. (1994) 
quantified a mathematical model for the trajectory of a spiked volleyball using wind 
tunnel aerodynamic tests.  
Here we studied the behavior of real service balls through the three-dimensional 
reconstruction of their trajectories. 
OBJECTIVES: The aim of this research is: 1) to study service balls trajectories; 2) 
to relate characteristics of the balls' movement to the so called "drag crisis" 
phenomenon; 3) to quantify the drag force and the drag coefficient. 
METHODOLOGY: Four types of volleyball services were performed by a high-level 
player of the Brazilian national league. The chosen ones were: the underhand 
service, the floater service, the floater service with jumping and the overhand 
service with jumping. In all cases the athlete was told to throw the ball with low or 
without spin effects.  
Two fixed video cameras registered the trajectories of the balls in an indoor court, 
obtaining two sequences of stereoscopic images. Twenty-six throws were selected, 
digitalized and 3D reconstructed by the DLT method, applying the DVIDEO system 
of BARROS, R. et al. (1997). For each throwing we obtained the coordinates that 
correspond it to the 3D position of the ball, in its flight phase, at every 1/30 second. 
The precision of the measurements and 3D reconstructions was shown to be better 
than ±3 cm.  
For the analysis we adopted a Cartesian reference system with "x" horizontal, in 
the direction of the throwing, "y" vertical upward and "z" orthogonal to the vertical 
plane (x, y). In this way we obtained a type of description of the trajectories that 
doesn’t depend on the direction of the executed service.  
The coordinates (x and y) of each trajectory were fitted by a polynomial of 4th 
degree of time, allowing the calculation of the velocities and accelerations of the 
balls. 
 



Initially we used the position data of the 
ball to compare all the real trajectories with idealized ones which would be 
obtained for an object thrown with the same initial conditions in vacuum, i.e., 
without air resistance. For each service we calculated the initial launching position 
and velocity vector in the vertical plane, using the first five points of the real 
trajectory of the ball. These initial conditions allowed the calculation of the 
trajectory under the action of the gravitational force alone. Real and idealized 
trajectories y(x) of three services are represented, as examples, in Figure 1. The 
comparison of these curves evidences the effect of the resistance of the air to the 
movement of the ball in the vertical plan.  
Subtler effects like "floatation" of the ball which are present in many real 
trajectories cannot be seen in the vertical plane projections because they are 
dimmed by the intense actions of the gravity and drag forces. However, such weak 
effects appear clearly in the horizontal plane projection of the movement. In this 
plane the expected idealized trajectory is a straight line given by Z = 0 relative to 
our system of coordinates. Thus any lateral deviation of the straight line can be 
attributed to measurement errors or interference of the air. Such effects are 
illustrated in Figure 2. We observe that the amplitudes of the lateral instabilities are 
as large as a ball radius.  
Fluid dynamics shows how to quantify the interaction between the ball and the air. 
Under the effect of the relative velocity between the object and the fluid the viscous 
friction promotes a drag force FD which is opposed to the movement. The intensity 
of the force acting on a smooth sphere of diameter D (cross-section A = πD2/4), 
moving in a fluid of density ρ, with a velocity V, is: 

FD = ½ CD ρ A V2    (I) 
CD is the drag coefficient whose value depends on the type of flow, on the 
geometry of the object and on the object-fluid relative velocity. For a given shape, 
the type of the flow can be characterized by an adimensional parameter called the 
Reynolds Number (Re) that considers the size of the object (D), the density (ρ) and 
the viscosity (μ) of the fluid, as well as the object-fluid relative velocity (V). Re is 
given by:  Re = ρ D V / μ                (II) 

 
Figure 1- Real trajectories(*,+,°) 

compared with "in vacuum" idealized  
ones projected in the vertical plane. 

Figure 2 - Real trajectories (*,+,°) 
compared with "in vacuum" idealized  

ones projected in the horizontal plane. 



In the literature the drag coefficient CD is presented graphically as a function of the 
Reynolds Number CD(Re) (LANDAU & LIFSHITZ (1993)). For low values of Re, the 
flow is laminar. For high values of Re a turbulent flow appears in the posterior part 
of the ball. Depending on the value of Re, two turbulence types can appear whose 
transition is abrupt and characterized by a drastic fall in the value of CD (factor four 
or more). This phenomenon is called "drag crisis" and happens in a region defined 
by 1.105 < Re < 3.105. As we show below, the velocity of the balls, in high level 
services, corresponds to Reynolds Numbers of this size.  
In the case of the present experiment, knowing the velocities and the accelerations 
of the balls, we can estimate the drag forces, the drag coefficient values (CD) and 
the Reynolds Number (Re) for each service using equations (I) and (II). With the 
ball mass (m) and the acceleration of gravity (g) we get a two-dimensional model 
for CD as function of the accelerations (ax, ay) and of the velocities (vx, vy) (DEPRÁ 
et al. (1997)):  
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The calculation of CD and of Re were made in respect to the median position of 
each trajectory of the 26 executed services. The following values of the constants 
were used: diameter D = 0.21 [m]; mass m = 0.26 [kg]; density of the air ρ = 1.115 
[Kg.m-3] and viscosity μ = 0.0000186 [Kg.m-1.s-1].  
RESULTS AND DISCUSSION: The results of CD(Re) for all 26 services are 
presented in Figure 3. The same figure shows the curve obtained from the 
literature for a moving smooth sphere (LANDAU & LIFSHITZ (1993)). 
The graphic of the figure 3 shows that all services are located in the drag crisis 
region (1.105 <Re <3.105). We observed that the four types of analyzed services 
formed clusters which are orderly in an increasing sequence of Reynolds Numbers 
(i.e., of velocities): underhand service, floater, floater with jumping and overhand 
service with jumping. The first three present a decreasing sequence of CD values, 
accompanying the literature CD(Re) curve. The fact that the points are somewhat to 
the left of the continuous curve can be interpreted as a ball surface roughness 
effect, while the continuous curve corresponds to a smooth sphere. The six points 
of the overhand service with jumping deviate from the curve proposed by the 
literature.  
Knowledge of the drag coefficient allows us to calculate the drag force with 
equation (I). Figure 4 presents the drag force as a function of the Reynolds 
Number. We note that FD increases even with decreasing CD. Comparing the 
module of the two forces that act on the ball, we observed that the drag force 
reaches values 1.4 times larger than the weight force (mg = 2.55 N) in the case of 
overhand services with jumping. That is an indication of how much the drag force 
can influence the trajectories. 

 



 
 
 
 
 
 
 
 
 
 

Figure 3 - Drag Coefficient CD versus Reynolds Number Re. Experimental points 
represented with the following convention: underhand service (o); floater service 
(x); floater service with jumping (+); overhand service with jumping (*). Continuous 
Line from LANDAU & LISHIFITZ (1993). 

 
Figure 4 - Drag force Fd versus Reynolds Number Re. Experimental points 
represented with the following convention: underhand service (o); floater service 
(x); floater service with jumping (+); overhand service with jumping (*). 
CONCLUSION: This work allowed us to quantify kinetic and dynamic variables of 
the trajectories of twenty-six volleyball service balls thrown by an high level athlete. 
We observed that all services are placed in the region of the called "drag crisis" 
and present a great variation of the drag coefficient. We observed that the four 
analyzed services show orderly clusters in a growing sequence of Reynolds 
Numbers: underhand service, floater, floater with jumping and overhand service 
with jumping. The drag force is up to 1.4 times superior to the weight force of the 
ball. All these kind of quantification may also be used to compare the 
characteristics of different players. 
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