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Advanced Macroeconomics, ECON 402

Introduction to Dynamic Optimization & Calculus of Variation

1 Why do we need to consider dynamics?

Thus far through your courses in Economics, you would have noticed that for all intents

and purposes, classical calculus methods seem to suffice in aiding your solution search.

The problems you have examined however tended to be for optimal choices within a fixed

duration, which without loss of generality can be thought of as static optimization. If

we are all short sighted, than perhaps considering dynamics is not necessary. However,

given that economic agents such as yourself do consider the future, though to differing

extents, an optimal solution in the short run does not imply they would be in the long run

(Note that the fact we suffer from regret, does not mean that we are shortsighted, rather

elements of the problem we face are stochastic in nature, and given any realization, we

would feel we could have done things differently. But that remains after the fact. When

our choices are viewed in terms of each problem in its entire sequences, it is likely optimal

given our resources at the beginning of the problem.).

In Dynamic Optimization1, we are finding answers to the question of optimal choices

in each and every period of time within a certain planning horizon, which can be finite

[0, T ] (in both continuous and discrete time) or infinite horizon [0,∞)2. Such a solution

would imply an Optimal Time Path in terms of every choice variable from the initial to

the terminal period or the end of the planning horizon. Thus you can think of Dynamic

Optimization as a multistage decision making process.

We will now briefly describe some of the key feature of Dynamic Optimization Prob-

lems:

1.1 Dynamic Optimization Problems

All dynamic problems consists of considerations of moving from one initial state of the

world to a final state, for example in Growth Theory the initial state of an economy can

1For details for this set of notes, you should read Chiang (1992).
2We will discuss the nature of the problem in discrete time in greater detail subsequently in the course.
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be thought of as when an economy begins life as a Republic post independence, and the

objective of the social planner there is to take the economy towards the final state of

development with Per Capita GDP comparable to those of OECD economies. In that

sense, the Per Capita GDP is the measure of the state of the world. Such a process would

necessarily have to take several periods. Such a process in discrete time is illustrated in

figure 1.

Figure 1: Multi-Stage Decision Process
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Following the example, a developing economy might begin its transition towards de-

veloping status at the initial state A with a particular level of Per Capita GDP. It’s

ultimate objective being to arrive in terminal state F. The choices that would give rise

to the path could include amount of expenditure on public infrastructure, education, etc

against the level of institutional borrowing say from OECD nations or the IMF, or to

encourage foreign direct investments. Each set of options would give rise to a sequence

of paths, and an example of a path on figure 1 could be A → B, and a sequence of

arcs/lines could be that from A → B → C → D → E → F which could be generated

from foreign direct investments. While an alternative process of development could be

say generated by the government choosing to borrow mainly from wealthier nations to

build it’s social infrastructure. Such a policy may imply lower initial GDP, but may imply
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a smoother trajectory beyond the formative years. This trajectory could be depicted as

A→ G→ H → I → J → F . We call these points, A, B, ..., K Vertices. The sequence of

arcs that yield the highest GDP would be the Optimal Path. Note that the paths could

cross in the sense that for example at point C, the economy could correct it’s trajectory

by moving to I instead of D. In other words, the paths can cross. It is important to

recognize that the path taken is that which maximize or minimize the path values (This

path values could be in terms of the cost of achieving the terminal state, and which need

not be monotonic.). Finally, in general a single static optimization procedure will not

yield an optimal time path.

If instead, we are thinking about continuous time, the diagram of figure 1 is altered to

the one below in figure 2. In continuous time, there are now an infinite number of stages,

and an infinite number of states. Note that the straight line need not be the optimal

plan because the choice depends on the cost of choosing that line, for example when we

think about economic growth, there are cost involved in building infrastructure, providing

education to the general populace and social cohesion which is hard to measure.

Figure 2: Decision Making under Continuous Time
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For the rest of our discussion in the next few lectures, we will construe time as a

continuous measure.
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1.2 Functionals

Based on the above discussion, what we are trying to optimize is not so much an optimal

choice per se, but optimal choices that gives rise to an optimal path. This means we are

not trying to optimize a function, which by definition is a one-to-one onto mapping, but

a mapping from paths to a real number (performance indices such as profits, costs, GDP

per capita, etc).

There may be several paths that can be taken by an economy, and for the rest of our

discussion, we will denote that path as yi(t) where i ∈ {1, 2, ...} denotes the paths under

consideration. This path values will change with time, and consequently are functions

of time t. However, what are maximizing are functions of these paths which we denote

as Vi ≡ V (yi(t)), which are called functionals, in other words, these are the sequence

of objective valuations dependent on the paths yi(t) as opposed to time t, which is an

important distinction, and consequently they are known as functionals as opposed to

functions. There is no reason to believe that the functionals under differing paths would

yield the same values, in other words, the point F generated by each path need not be of

the same value though they may reach the same point! Think about this!

In the prior discussion, we have assumed that our problem has a initial state/point

and a terminal point. Framed in Economics, the former assumption is not strong, but the

latter is. To that end, we should note now the numerous possibilities that we can assume

for the terminal point.

1. Fixed Terminal Time T and Terminal State y(T ) such as in the initial example.

2. Fixed Terminal Time T but with Free Terminal State y(T ). This type of problem is

commonly referred to as Fixed Time Horizon Problem or a Vertical Terminal Line

Problem since time is fixed. Think of the problem faced by a incoming General

Manager of a beleaguered sports franchise. Let’s not name names here!

3. Variable Time T but with Fixed Terminal State y(T ). Such problems are commonly

referred to as Fixed Endpoint Problem or a Horizontal Terminal Line Problem. In

addition, should the objective of the planner be to achieve the Fixed Terminal State

as quickly as possible without due concern to lifetime costs, in other words, a distinct

preference for speed, the problem is alternatively known as Time Optimal Problem.
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4. Finally, there is the case of when both Terminal Time and Terminal State are

“Free”, or more precisely described by an optimization constraint F = Φ(T ) where

F denotes the final state we had on figure 1 and 2. This is know as a Terminal

Curve Problem or Terminal Surface Problem.

The above pertains to finite planning horizon problems. The problems associated with

infinite planning horizon, T → ∞ will be dealt with later in our discussion. For the

moment, we will deal with the simple problem associated with finite horizon problems,

and how there can be used to analyse macroeconomic issues.

1.3 Objective Functional

We now formally defined the objective functional in the continuous time case. To do so

we need,

1. Initial Time/Stage,

2. Initial State, and

3. Direction of Path/Arc.

These three elements are t, y(t), and y′(t) = dy(t)
dt

. Let the value of the Path or Arc be

denoted by the function F ≡ F (t, y(t), y′(t)), in other words, we assume such a function

exists. Then the functional is just,

V (y) =

∫ T

0

F (t, y(t), y′(t))dt (1)

As before note that the functional gets its value from the state variable y ≡ y(t) and not

time t itself. When we have two state variables y and z, the functional can be written as,

V (y, z) =

∫ T

0

F (t, y(t), z(t), y′(t), z′(t))dt (2)

and it generalizes easily to n state variables. This is known as the Standard Problem.

However, there are other forms of functionals,

1. For problems that are not dependent on the actual path taken but solely on the

location of the terminal state,

V (y) = G(T, y(T )) (3)
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Note that since there is no path, the functional is a function, and this is known as a

Terminal Control Problem. Further, similar to the standard problem of equation (1)

which may include more than one state variable, it is likewise true for this Terminal

Control Problem, for example for two state variables y and z,

V (y, z) = G(T, y(T ), z(T )) (4)

2. When the problem is a composite of the two concerns of path taken, and terminal

state (that is represented by equations (1) and (3)), we have,

V (y) =

∫ T

0

F (t, y(t), y′(t))dt+G(T, y(T )) (5)

2 Calculus of Variations

The technique of Calculus of Variations was originally used to determine “the shape of

a surface of revolution that would encounter the least resistance when moving through

some resisting medium” (Chiang 1992). Problems such as the above can be represented

as follows,

max or minV (y) =

∫ T

0

F (t, y(t), y′(t))dt (6)

subject to y(0) = A (A given)

& y(T ) = Z (Z & T given)

This is known as the Fundamental Problem of Calculus of Variations. Note that for a

solution to the problem to exists, the functional must be integrable. The quest here is

to find the optimal path from among all the admissible paths. Because it is related to

calculus, the solution is dependent on our finding a first order condition, and you would

likewise have to ensure you are maximizing or minimizing the objective functional through

examining the second order conditions.

We will now derive the first order condition for the fundamental problem (6). The first

order condition of the problem is known as the Euler Equation. To do so, first let y∗(t)

denote the optimal path that begins at time 0 and state A, and terminates at time T at

state Z. We have to then examine how such a path differs from all other possible paths
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that fulfill those constraints at the initial and terminating points. Remember that since

we are dealing with calculus, we will maintain the assumption that between the initial

and terminal point, the path is continuous. Let p(t) be a perturbation function at each

period between time 0 and T that causes a deviation from the optimal path. To obtain all

neighbouring paths, we multiple a small number ε to the perturbation function so that,

y(t) = y∗(t) + εp(t) (7)

⇒ y′(t) = y∗′(t) + εp′(t) (8)

⇒ lim
ε→0

y′(t) = y∗′(t) (9)

We know that the functional V (y) is dependent on the path taken y. Each path we may

consider now is generated by variation in ε, so that we can think of V (y) as a function of

ε, the perturbation factor, V ≡ V (ε). Since the functional achieves its optimal value at

y∗(t) when ε = 0, the first order condition is defined by the derivative,

dV (ε)

dε

∣∣∣∣
ε=0

= 0 (10)

which is a necessary condition for y∗(t) to be indeed the optimal path. Note at this point

that both ε and p(t) are totally arbitrary.

To develop the first order condition:

1. First rewrite the functional of equation (1) in terms of (7) and (8),

V (ε) =

∫ T

0

F (t, y∗(t) + εp(t), y∗′(t) + εp′(t))dt (11)

⇒ dV (ε)

dε
=

∫ T

0

(
∂F

∂y(t)

∂y(t)

∂ε
+

∂F

∂y′(t)

∂y′(t)

∂ε

)
dt (12)

=

∫ T

0

(Fyp(t) + Fy′p′(t)) dt = 0

=

∫ T

0

Fyp(t)dt+

∫ T

0

Fy′p′(t)dt = 0 (13)

where the derivatives of the integral makes use of the Leibniz’s rule, and equation

(13) is the necessary condition noted in equation (10). Nonetheless, this neces-

sary condition is not operational since it still contains the arbitrary perturbation

functions p(t) and p′(t).
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2. Integrate the second integral of equation (13) by parts we obtain,∫ T

0

Fy′p′(t)dt = Fy′p(t)|T0 −
∫ T

0

p(t)
dFy′

dt
dt (14)

= −
∫ T

0

p(t)
dFy′

dt
dt

where the last equality follows since at the initial and terminal time, all paths are

the same in the standard problem of (6). Therefore the first order condition of

equation (13) can be written as,∫ T

0

p(t)

(
Fy −

dFy′

dt

)
dt = 0 (15)

3. To eliminate the final arbitrary term p(t), note that for equation (15) to hold with

equality, the arbitrary nature of p(t) implies that need,

Fy −
dFy′

dt
= 0 ∀t ∈ [0, T ] (16)

⇒ Fy − (Fy′t + Fy′yy
′(t) + Fy′y′y′′(t)) = 0 ∀t ∈ [0, T ] (17)

⇒ Fy′y′y′′(t) + Fy′yy
′(t) + Fy′t − Fy = 0 ∀t ∈ [0, T ] (18)

This is know as the Euler Equation, and that in general, it is a second order nonlinear

differential equation. This means that it’s solution will have two arbitrary constant

terms (since you need to integrate to solve for the optimal path, and since this is

a second order differential equation, the integral will create two constants). These

constants can be found using the initial and terminal conditions in the fundamental

problem of equation (6).

2.0.1 Examples

• Consider the following functional which is from Chiang (1992),

V (y) =

∫ 1

0

(
ty + 2y′2

)
dt

with y(0) = 1 and y(1) = 2. Using the Euler equation formula above and given the

functional,

Fy = t Fy′ = 4y′

Fy′t = Fy′y = 0 Fy′y′ = 4
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So that the Euler equation is,

4y′′(t)− t = 0

⇒ y′′(t) =
t

4

⇒ y′(t) =
t2

8
+ α

⇒ y(t) =
t3

24
+ tα + β

Using the initial and terminal points to define α and β, we get β = 1 and α = 23
24

so

that the solution path is,

y(t) =
t3

24
+ t

23

24
+ 1

• Consider the following functional which is from Chiang (1992),

V (y) =

∫ 2

0

(
y2 + t2y′

)
dt

with y(0) = 0 and y(2) = 2. Using the Euler equation formula above and given the

functional,

Fy = 2y Fy′ = t2

Fy′y′ = Fy′y = 0 Fy′t = 2t

so that the Euler equation is,

2t− 2y(t) = 0

⇒ y(t) = t

2.1 Special Functional Cases

1. When the F function is free of y such that F = F (t, y′(t)), then Fy = 0, from

equation (16) in the development of the Euler equation, we get
dFy′

dt
= 0 which in

turn implies that

Fy′ = constant (19)

2. When the F function is free of t such that F = F (y(t), y′(t)), from equation (18)

the Euler equation is

Fy′y′y′′(t) + Fy′yy
′(t)− Fy = 0
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Next multiply throughout the above by y′,

y′(t)(Fy′y′y′′(t) + Fy′yy
′(t)− Fy) = 0

⇒ d(y′Fy′ − F )

dt
= 0

This in turn implies that,

F − y′Fy′ = constant (20)

which is a first order differential equation and in most instances is an easier Euler

equation to work on.

3. When the F function depends solely on y′ such that F = F (y′), from equation (18)

the Euler equation becomes,

Fy′y′y′′(t) = 0 (21)

This equation is satisfied if either y′′(t) = 0 or Fy′y′ = 0. The first implies that y(t)

must be a straight line, and the same is true for the second.

4. When the F function is not dependent on y′ such that F = F (t, y), from equation

(18) the Euler equation becomes Fy = 0 and is no longer a differential equation, and

the problem is degenerate. The reason being since there are no arbitrary constants

to define, there is no reason to believe the optimal path will begin and end at the

initial and terminal points respectively except by sheer coincidence.

2.2 Transversality Conditions

As noted in section 1.2, when the initial and terminal states and time are given, the

solution can be identified in the case of the typical solution to the standard problem, the

second order differential equation. However, it is possible that the terminal state and

time may themselves be variable, in which case we would need an additional condition to

identify the solution. This condition is known as a Transversality COndition. Note that

solution condition described here works in the case when the initial condition is variable

as well.
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2.3 General Transversality Condition

Given the variable terminal point, the Calculus of Variations problem is now,

max or minV (y) =

∫ T

0

F (t, y(t), y′(t))dt (22)

subject to y(0) = A (A given)

& y(T ) = yT (yT & T variable)

In this problem, the issue is not only to choose the optimal path, but to choose the optimal

terminal state and time as well. As in the development of the Euler Equation, let p(t) be

the perturbation function, and ε be the perturbation factor, both being arbitrary.

Let T ∗ be the optimal terminal period, then we can denote all other possible terminal

period as,

T = T ∗ + ε∆T (23)

where ∆T is an arbitrary fixed change in terminal time T . Since ∆T is fixed then

T ≡ T (ε), which in turn implies that dT
dε

= ∆T . In addition, as before to obtain other

trajectories,

y(t) = y∗(t) + εp(t) (24)

⇒ y′(t) = y∗′(t) + εp′(t) (25)

However, although p(0) = 0 at the initial time, in other words the initial point remains

fixed, p(T ) = 0 can no longer hold since terminal state and time are variable. The

functional can be written as,

V (ε) =

∫ T (ε)

0

F (t, y∗(t) + εp(t), y∗′(t) + εp′(t)) (26)

Thus to derive the general transversality condition,

1. First differentiating the functional V (ε) with respect to ε at ε = 0 as in our devel-

opment of the Euler Equation,

dV

dε

∣∣∣∣
ε

=

∫ T (ε)

0

dF

dε

∣∣∣∣∣
ε=0

+ F (T, y(T ), y′(T ))
dT

dε

∣∣∣∣
ε=0

= 0 (27)
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where the derivative is obtained using the Leibniz’s rule. As in the development of

the Euler Equation, the following obtains∫ T

0

Fyp(t)dt+

∫ T

0

Fy′p′(t)dt+ [F ]t=T∆T = 0

[Fy′ ]t=T p(T ) +

∫ T

0

p(t)

(
Fy −

dFy′

dt

)
dt+ [F ]t=T∆T = 0 (28)

Notice that we have the first term unlike in our development of the Euler equation

because although p(0) = 0, p(T ) 6= 0. In addition, see that each of the three terms

have its own arbitrary term p(T ), p(t) and ∆T respectively, so that we cannot use

the technique in the Euler Equation development as before, but rather each has to

be set equal to zero independently.

As earlier, first notice that when the second term is set equal to zero, we obtain the

Euler Equation of before which implies that the Euler Equation remains a necessary

condition in the variable endpoint problem. It is thus in the first and third term that

the transversality condition lie.

2. To obtain the transverality condition, we have to connect the two arbitrary terms

p(T ) and ∆T , to that end notice that the element which characterizes the change

in optimal path is changes in the terminal state yT , ∆yT . Then all we need to do

is to characterize ∆yT in terms of the two arbitrary terms. Note first that for any

perturbation of the optimal path at time T , yT changes by the factor p(T ) at T.

However, this presumes there is no change in time. In the general case on hand,

both the state and time are variable. The rate of change of yT is nonetheless just

the rate of change of the path at T , y′(T ) multiplied by the amount of change in T ,

∆. In other words,

∆yT = p(T ) + y′(T )∆T

⇒ p(T ) = ∆yT − y′(T )∆T (29)

3. Now substituting equation (29) into equation (28) and dropping the second term

(associated with the Euler equation), since the latter we know it must be zero, to

get,

[Fy′ ]t=T (∆yT − y′(T )∆T ) + [F ]t=T∆T = 0

[F − y′(T )Fy′ ]t=T ∆T + ∆yT [Fy′ ]t=T = 0 (30)
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which is the general transversality condition associated with a particular time T

which consequently replaces the terminal time condition when the terminal point

is variable. Depending on the case being considered as noted earlier, the general

transversality condition can be altered for the case, specifically,

(a) Vertical Terminal Line/Fixed Time Horizon Problem: For this case,

∆T = 0 so that ∆yT [F ]t=T remains. However, ∆yT is arbitrary so that the

transversality condition here becomes,

[Fy′ ]t=T = 0 (31)

which is also known as the Natural Boundary Condition. If we think of F as

a social welfare function (a firm’s profit function can be construed as likewise

a firm(social) welfare function), the above condition says that at the terminal

time, the optimal choice path chosen for the state variable should not yield any

additional gains to be reaped beyond the terminal time T .

(b) Horizontal Terminal Line/Fixed Endpoint Problem: For this case,

∆yT = 0 so that [F − y′(T )Fy′ ]t=T ∆T remains in the transversality condi-

tion. As above, ∆T is arbitrary so that for the condition to hold we would

need,

[F − y′(T )Fy′ ]t=T = 0 (32)

Using the same social welfare function interpretation of the prior condition,

the interchange of the current and future choices in the distribution of the

state variable choices across time must be completed when the terminal point

is reached.

(c) Terminal Curve: We know for the terminal curve problem yT = Φ(T ),

which helps in identifying the solutions to yT and T , and the other equation

is provided by the transversality condition. To make the transversality con-

dition operational, note that the relationship between yT and T implies that

∆yT = Φ′(T )∆T so that the general transversality condition becomes,

[F − y′(T )Fy′ ]t=T ∆T + Φ′(T )∆T [Fy′ ]t=T = 0

⇒ [F − y′(T )Fy′ + Φ′Fy′ ]t=T ∆T = 0

⇒ [F + (Φ′ − y′)Fy′ ]t=T ∆T = 0

⇒ [F + (Φ′ − y′)Fy′ ]t=T = 0 (33)
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where the last equality holds since ∆T is arbitrary, and thus the two unknowns

at the terminal point can be defined.

3 Optimal Combination of Unemployment and Infla-

tion

The following application is drawn from Chiang (1992), which is a modification of Taylor

(1989). You know from your understanding of the Phillips curve that there is a trade off

between having low inflation rates and unemployment faced by an economy. Let the ideal

income level of an economy be Y ∗ when inflation rate is 0. Any deviation from this ideal

is considered a loss to society. Denote the realized income as Y , and the inflation rate as

p. Define the social loss function as,

L = (Y − Y ∗)2 + αp2 (34)

where α > 0. Note that because the deviations from the desired levels of unemploy-

ment/income and inflation are squared, the greater the deviation from the desired levels,

Y ∗ and 0 respectively, the greater is the penalty. Relative to each other, deviations of

unemployment/income and inflation, the weights are in the ration of 1
α

.

Let π denote the expected rate of inflation, so that the expectations-augmented Phillips

tradeoff between (Y ∗ − Y ) and p is captured by,

p = β(Y − Y ∗) + π (35)

where β is a positive constant. Equation (35) thus say that if economic activity is greater

than that desired, actual inflation p will be greater than that expected, π.

Let the formation of inflation expectation be adaptive so that,

dπ

dt
= π′ = ψ(p− π) (36)

where ψ ∈ (0, 1]. Equation (36) says that if actual inflation is greater than expected,

then expected future inflation will rise, and vice versa, consequently the adaptive nature

of inflation expectation.
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Combining equations (35) and (36), we get,

π′ = βψ(Y − Y ∗)

⇒ (Y − Y ∗) =
π′

βψ
(37)

⇒ p =
π′

ψ
+ π (38)

⇒ L(π, π′) =

(
π′

βψ

)2

+ α

(
π′

ψ
+ π

)2

(39)

where the last equation is the Social Loss Function.

3.1 Fundamental Problem Case

Let the initial expected inflation be π0, and the terminal value be 0. In addition, let the

discount factor be ρ. The social planner’s problem then is to determine the optimal path

of expected inflation, π,

minL(π, π′) = min

∫ T

0

L(π, π′)e−ρtdt

= min

∫ T

0

{(
π′

βψ

)2

+ α

(
π′

ψ
+ π

)2
}
e−ρtdt (40)

subject to,

π(0) = π0 > 0

π(T ) = 0

Given the functional’s form, we know

Fπ = 2α

(
π′

ψ
+ π

)
e−ρt

Fπ′ = 2

{
π′

β2ψ2
+
α

ψ

(
π′

ψ
+ π

)}
e−ρt

= 2

{
1 + αβ2

β2ψ2
π′ +

απ

ψ

}
e−ρt

Fπ′t = −2ρ

{
1 + αβ2

β2ψ2
π′ +

απ

ψ

}
e−ρt

Fπ′π =
2αe−ρt

ψ

Fπ′π′ =
2(1 + αβ2)

β2ψ2
e−ρt
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Consequently using the Euler Equation formula of equation (18),

Fπ′π′π′′ + Fπ′ππ
′ + Fπ′t − Fπ = 0

⇒ (1 + αβ2)

β2ψ2
π′′ +

α

ψ
π′ − ρ

(
1 + αβ2

β2ψ2
π′ +

απ

ψ

)
− α

(
π′

ψ
+ π

)
= 0

⇒ (1 + αβ2)

β2ψ2
π′′ − (1 + αβ2)ρ

β2ψ2
π′ − α(ρ+ ψ)

ψ
π = 0

⇒ π′′ − ρπ′ − β2ψα(ρ+ ψ)

(1 + αβ2)
π = 0 (41)

It is clear then that equation (41) is a homogeneous second order differential equation,

and the solution consists of only the Complementary Function3. Let β2ψα(ρ+ψ)
(1+αβ2)

be τ . The

solution to the differential equation is thus of the form,

π∗(t) = θ1e
r1t + θ2e

r2t (42)

where r1 and r2 are the characteristic roots 1
2

(
ρ±

√
ρ2 + 4τ

)
, one positive and the neg-

ative negative. Let r1 > 0 and r2 < 0. To find θ1 and θ2, use the initial and terminal

state values,

θ1 + θ2 = π0

θ1e
r1T + θ2e

r2T = 0

Solving the simultaneous equations,

(π0 − θ2)e
r1T + θ2e

r2T = 0

⇒ θ2 =
π0e

r1T

er1T − er2T
> 0 (43)

⇒ θ1 = π0 −
π0e

r1T

er1T − er2T

=
−π0e

r2T

er1T − er2T
< 0 (44)

Since both components to the solutions are decreasing function, this implies that the

trajectory of the optimal path is decreasing and is bounded on the top by θ2e
r2T and the

bottom by θ1e
r1T . This can be verified by differentiating the optimal path by t,

π∗′(t) = r1θ1e
r1t + r2θ2e

r2t < 0

3For more details on differential equations see Chiang (1984) and Chiang (1992)



ECON 402: Advanced Macroeconomics 17

since θ1 and r2 are both less than 0. This trajectory for expected inflation can be achieved

through affecting income and actual inflation in the following manner; based on equation

(37) Y − Y ∗ < 0, in other words income realization must fall below the desired level Y ∗,

and based on equation (38), the actual price level will fall if the rate of decline in the

expected inflation rate π′ if less than the expected inflation rate ψπ.

3.2 Variable Terminal Point Case

It is interesting to frame the above question on unemployment and inflation to one with

a terminal line as opposed to a terminal point π(T ) = 0. Much of the solution discussed

remains with the exception of the definition of the constants θ1 and θ2, so that as before,

θ1 + θ2 = π0

From the transversality condition of equation (31)

Fπ′ |t=T = 2

{
1 + αβ2

β2ψ2
π′ +

απ

ψ

}
e−ρt

∣∣∣∣
t=T

= 0 (45)

which implies that we would need,

1 + αβ2

β2ψ2
π′ +

απ

ψ

∣∣∣∣
t=T

= 0

⇒ π′(T ) +
αβ2ψ

1 + αβ2
π(T ) = 0 (46)

Let the coefficient of π(T ) be φ. We already know that,

π∗(t) = θ1e
r1t + θ2e

r2t

⇒ π∗′(t) = r1θ1e
r1t + r2θ2e

r2t

so that the transversality condition can be written as,

r1θ1e
r1T + r2θ2e

r2T + φ(θ1e
r1T + θ2e

r2T ) = 0

⇒ (r1 + φ)θ1e
r1T + (r2 + φ)θ2e

r2T = 0 (47)
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We can now use equation (47) and the initial point condition to solve for the constants

θ1 and θ2 which are,

0 = (r1 + φ)(π0 − θ2)e
r1T + (r2 + φ)θ2e

r2T

⇒ θ2 =
π0(r1 + φ)er1T

(r1 + φ)er1T − (r2 + φ)er2T
(48)

⇒ θ1 = π0 −
π0(r1 + φ)er1T

(r1 + φ)er1T − (r2 + φ)er2T

=
−π0(r2 + φ)er2T

(r1 + φ)er1T − (r2 + φ)er2T
(49)

which gives the optimal terminal state at terminal time T to be,

π∗(T ) =
π0e

(r1+r2)T

(r1 + φ)er1T − (r2 + φ)er2T
{−(r2 + φ) + (r1 + φ)}

=
π0e

(r1+r2)T (r1 − r2)
(r1 + φ)er1T − (r2 + φ)er2T

=
−π0e

2ρT
(√

ρ2 + 4τ
)

(r1 + φ)er1T − (r2 + φ)er2T
6= 0 (50)

that is when the terminal expected inflation rate is free, the expected inflation rate at the

terminal period T is in fact negative, which is interesting compared to the constrained

expected inflation of 0 in the earlier case. What do you think this implies for the actual

inflation rate, and economic activity? You should note that a principal problem with

such an approach to macroeconomic modelling is that the level of economic activity and

inflation rate are not tied to their relationship through the operation within the economy.

4 Infinite Horizon & Constrained Problems

4.1 Infinite Horizon Problems

For most scenarios associated with the typical individual agent, even the “Politician”, the

finite planning horizon should amply mirror their true decision making process. However,

from the perspective of a true social planner contemplating the welfare of the current

and future generations, for example someone advising the government, the finite horizon

framework places restrictions on their concerns, consequently an infinite horizon model
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would be more apt. In using a infinite horizon model, we create problems both in method-

ology, as well as the fact that our parameters of the optimal path may no longer be con-

stant throughout. The two main methodological issue are that the functional may not

be convergent (In the sense that the integral is from t ∈ [0,∞) as opposed to t ∈ [0, T ]

consequently the integral is an improper integral and may diverge. If it diverges, there

may then exist more than one path which gives rise to an infinite value to the objective

functional.), in other words integral may not have a finite value, as well as the issue of

the transversality condition.

The following are some conditions that sufficient for convergence of the functional,

• Condition 1: Given
∫∞

0
F (t, y, y′)dt, if F is finite on some interval, and if it takes

on the value of 0 from t ∈ [t,∞), the integral will converge. In other words, although

the integral is an improper integral, the implicit upper bound t changes it to a proper

integral.

Note that the condition that F → 0 as t → ∞ is neither an necessary or sufficient

condition for convergence.

• Condition 2: If F (t, y, y′) ≡ G(t, y, y′)eρt where ρ is some positive rate of discount

common in economic analysis, and if the G function is bounded from the above,

the integral will converge. The intuition is as follows, the discount factor and the

exponential function causes the entire function to tend towards 0, either if the effect

that t has on G is slower, or particularly when G has an upper bound say G, thereby

forcing the entire function F to converge as t→∞. In other words,∫ ∞
0

G(t, y, y′)e−ρtdt ≤
∫ ∞

0

Ge−ρtdt =
G

ρ
(51)

4.2 Transversality Condition

There has been some controversy over the use of Calculus of Variations problems to infinite

state problems, particularly pertaining to the use of transversality conditions which has

been shown not to be applicable in the infinite horizon problem. Nonetheless, we will

provide a short brief on the transversality conditions. The conditions are not unlike the

general transversality conditions we derived for the finite horizon problem, specifically,

[F − y′(T )Fy′ ]t→∞∆T + ∆yT [Fy′ ]→∞ = 0 (52)
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Since both ∆T and ∆yT are arbitrary, each of the individual coefficients to the two terms

must tend to 0. That is the transversality condition for the fact that the problem has

infinite horizon implies that,

lim
t→∞

[F − y′(T )Fy′ ] = 0 (53)

and the transversality condition if there is no terminal state given for the problem,

lim
t→∞

[Fy′ ] = 0 (54)

If on the other hand the asymptotic terminal state is specified or found to be some

constant y∞, ∆yT will eventually disappear and the last transversality condition would

not be necessary. This means formally that,

lim
t→∞

y(t) = y∞ (55)

Note that when the last equation is true, there is no controversy in the application of

Calculus of Variations to an infinite horizon problem.

4.3 Constrained Problems

The discussion thus far has not explicitly handled constraints and their effects or alteration

to the optimization problem, and how it can be handled. Using the last economic example

regarding the trade off between unemployment and inflation rate, you would have noticed

that the manner in which expectation is updated was said to be adaptive. That in effect is

a constraint on the social loss function being optimized. The manner it was handled was

through substitution into the functional. However, we can likewise solve the problem using

the Lagrange Multipliers method. The application will to this problem will be treated as

an exercise for you to verify. We will now discuss the various forms of constrains and how

they can be included.

• Equality Constraints: Suppose the problem is,

V =

∫ T

0

F (t, y1, ..., yn, y
′
1, ..., y

′
n) (56)

g1(t, y1, ..., yn) = c1

subject to
...

gm(t, y1, ..., yn) = cm

(57)
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where gi i ∈ {1, ...,m} are independent constraint functions, and ci are constants.

The independence of the constraint functions implies that the m×m Jacobian exists

and is none zero. Further, the number of constraints m < n where n is the number

of state variables. The reason being if m = n, the set of constraint equations

would then uniquely determine the n number of yi(t) paths, and their would be no

optimization problem. This means that at the least, there should be at least 2 state

variables, to accommodate a single constraint.

To solve this constrained problem, we use the Lagrange Multiplier method to convert

the constrained problem into an unconstrained problem. First convert the integrand,

F = F +
m∑
i=1

λi(t)(ci − gi) (58)

Note the key difference between the typical use of the Lagrange method in the

static optimization case, and the current case. Firstly, the constraints and the

shadow prices (λi(t)) are added to the integrand and not to the objective functional.

Secondly, the shadow prices or multipliers are not constants but a function of time

since the constraints need to be satisfied for the entire duration of the planning

horizon.

The new functional now is,

V =

∫ T

0

Fdt (59)

Thus we have converted the constrained problem into an unconstrained one. Note

that when all the constraints are satisfied, V = V . Why? When optimizing the

new functional, as in the static case, optimize with respect to all the state variables

and t, but in addition, treat the multipliers as state variables as well. We know

that optimizing the functional we get the Euler-Lagrange Equation similar to the

Euler Equation we obtained in equation (16) (Think of F as if it were F , and λi as

another set of state variables noted prior), so that for the usual state variables,

Fyj
−
dFy′

j

dt
= 0 (60)
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∀j ∈ {1, 2, ..., n}and similarly for the multipliers,

Fλi
−
dFλ′

i

dt
= 0

⇒ Fλi
= 0 (61)

⇒ ci − gi = 0 (62)

the second equality is because F is not a function of λ′i, and the third equality shows

why V = V when the Lagrange Functional is optimized with all constraints satisfied.

Note that to completely solve this constrained finite horizon problem we would in

addition require the initial and terminal conditions for all the state variables or to

obtain the transversality conditions.

• Differential Equations Constraints: When the constraints are themselves dif-

ferential equations, the problem becomes,

V =

∫ T

0

F (t, y1, ..., yn, y
′
1, ..., y

′
n) (63)

g1(t, y1, ..., yn, y
′
1, ..., y

′
n) = c1

subject to
...

gm(t, y1, ..., yn, y
′
1, ..., y

′
n) = cm

(64)

with the appropriate boundary constraints included in the problem as well. This

problem adds nothing new to what you have learned above since the Euler-Lagrange

equations with respect to the state variables, and the multipliers remain the same.

• Inequality Constraints: When the problem involves inequality constraints, we

have

maxV = max

∫ T

0

F (t, y1, ..., yn, y
′
1, ..., y

′
n) (65)

g1(t, y1, ..., yn, y
′
1, ..., y

′
n) ≤ c1

subject to
...

gm(t, y1, ..., yn, y
′
1, ..., y

′
n) ≤ cm

(66)

including the boundary constraints as well. As before, the solution to sorts of

problem remains the same. Note further that since the constraints are inequalities,

that is the constraints need not be binding, there is no real concern in the number

of constraints exceed the number of state variables under consideration. However,
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to ensure that V = V , we need a complementary slackness condition to be coupled

with the Euler-Lagrange equation for the multipliers,

λi(t)(ci − gi) = 0 (67)

so that if the constraint is binding, we are back to the equality problem, and if the

constraint is not binding (in other words the constraint hold with a strict inequality)

that the multiplier must hold at the value of 0 for all periods under consideration.

• Integral Constraints/Isoperimetric Problem: The solution method can also

handle problem when the constraints themselves are integrals, but for the sake of

brevity, we will not discuss this in this class. However, should you be curious, you

can find out how such problems can be solved from Chiang (1992).

5 Frank Ramsey’s Theory of Saving

Ramsey (1928) examined the optimal social savings behavior of an economy using the

Calculus of Variations, and it remains one of the most important papers on optimal

economic growth. The central problem he was examining was the optimal level of resource

allocation that would permit optimal economic growth, specifically how much should an

economy should consume in any current period, and how much should be invested so as

to increase future production capacity.

The model makes the following assumptions:

1. Output Q is assumed to be a function of capital K and labour L, in other words

Q ≡ Q(K,L), and this technology is assumed to be time invariant, so that he’s

model assumes that there is no technological progress, an assumption we will relax

later in this course.

2. Capital does not depreciate.

3. Population size is stationary, in other words neither increasing or decreasing.

4. Labour is a state variable, and its use incurs a societal disutilityD(L) with increasing

marginal disutility, DLL ≥ 0
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5. Output not consumed will be saved (S) and result in investment and consequently

capital accumulation K ′. That is Q = C + S = C +K ′ or more precisely,

C = Q(K,L)−K ′ (68)

Thus capital K is a state variable.

6. The production function is an increasing function in all its variables, and that di-

minishing marginal product of capital and labour hold, in other words, QKK ≤ 0

and QLL ≤ 0.

7. The social welfare function is dependent on consumption alone, U ≡ U(C) with

decreasing marginal utility, UCC ≤ 0.

8. The net social welfare function is thus U(C) − D(L). Consequently, C and L are

functions of time, and this is true for Q and K indirectly as well.

The social planner’s problem is thus to maximize the net social welfare function for

all generations of constituents,

max

∫ ∞
0

{U(C)−D(L)}dt (69)

⇒ max

∫ ∞
0

{U(C = Q(K,L)−K ′)−D(L)}dt (70)

so that as noted before, the problem has two state variables, K and L. However, notice

that the functional is not dependent on L′ so that the problem for the optimal level of

labour input is degenerate since all we need to do is to find the maxima and keep it at

that level for the entire planning horizon.

You should notice that the functional does not have a discount factor, which implies

that in and of itself, there is no specific reason the integrand or the functional would

converge. The principal reason that Ramsey (1928) eliminated the discount factor was

because he did not see fit that a social planner could or should discount the welfare of

future generations in favour of the current. Consequently, to bring some closure to the

convergence problem, he reframed the problem as follows,

min

∫ ∞
0

[B − U(C) +D(L)]dt (71)
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subject to the initial state of capital at,

K(0) = K0

where B denote some arbitrary level of welfare bliss. The argument used was that since the

integrand would have to minimize in each and every period, it will tend asymptotically to

0. However, as noted from our previous discussion and in Chiang (1992), just because the

integrand tends to 0 as t → ∞, does not guarantee that the functional would! However,

since it uses implicit functions, we will assume that the functional does indeed converge

as well.

To obtain the Euler Equation,

FL = −UCQL +DL (72)

FL′ = 0 (73)

FK = −UCQK (74)

FK′ = UC (75)

These would allow us to analyse the solution using equation (16). First for the optimal

path for labour,

FL −
dFL′

dt
= 0

⇒ FL = 0

⇒ UCQL = DL (76)

for all t which is the standard static labour choice, where the value of marginal product

of labour must be equated to the marginal disutility of labour. For capital,

FK −
dFK′

dt
= 0

⇒ −UCQK = UC,t (77)

⇒ −QK =
UC,t
UC

=
dUC

dT

UC
(78)

The last equality highlights the implications of the Euler equation. It says that the

growth rate of the marginal utility of consumption must in each and every period be

equal to the negative of the marginal product of capital. This growth path of consumption

which is dependent on capital, would then identify the optimal growth path of labour.
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Note in addition that the optimal growth of consumption together with labour then

identifies implicitly or indirectly the optimal path of capital accumulation. Specifically,

from equation (18), and our earlier discussion regarding special functional case when the

functional is not dependent on t explicitly (20), we have then,

F −K ′FK′ = constant

⇒ B − U(C) +D(L)−K ′UC = constant (79)

To find the optimal path of capital accumulation path K ′, first note that as t → ∞ we

have U(C)−D(L)→ B. This in turn means that the minima can be achieve only as U(C)

tend towards its asymptotic value (recall that U ′′(C) ≤ 0), and as U(C) tends towards its

asymptotic value, UC → 0 so that as t → ∞, B − U(C) + D(L) −K ′UC is 0. Therefore

we have the optimal capital accumulation path as,

K ′ =
B − U(C) +D(L)

UC
(80)

and we get the famous Ramsey Rule. The rule says that the rate of capital accumulation

have to set to equate the ratio between the short fall between the social welfare and the

bliss level and the marginal utility of consumption. Note further that this idea relies on

the production function through the marginal product’s effect on the optimal path for

consumption, equation (78).

It is common to also use phase diagrams to obtain qualitative information regarding

the optimal paths. Since the model in its original form has three variables, consumption

(or marginal utility from consumption), capital and investment, to depict these three

variables and their paths would be complicated, we will simplify the analysis by assuming

that labour input is constant for the remainder of the discussion, so that Q ≡ Q(K),

and similarly since L is no longer considered a state variable, D(L) is eliminated from

the functional so that it becomes in the aggregate B − U(C) and being subjected to the

same initial point constraint. Nonetheless, the Euler equation pertaining to consumption

remains the same. To highlight the fact that we are concerned with the path of marginal

utility and to see that the Euler Equation is in fact a differential equation, let UC = µ so

that we write equation (78) as,

µ′ + µQK = 0 (81)
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which is just a first order differential equation. From the relationship between consump-

tion and capital accumulation we likewise get the second differential equation for K.

C(µ) = Q(K)−K ′

⇒ K ′ = Q(K)− C(µ) (82)

which is our second differential equation, and where C(µ) is derived from the fact that

marginal utility of consumption is nondecreasing in C so that we can think of µ as being

a function of C, so that inverting the function we get C ≡ C(µ).

Before we can depict the phase diagrams and their associated curves, note that we will

maintain the previous assumptions that UCC ≤ 0 and similarly QKK ≤ 0. Without loss of

generality, let argmaxµ = C∗ and maxU(C) = B. In constructing phase diagrams, we

need first to know how K ′ = 0 and µ′ = 0 looks like or behaves. We need this two curves

to separate the space of possible values of µ and K, and to see how they behave within

those demarcated spaces. Since on the two curves, K ′ and µ′ are zero, this means that

K and µ are not changing along those lines. So that the intersection of the two curves

tells us the Intertemporal Equilibrium or the Steady State Equilibrium for the system of

equations. From the above two differential equations we obtain the following equations

when K ′ = 0 and µ′ = 0,

Q(K) = C(µ) (83)

µ = 0 (84)

The second equation obtains since Q is assumed to be strictly nondecreasing so that capi-

tal saturation never occurs. To determine the shape of equation (83), note that as capital

increases, output likewise increases, which in turn implies that capital remaining for ac-

cumulation falls, so that consumption increases, and as consumption increases, marginal

utility of consumption falls. In other words, capital (K) is a negative function of marginal

utility of consumption µ, and equation (83) is a downward sloping curve. Since there is

consumption saturation at B for utility, let capital associated with µ = 0 at C∗ be denoted

as K∗. Similarly, equation (84) is just a straight flat line at µ = 0. The two curves are

depicted on figure 3.

To understand the “route” that the economy would have to take towards the steady

state equilibrium, we have to next draw sketching bars (the arrows on figure 3) to under-

stand how potential paths can move in the space of K and µ. First, we need to know how
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Figure 3: Simplified Ramsey’s Model
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they behave using equation (81) and (82) respectively,

∂µ′

∂µ
= −QK < 0 (85)

∂K ′

∂K
= QK > 0 (86)

This tell us how values of µ and K should behave in the four demarcated spaces divided

by µ′ = 0 and K ′ = 0 through the sketching bars. For µ, using µ′ as the demarcating line,

the sign of the derivatives tells us that points to the north of µ′ = 0 must have values of µ

falling as the streamlines moves towards µ′ = 0. While to the south they are rising. For

K, values to the west of K ′ = 0, streamlines should see values of K falling, and to the

east, they should be increasing. Thus there would exists a streamlines moving in a south-

easterly direction towards the steady state equilibrium if the initial point has a low capital

state, and in a north-westerly direction if the initial state were a high capital state. This

steady state equilibrium is characterized as a saddle point at K∗ where the µ′ = 0 and

K ′ = 0 intersects. Note that to get onto the path towards the steady state equilibrium

requires the social planner to find the correspondingly optimal level of marginal utility
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of consumption, which in figure 3 is µ∗0, failing which the economy would not be able to

reach its steady state of “bliss”. For example, given K0, if the social planner chooses a

µ that is too low, which in turn is associated with too low levels of consumption, the

economy would diverge towards to little capital accumulation. On the other hand, if

the level of consumption were too high, associated with high levels of marginal utility of

consumption, the economy would partake in to much capital accumulation. Only at µ∗0

is the economy driven towards the steady state. Put another way, the social planner has

to follow a “specific rule” to have the economy get onto the path towards “bliss”, as has

been noted in our analysis. This result should not be surprising since if all paths taken

moves the economy towards the steady state, there would not be a optimization problem

to begin with.
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