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A Mathematical Model for
the Trajectory of a Spiked Volleyball

and Its Coaching Application

Shawn S. Kao, Richard W. Sellens,
and Joan M. Stevenson

A wind tunnel test was conducted to empirically determine the relationship
between the Magnus force (M), spin rate (co), and linear velocity (V) of
a spiked volleyball. This relationship was applied in a two-dimensional
mathematical model for the trajectory of the spiked volleyball. After being
validated mathematically and empirically, the model was used to analyze
three facets of play that a coach must address: the Importance of topspin,
possibility of overblock spiking, and optimum spiking points. It was found
that topspin can increase the spiking effectiveness dramatically in many
ways. It was also found that a shot spiked from about 2 m behind the net
has the least possibility of being blocked.

Part 1: Development of the Model

The spike is the most commonly used and the most powerful offensive weapoti
in the game of volleyball, so any new knowledge that helps athletes improve
spiking effectiveness will develop the game. Biomechanists have been trying to
improve athletes' performances since biomechanics evolved in the 1970s, and
the results have been very successful {Samson & Roy, 1975). However, few
papers in the literature have dealt with the trajectory of the spiked volleyball
(Coleman, Benham, & Northcott, 1993; Li, 1983).

Many papers on the trajectory of a spinning sphere are available in the
literature (Bearman & Harvey, 1976; Briggs, 1959; Watts & Ferrer, 1987). How-
ever, experimental studies of spinning spheres have been limited to the measure-
ment of Magnus and drag forces on the shape of the ball's trajectory in games
such as tennis, baseball, and golf (Eriichson, 1983; Mcphee & Andrews, 1988;
Zufiria & Sanmartin, 1982).

The fact that tennis balls curve because of the spin imparted to them has
been weil documented for a long time (Rayleigh, 1869). This phenomenon, the
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Magnus effect, was named for a German engineer. G. Magnus, who first described
the lateral deflection of a spinning cylinder and sphere. The Magnus force, defined
as the force that causes the deflection of spinning objects, is often referred to as
lift in the literature. However, it acts in a direction perpendicular to the axis of
spin, which may yield a force in a direction other than vertical. Therefore, the
two terms are not interchangeable.

The first and most systematic experimental determination of the forces
acting on a spinning baseball was conducted by Briggs (1959). A spinning
baseball with known rate of rotation was dropped across a horizontal wind tunnel
in which the velocity of the air was known, and the deflection of the ball's
path due to spin was measured. Using the measured lateral defiections, Briggs
calculated the necessary lateral forces. Briggs reported that the lateral force was
proportional to the product of the square of the wind tunnel speed (V )̂ and the
rotation rate of the ball (0)).

However, classical inviscid flow theory (White, 1986) for a two-
dimensional body with circulation predicts a force on the body proportional to
flow velocity (V) and circulation or spin (w). By analogy, one would expect that
the Magnus force on a spinning sphere would also be proportional to (oV ratber
tban to coV-. as found by Briggs (1959). Experiments by Bearman and Harvey
(1976) on golf balls and Watts and Ferrer (1987) on baseballs have found the
Magnus force to be proportional to (oV.

While these results appear contradictory, it is important to note that most
ball games involve Reynolds numbers (Re) that lie in the vicinity of the so-
called drag crisis (White, 1986). The drag coefficient for spheres drops sharply
at around Re = 4 10** due to transition between laminar and turbulent flow. For
example, a volleyball travelling at 30 m • s"' in air at 1 atmosphere and 20 °C
has a Reynolds number of 4 • U)-. Since flow effects are generally proportional
to V in laminar flow and V' in turbulent flow, one might expect the results to
be strongly dependent on the particular flow conditions including such factors
as Reynolds numbers and the surface characteristics of the sphere.

Thus, it is important to perform tests for the particular geometry and flow
conditions associated with a spiked volleyball. As detailed later in this paper,
such measurements provided a correlation for the Magnus force on Ihe spinning
ball, which is used in the these predictions. Various mathematical approaches
are available to calculate the trajectory once the various forces are known
(Frohlich, 1983; Rex. 1985; Step^nek. 1988).

Two-Dimensiotial Trajectory Equations

A 2-D model for the trajectory may be developed based on tbe coordinate system
shown in Figure la. if we assume that the axis of rotation of the ball is horizontal.
This is a reasonable assumption, since purely horizontal rotation represents an
optimum spike. The ball is subject to Magnus (M), drag (D), and gravitational
forces (mg) as shown in Figure Ih. The directions of both the Magnus and drag
forces depend on the direction of travel of the ball. Tbeir magnitudes may be
expressed as

M = CMOJ^V" (1)
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Figure 1 — (a) Volleyball court in a twu-dimensional Cartesian coordinate system
with the initial conditions of a spiked volleyball, (b) The three forces to which a
spiked volleyball reacts.

D = (2)

where CM, a, and b are constants determined empirically as described later in
the paper. CD is the drag coefficient equal to 0.5 based on Re around 4 • W\
and p is the density of the air (White. 1986).

The horizontal and vertical components of the total force on the ball are

(3)

(4)= -mg -

Noting that the velocity components are (Figure Ib)

X = VcosO

Y = -Vsine

so that

(5)

(6)

(7)

and applying Newton's second law (SF = ma), one obtains two equations for
the acceleration components of the ball with respect to time:

X =
m m

(8)

(9)
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These nonlinear ordinary differential equations are readily solved numerically to
obtain X and Y, the position of the ball, using a Runge-Kutta scheme, given
initial conditions for position and velocity.

Three-Ditvensional Trajectory Equations

The volleyball court is considered in a 3-D coordinate system in the following
way: The left side line is the X axis, the central line is the Y axis, and the left
antenna and its extension are the Z axis, as shown in Figure 2a, witb the origin
at the intersection of tbe left side and the central lines.

Since the spin axis of a spiked volleyball is horizontal, its trajectory will
lie within a vertical plane because all three forces acting on that ball are in the
same plane {see Figure lb). We will let the Y axis of the 2-D frame be coincident
to tbe Z axis of the 3-D frame; rotate tbe plane, in which the trajectory exists,
counterclockwise about tbe Z axis by an angle (p); then translate the plane lo
tbe position with a spiking point at A (X,,, Y )̂ (Figure 2b). Thus, the 3-D equations
may be obtained as

(10)

(11)

(12)

Y3D = X2DCOSP

These are not fully three-dimensional equations, because the ball never
leaves tbe plane in which it moves initially, since the spin axis of tbe volleyball
was fixed to horizontal in order to create pure topspin. In future work the model
should be expanded to include the general case of orientations of rotation axes
in order to accommodate problems such as sidespin.

Experimental Methods and Results

Tbe derived mathematical model cannot be applied to situations in volleyball
until the unknowns in the model have been detennined and the model properiy
validated. The following experiments were aimed at these purposes.

X

X

Figure 2 — (a) Volleyball court in a three-dimensional Cartesian coordinate system.
(b) Top view of a volleyball court with tbe projection of a trajectory of a spiked
volleyball.



Trajectory of a Volleyball 99

Linear and Angular Velocities of a Spiked Volleyball. To assure that
the wind tunnel testing was carried out under appropriate conditions, both the
linear and angular velocities of a spiked volleyball had to be determined. It has
been reported that top volleyball hitters can spike a ball at a linear velocity of
30 m • s"' (Frohlich, 1983). However, no researchers have reported tbe amount
of the angular velocity on a spiked volleyball. Therefore, an experiment was
conducted to identify the typical range of the linear and angular velocities of
volleyballs as spiked by highly skilled volleyball players.

Ten male players from the 1991 Ontario Provincial Team volunteered to
execute 30 spikes under experimental conditions. The filming site involved two
synchronized video cameras with high-speed shutters (l/5()0 s). The cameras
were oriented at right angles to each other and were synchronized electronically.
The players were asked to spike the ball with maximum velocity along a target
line, which was peipendicular to the axis of Camera 1, on the floor. Camera 2
was aligned with the target line, facing the oncoming balls. Three specially
marked volleyballs were used, so that rotation of the ball could be tracked and
recorded. The sampling rate was 30 frames • s"'.

We digitized the trials from Camera 1 using the Peak Performance Analyz-
ing System and estimated linear velocities from the ftrst three fields after ball
contact. The rotation rate of the spiked volleyball was counted from multiple
fields on the tape from Camera 2. Because only an approximate range of the
linear and angular velocity was needed to set up the wind tunnel conditions, we
did not smooth the data or analyze error. For these subjects, the average linear
velocity was calculated to be 19.85 ± 1.89 m • s"' while the angular velocity was
5.79 ± 1.08 rev • s"'. Based on this experiment and the linear velocities reported by
other researchers (Coleman et al.. 1993; Li, 1983; Maxwell, 1980), representative
ranges of the linear and angular velocities of a hard-spiked volleyball from highly
skilled players were considered to be 15-35 m • s"' and 3-̂ 8 rev s"', respectively.

Measurement of the Magnus Force on a Volleyball. A device for
mounting a spinning volleyball in a wind tunnel is shown in Figure 3. The basic
principle used in the device was that of a simple balance. An official Olytnpic
volleyball, inflated to the standard criteria, was glued on a specially made alumi-
num dish that was screwed to the end of a I/2-in.-diameter steel shaft. The shaft
was driven by a small motor mounted on a plate. The plate was connected to
the side wall of the wind tunnel by a hinge whose axis of rotation was horizontal
so that the plate with the motor on it could move freely up and down. The shaft
was fixed on the plate by two self-adjusting bearings and extended through a
hole in the wall into the wind tunnel where the ball was mounted. The length
of the shaft was adjusted in order to place the ball in the center of the wind
tunnel. Because the motor side of the system was significantly heavier than the
ball side, a pulley system was used to counterbalance it. Weights were applied
to the pulley system to balance the whole system.

As a force (M) was applied to the ball, it created a counterclockwise
moment about the fulcrum, and the whole system was moved out of balance. To
rebalance the system, a force (W) was applied on the motor side to create a
clockwise moment that was equal to the moment created by M. For simplicity,
weights were placed at point P (see Figure 3), at an equal distance from the
fulcrum as was the center of the ball. In this way, we directly monitored force
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Figure 3 — The balance for wind tunnel testing of the Magnus force experienced
by a volleyball. In this side view, the air now is directly toward the viewer.

changes on tbe ball (M) at point P on tbe motor side by loading and unloading
weights (W) to keep tbe wboie system in balance.

Tbe motor used in tbe test was a DC variable-speed, reversible motor. A
motor controller was used to control the rate and the rotating direction of the
motor. Tests were performed in a low-speed wind tunnel witb the inner dimensions
0.7 m in widtb and 0.6 m in height. The flow speed in the wind tunnel could be
varied and was monitored by a hot wire anemometer. The rate of rotation of the
motor, and thus the ball, was measured with a strobe-light tachometer suspended
directly above tbe shaft so that the rate of rotation could be monitored without
interfering with the rotation or the balance. The pulley, witb a ball-bearing axle,
was fixed above tbe end of tbe plate and aligned to minimize tbe mechanical
friction. All the turning points were lubricated.

The motor was set to an angular velocity 3-8 rev • s"' in tbe direction of
rotation to create a downward Magnus force on the ball. Weights were put at
point P and the balance was broken. The wind tunnel fan was tben started so
that the air in the tunnel produced a downward Magnus force on tbe ball. Tbe
air speed was altered to increase the Magnus force on the ball so as to return
the whole system to balance again. Then anemometer and tachometer readings
and the weight were recorded. The weight was increased systematically and the
balancing process repeated to obtain further data points. Repeating the process
yielded a full matrix of data for five different nominal rates of rotation.

As described previously, we concluded that the Magnus force (M) on a
spinning ball was shown as Equation 1. Using the measured data, we selected
values of CM, a, and b to minimize the mean square error between those data
and tbe correlation in Equation I. Figure 4 shows tbe results of the wind tunnel
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Figure 4 — Results of the wind tunnel tests.

tests, in which tbe measured Magnus force is plotted against the Magnus foree
predicted by the correlation equation of tbe best fit,

M = 0.000041 CO"* V " . (13)

The squared correlation coefficient {R^) for the regression was 0.946.
Validation ofthe Model. The model was validated in two ways: mathe-

matically and empirically. First of all, we solved Equations 8 and 9 to get the
trajectory coordinates by the second-order accurate Runge-Kutta methods, using
Equation 13 to evaluate the Magnus force and Equation 2 to evaluate tbe drag
force.

If there was no spin on the ball and no drag, the trajectory would be a
parabola. Figure 5 shows a comparison of the calculated trajectory from the
model witbout spin and drag (Co = 0, (O = 0 rev • s ' ) with a parabola calculated
from the analytical solution using tbe same initial conditions. There was a slight
deviation between tbe two, due to step size (0.01) in tbe numerical method.
Figure 5 also shows a comparison of the trajectories witb (Cp = 0.5) and without
(CD = 0) drag. Tbe trajectory with drag was slowed down and landed closer to
tbe spiking point than the one without drag. These results were expected and
confirmed tbe physical and mathematical correctness of the model.
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In empirical validation, the calculated trajectory was compared with the
real trajectory of a spiked volleyball. A filming site was set up in a gymnasium,
as shown by the inset in Figure 6. A well-skilled spiker stood at the hitting point
and completed 30 spikes. Only 10 out ofthe 30 trials were considered for analysis
because either the rotation of the ball was not pure topspin or the ball was hit
out of the filming plane. The videotape from Camera I was digitized to obtain
Vo, a, d, and h (refer to Figure la for a, d, and h) with O) obtained from Camera
2, These data were used as the initial conditions for the model. We determined
the actual volleyball trajectories by digitizing the location of the ball in each
frame of a trial from Camera 1. Figure 6 is one example of the comparison of
the calculated trajectory with the digitized one. Based on an error analysis to
minimize the difference between the model and actual trajectory profiles, the
drag coefficient was changed from 0.5 to 0.2 for better match.

Discussioti atid Conclusioti

I. The functional equation of the Magnus force experienced by a spiked volleyball
(Equation 13) found in this study more closely matches what Briggs (1959)
reported than what Watts and Ferrer (1987) found, despite the fact that both
studies analyzed baseballs. When this equation was used to evaluate the Magnus
force in the validation, there was no substantial difference between the calculated
and the digitized trajectories (see Figure 6). This correlation (R^ = 0.946) stays
consistent at least in the range (O: 3-8 rev • s ' , V: 15-35 m • s ' for a volleyball.
If the baseball data of Watts and Ferrer (1987) {where a = 1, b = 1) and Briggs
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Figure 6 — Empirical validation of the model.

(1959) (where a = 1, b = 2) were used, the plotted results would have been more
scattered with RH of only 0.647 and 0.874, respectively.

2. The Reynolds number of the spiked volleyball theoretically places the
drag coefficient CD very close to the "drag crisis." As Vo changes, CD may vary
dramatically, but this does not change the trajectory substantially. Had CD varied
between 0.1 to 0.5, the largest range of theoretical change based on the Reynolds
number, the trajectory would have changed even less than what is shown in
Figure 5, with Co changing from 0 to 0.5. From the validation, it was determined
that 0.2 was a better estimate of value for Co when V̂  was around 20 m • s"'.
To verify this coefficient, further wind tunnel experimentation would be required.

3. It was concluded that the differential equations for the trajectory of a
spiked volleyball (Equations 8 and 9), the Magnus force equation (Equation 13),
and the drag force equation (Equation 2) with Co = 0.2 are valid and can be used
in a mathematical model of the volleyball spike trajectory.

Part 2: Applications of the Model

Since the service reception (the prerequisite for a tactical combination attack in
voUeyball) is not always perfect, many of the attacks have to be initiated with
a high set to power spikers at the sides of the net, which means that the opponents
have enough time to form a solid double block. High sets to power spikers
happen even more frequently in counterattacks because the digs usually are not
good enough to run complex tactics. Thus, studying power attacks from sides
ofthe net is still practical in modern volleyball (Samson & Roy, 1975).

The purpose of these applications was to use the model to answer coaching
questions involving power attack strategies where double blocks would be in
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position. To accomplish these objectives, computer programs were developed to
investigate the relationship between the fiight path of a spiked volleyball, block
locations, and ball landing locations. By changing the input conditions to simulate
the different game situations, we have used the model to study the impact of
those changes.

The Importance of Topspin

The faster the topspin on the spiked volleyball, the closer the ball lands to the
hitting point. Volleyball coaches have been aware of this effect for decades but
have no assessment strategy available to them. The purpose of this application
was to examine the importance of topspin on landing location in order to gain
insight into its importance as a coaching point.

The spiking conditions are illustrated Figure la with the spike trajectory
illustrated in Figure 2b. To study the effect of topspin, we used six spin rates
from 0 to 10 rev • s~'. The other input conditions were fixed at V(, = 20 m • s"',
a = 5°. d = 1 m, and h = 3 m. An analysis of the landing distances corresponding
to each trial was given as output from a computer program.

Figure 7 shows the six trajectories corresponding to each rate ofthe topspin.
With all the other initial conditions fixed, a spin rate of 10 rev • s"' brings the
ball 1.83 m closer to the net than the landing point of the nonspinning ball.
Another way to make the ball land 1.83 m closer, without using topspin, is to
increase the spiking angie of depression a from 5° to 9°. This strategy, however,
will decrease the height of the ball when it is crossing the net from 2.90 to
2.82 m. This will significantly increase the possibility of the shot being blocked.
The equivalent height loss at the net with 10 rev • s"' of topspin is only 2.90 to
2.89 m, a negligible amount. Without sacrificing linear velocity, volleyball spikers

(2) 4 6
THE DISTANCE FROM THE NET (m)

8 10 12

VO-aO m*'". AL-Bd»g. rf-1 m. h-3 m

Figure 7 — The importance of topspin in volleyball spikes.
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should try to put as much topspin on the ball as possible, because even a few
rotations per second of topspin wili cbange the trajectory shape of a spiked
volleyball dramatically in such a way that the ball lands closer and earlier witbout
decreasing the ball height at tbe net.

Possibility of Overblock Spiking

A crosscourt spike to the opposite comer of tbe court creates tbe greatest displace-
ment and, therefore, tbe best opportunity of spiking over a block. The model
was used to obtain a crosscourt trajectory that landed precisely at the opposite
comer, thus giving tbe maximum possible ball height at the net, or tbe maximum
block height that could be successfully beaten by tbis spike. In order to help
coacbes assess the spiking characteristics needed for a power spiker to spike
over a block, we developed a computer program to investigate the relationship
of the maximum height at the net and the initial linear and angular velocities.

For tbis example, the spiking point was fixed at 3.2 m above the floor,
1.5 m behind the net, and 1.0 m inside the left sideline. Tbe linear velocity was
varied from 15 to 30 m s ' and the angular velocity was varied from 4 to
12 rev • s"'.

Figure 8 is a contour graph showing tbe result of tbe computer analysis.
It sbows the maximum height at the net as a function of tbe initial linear velocity
Vo and angular velocity to. For instance, with a linear velocity of 25 m • s ' and
an angular velocity of 4 rev • s"', a spiker can beat a block of 3.05 m at that
spiking point. To clear a block of 3.10 m for tbe same linear velocity, the spiker
must impart at least 7.5 rev • s"' topspin to tbe ball. A ball bit witb a low linear

Unear Velocity (mt')

Figure 8 — Trajectory height over net as a function of angular and linear velocity.
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velocity of 15 m s"' and an angular velocity of 6.5 rev - s '̂ can clear a 3.40-m
block at the same spiking point. However, it takes the ball a longer time to land,
thus giving the defenders adequate time to move and dig the ball. The slopre of
the contours becomes flatter as the initial linear velocity increases. This means
that the faster a ball is hit, the greater is the importance of topspin in making
the ball clear the block and land inbounds.

The Optimum Spiking Points

In this paper, the optimum spiking point is defined as the point from which the
ball is spiked with the largest open angle, assuming the block is also in the
optimum location for maximum court protection. A spiker can spike either a
straight line AF or a crosscourt line AB from one point in the court (Figure 9).
The intercept of these lines creates an angle BAF through which the spiker can
successfully spike the ball. If AB and AF are such trajectories that just clear the
net and then land right on the sideline, then angle BAF i.s the largest one within
which the spiker can hit the ball through from A. However, a part of angle BAF
(angle CAE) is blocked by two blockers. In this study, the block is assumed to
be in the center because it is a more common strategy to gain the maximum
court coverage. The other parts of the angle that have not been blocked are the
only paths to clear around the block. Given spiking characteristics, there is a
point where tbe sum of the two unblocked angles BAG and EAF is the largest,
thus minimizing the possibility of being blocked. The purpose of this application
is to determine this optimum point, in front of the attack line, for a power spiker
to hit around a block.

With the aid of a computer program, point A was moved from the left
sideline to the court center in 0.25-m increments and from 0.5 m behind the
center line to 0.5 m in front of the attack line in 0.25-m increments to represent
the various positions from which a spiker would hit the ball. Because the volleyball

Figure 9 — Schematic diagram of the optimum spiking point.
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court is symmetrical, the analysis results for the left half-coun can be reversed
(mirror refiection) onto the right half to cover the whole attacking zone. For each
location, angles BAC and EAF were calculated to yield the largest sum of the
two angles, thus the optimum spiking location.

Figure 10 is a contour graph showing the open angles (BAC + EAF) in
degrees available to the power spiker who spikes the ball with an initial linear
velocity of 20 m • s ' and an angular velocity of 7 rev • s"' at a hitting height of
3 m. The block width was 1.20 m. According to the graph, the optimum spiking
points that provide a 30" open spiking angle vary from 1.6-2.5 m behind the net
to 0-1.5 m inside the sideline. It is interesting to note that the sets for a back-
row attack in modem volleyball are usually in this area, which happens to have
the largest open angle. This is probably one ofthe reasons that back-row attacking
has a high success rate: because it always executed from the area that has a
reduced possibility to be blocked.

Conclusions

A numerical model of volleyball spiking trajectories has been applied successfully
to deal with questions of the advantage of topspin, chances of overblock spiking,
and optimum location for spiking around a block. The characteristics of this
model could also be used to evaluate the trajectories of spike serves that are
being used in modem volleyball. All of these questions are of great practical
importance to coaches.

1. If all other conditions were held constant, a volleyball served with
topspin would land 1.83 m closer to the net than would a ball with no spin.

Side Une

Position ofthe analyzed area

0.5 1.5 2.5
Figure 10 — Open spiking angle as a function of spiking point.
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Therefore, athietes sbould be encouraged to bit with as much topspin as possible,
without sacrificing linear velocity.

2. A contour graph was developed to demonstrate what type of linear and
angular velocities would be necessary to hit over a double block. Coacbes could
analyze specific athletes' abilities to determine whether athletes sbould attempt
overblock spiking.

3. A contour grapb was developed to detennine tbe optimum spiking points
players sbould use to hit around a double block. Results sbowed that spikes from
the comers and 1.5-2.5 m bebind the net give players the best chance of bitting
around a double block. In addition, back-row attackers bave a strong cbance of
hitting around the block because they bave tbe largest open court angles,

Tbe practical examples provided by the applications of the model show
tbe insigbts that can be gained by a scientific approacb to trajectory analysis.
The greatest advantage of this model is tbat it can be applied to specific athletes,
who will each have different abilities for height, speed, and spin. This individual-
ized approacb will be best addressed by developing software, tbus allowing
coacbes direct access to the model, so that tbey can answer questions specific
to their own teams.
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