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Solving Simple Ordinary Differential Equations

Teng Wah Leo

In general, most of the dynamic models developed in economics do not have close

form solution. Nonetheless, should our solutions generate dynamic equations that can be

solved with some ease, we should be able to recognize and solve them. To this extent, we

will examine linear differential equations.

1 First Order Differential Equations

1.1 First Order Homogeneous Differential Equation

Structure of such a differential equation is,

y′ + ay = 0 (1)

The solution to such an equation is,

y(t) = Ae−at (2)

The reason is because of the following,

y′ + ay = 0

⇒ y′

y
+ a = 0

∴ ln y = −at+ α

⇒ y = e−ateα

= Ae−at
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We refer to this as the Complementary Function. Note the A is solved with the use of

the initial state.

1.2 First Order Non-Homogeneous Differential Equation

The structure of such an equation is,

y′ + ay = b (3)

Here the Complementary Function remains the same.

y(t) = Ae−at (4)

However, now we have another part of the solution to contend with, the right hand side

of the equation. The solution to that is known as the Particular Integral, and it is just,

yp =
b

a
(5)

Finally, the complete solution is,

y(t) = (A− yp) e−at + yp

=

(
A− b

a

)
e−at +

b

a

When a = 0, the differential equation is,

y′ = b (6)

so that the solution is simply the integral of the equation with respect to t

y(t) = bt+ α (7)

1.3 First Order Non-Homogeneous Differential Equation with

Variable Coefficient & Variable Term

The general form of a first order non-homogeneous linear differential equation is of the

form,

y′ + u(t)y = w(t) (8)

where u(t) and w(t) are the variable coefficient and variable term respectively.
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1.3.1 Homogeneous Case

In the homogeneous case, w(t) = 0, then equation (8) becomes,

y′ + u(t)y = 0

⇒ y′

y
= −u(t)

⇒
∫
y′

y
=

∫
−u(t)dt

⇒ ln y + c =

∫
−u(t)dt

⇒ ln y = −c−
∫
u(t)dt

⇒ y = e−c−
∫
u(t)dt

⇒ y = Ae−
∫
u(t)dt

Note that this is a general solution, and subsumes our solution to the homogeneous case

in the previous section since that solution can be written as,

y = eα−at

= eαe−at

= Ae−
∫
(a)dt

To get an idea of how this works, consider the following example:

Example 1 Given,

y′ + 3t2y = 0

Then u(t) = 3t2, so that
∫

3t2dt = t3 + α, so that the solution is,

y = Ae−t
3

e−α = Be−t
3

1.3.2 Non-Homogeneous Case

In the non-homogeneous case, the differential equation will be of the form,

y′ + u(t)y = w(t)

The solution to this case is,

y(t) = e−
∫
(u)dt

(
A+

∫
we

∫
(u)dtdt

)
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The rationale for this solution will be discussed below for all the prior cases. To understand

their use, we will go through some examples.

Example 2 Consider the following differential equation,

y′ + 2ty = t

Comparing to the formula, we have u(t) = 2t, which then implies that
∫
u(t)dt = t2 + α.

Next, note that w(t) = t. Therefore, applying the formula,

y(t) = e−t
2−α
(
A+

∫
tet

2+αdt

)
= e−t

2−αA+ e−t
2−α

(
et

2+α

2
+ β

)
= e−t

2 (
e−αA+ e−αβ

)
+

1

2

= Be−t
2

+
1

2

You may check the solution by finding y′ and substituting the derivative back into the

differential equation.

Indeed, if you had ignored all the constants in the integration process, and directly

applied the formula, you would still obtain the same solution. To see that, consider the

next example.

Example 3 Consider now,

y′ + 4ty = 4t

so that u(t) = 4t which implies
∫
u(t)dt = 2t2. As well, w(t) = 4t, which in turn implies

that
∫

4te2t
2
dt = e2t

2
. So that applying the formula, we have the following solution,

y(t) = e−2t
2
(
A+ e2t

2
)

From this discussion, it should also become clear how we obtain our previous formulas

when u(t) and w(t) are constants, instead of being dependent on t. In case it is unclear,

let u(t) = a and w(t) = b, so that
∫
adt = at, and

∫
beatdt = b

a
eat. Now applying the

formula, we have

y(t) = e−at
(
A+

b

a
eat
)

= Ae−at +
b

a
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2 Exact First Order Differential Equations

To understand how and when a first order differential equation can be solved, first note

that we can think of the entire equation as a function of y and t. Secondly, although the

problems we work with are linear in nature, the same ideas work for non-linear differential

equations.

Next note that in general, a function of the two variables y and t can be written as

F (y, t), so that its total derivative is,

dF (y, t) =
∂F

∂y
dy +

∂F

∂t
dt

and when the above equation is equal to zero, it is what is known as an exact differential

equation. In general, a differential equation can be generalized to be of the form,

Θdy + Γdt = 0

and it is considered exact if and only if there exists a function F (y, t) such that Θ = ∂F
∂y

and Γ = ∂F
∂t

. You will recall that based on Young’s Theorem,

∂2F

∂y∂t
=

∂2F

∂t∂y

⇒ ∂Θ

∂t
=

∂Γ

∂y

This last equation then allows us to test whether the solution to our differential equation

is correct or otherwise, or a test of the exactness of our differential equation. Put another

way, if the left and right hand side of the last equality are the same, we have an exact

differential equation, and the method of solution to be described below follows. Further

since there are no restrictions placed on y, it is possible to have nonlinear (in y) differential

equations offering exact solutions.

The import of these findings above, is that since exactness implies

dF (y, t) = 0

⇒ F (y, t) = β

Next, observe that since Θ = ∂F
∂y

, this then implies that the function F (y, t) must have

the integral of Θ with respect to y. In other words,

F (y, t) =

∫
Θdy + ξ(t)
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where ξ(t) is the equivalent of a constant. The reason the second term on the right hand

side is added is because in partially differentiating F (y, t), t or any function of t would

have been treated like a constant, so that in “reverse engineering” the function F (y, t),

we would have to reinstate it back. The next question is how we can backout the value

of functional form of ξ(t)? Observe that,

∂F (y, t)

∂t
=

∂
(∫

Θdy
)

∂t
+ ξ′(t)

= Γ

This then suggest that to solve the exact differential equation, we would need to use the

idea behind Γ = ∂F
∂t

.

The precise steps are as follows:

1. Reduce the differential equation to the form,

F (y, t) =

∫
Θdy + ξ(t)

and relate to

∂F (y, t)

∂y
dy +

∂F (y, t)

∂t
dt = 0

⇒ Θ(y, t)dy + Γ(y, t)dt = 0

Next realize that Θ ≡ Θ(y, t).

2. Denote
∫

Θdy = θ(y, t), so that

∂F (y, t)

∂t
=

∂θ(y, t)

∂t
+ ξ′(t)

= Γ(y, t)

where Γ ≡ Γ(y, t). We can now compare Γ(y, t) to ∂θ(y,t)
∂t

+ ξ′(t). This will give us,

ξ′(t) = γ(t)

Notice that the right have side, γ ≡ γ(t) since otherwise, a derivative with respect

to y would yield an output.

3. Thus,

ξ(t) =

∫
γ(t)dt = ζ(t)

noting that you can ignore the constant after integration.
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4. Then combining all the results, we have

F (y, t) = θ(y, t) + ζ(t) = ν

It should be noted that just because we do not have an exact differential equation does

not imply we cannot solve the differential equation. If we can find a common factor such

that by multiplying it through the entire equation, we create a exact differential equation,

we would still be able to solve it. This common factor is known as an integrating factor.

2.1 Solution of First Order Linear Differential Equation

The general form of a first order linear differential equation is

dy

dt
+ u(t)y = w(t) (9)

⇒ dy + (u(t)y − w(t))dt = 0 (10)

It is easy to see that in the current form, the differential equation is inexact. However,

there is an integrating factor. Let φ be the integrating factor so that,

φdy + φ(u(t)y − w(t))dt = 0

We know that for this to work, we need

∂φ

∂t
=

∂φ(u(t)y − w(t))

∂y

Since both u(t) and w(t) are functions of t only, it would be prudent and simple to look

for a φ ≡ φ(t), in other words, to look for a function φ that is likewise a function of t

alone as well. In that situation, the test of exactness reduces to,

∂φ(t)

∂t
= φ(t)u(t)

⇒
∂φ(t)
∂t

φ(t)
= u(t)

⇒ lnφ(t) =

∫
u(t)dt+ α

⇒ φ(t) = eαe
∫
u(t)dt

However, the constant is inconsequential, and we can set φ(t) = e
∫
u(t)dt. This then means

that,

e
∫
u(t)dtdy + e

∫
u(t)dt(u(t)y − w(t))dt = 0

Adopting the four step procedure from the previous section,
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1. First integrating Θ(y, t) with respect to y, we get

F (y, t) =

∫
e
∫
u(t)dtdy + ξ(t) = ye

∫
u(t)dt + ξ(t)

2. This is followed by the differentiation of F (y, t) with respect to t

∂F

∂t
= yu(t)e

∫
u(t)dt + ξ′(t)

Next notice that,

Γ(y, t) = e
∫
u(t)dt(u(t)y − w(t))

Therefore,

ξ′(t) = −w(t)e
∫
u(t)dt

3. Next, we find ξ(t),

ξ(t) = −
∫
w(t)e

∫
u(t)dtdt

4. Combining all the parts, we have

F (y, t) = ye
∫
u(t)dt −

∫
w(t)e

∫
u(t)dtdt

⇒ ye
∫
u(t)dt −

∫
w(t)e

∫
u(t)dtdt = ν

Therefore,

ye
∫
u(t)dt = ν +

∫
w(t)e

∫
u(t)dtdt

⇒ y(t) = e−
∫
u(t)dt

(
ν +

∫
w(t)e

∫
u(t)dtdt

)
2.2 First Order Nonlinear Differential Equations

As you may have wondered, what if the differential equation were nonlinear? Is there

anyway of finding a solution, and under what circumstances is this possible. A first order

nonlinear differential equation is of the form,

f(y, t)dy + g(y, t)dt = 0 (11)

⇒ dy

dt
= − g(y, t)

f(y, t)
= h(y, t) (12)

There are three types of cases we can consider:
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1. When the differential equation is exact, we can again use the four step method we

had discussed previously.

2. When the differential equation is additively separable in the following sense,

f(y)dy + g(t)dt = 0 (13)

When this is the case, all we need to do is to integrate both sides independently. Of

course, the usual caveat is that for this to work, both sides should yield close form

solutions.

3. The final case when we can solve the nonlinear system is when the differential

equation is reducible into a linear form. Consider the general nonlinear differential

equation of dy
dt

= h(y, t) taking on the following form,

dy

dt
+ ρy = τyν (14)

where ρ ≡ ρ(t), τ ≡ τ(t), and ν is any number not equal to 0, or 1. In this case,

the equation is known as a Bernoulli Equation. When the nonlinear differential

equation is a Bernoulli Equation, then it can always be reduced to a linear differential

equation, so that the previous techniques would apply.

The reduction process is as follows:

(a) Divide the differential equation through out by yν so that we get,

y−ν
dy

dt
+ ρy1−ν = τ

(b) Let z = y1−ν , so that by the chain rule dz
dt

= dz
dy

dy
dt

= (1 − ν)y−ν dy
dt

. This then

imply that,

1

1− ν
dz

dt
+ ρz = τ

⇒ dz + [(1− ν)ρz − τ(1− ν)] dt = 0

Therefore, now we can apply the techniques we have discussed thus far.

(c) Find z(t), and transform the solution back to obtain y(t).
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3 Second Order Differential Equation

3.1 Second Order Homogeneous Differential Equation

The structure of such an equation is,

y′′ + a1y
′ + a2y = 0 (15)

Here the Complementary Function is usually obtained by adopting a trial solution of

y = ert, which implies that

y′ = rert

y′′ = r2ert

So that the differential equation looks like,

r2ert + a1re
rt + a2e

rt = 0

r2 + a1r + a2 = 0

We can then use the coefficients from the differential equations to solve for the character-

istic roots.

r1, r2 =
−a1 ±

√
a21 − 4a2

2

The allocation of the roots is not of importance. Therefore the Complementary Function

is (Note that the exponent does not have a negative sign),

A1e
r1t + A2e

r2t (16)

The idea behind this is that we are in fact guessing that the solution is of the form

αert. In doing so, we have implicitly accepted that y′ = αrert, and y′ = αr2ert, which

would give,

y′′ + a1y
′ + a2y

′′ = 0 (17)

αr2ert + αa1re
rt + αa2e

rt = 0(
r2 + a1r + a2

)
αert = 0

It must be kept in mind that any complementary function solution has to satisfy 17. The

next question is when wouldn’t our guess work?
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The above solution works if the roots are distinct. In the case when we have repeated

roots, that is r1 = r2 = r. In this case, the suggested complimentary function become,

A1e
r1t + A2e

r2t = (A1 + A2)e
rt = A3e

rt

This then implies that we need to find another portion to the complementary function.

This is because in differentiating the solution to obtain the differential equation, we would

have lost two constants, in consequence, when we reverse the process to find the solution,

we need to recoup the two constants for a second order differential equation.

The additional guess so as to obtain a second constant for the complementary function

needs to be linearly independent from the original guess, failing which, we would arrive at

the original problem again, since there is only one root. A natural guess would be βtert.

Then this would in turn imply that,

y′ = βert(1 + rt)

y′′ = βert(2r + r2t)

so that when we substitute this back into the original differential equation, we have,

βert(2r + r2t) + βa1e
rt(1 + rt) + βa2te

rt = 0

βert
(
(2r + r2t) + a1(1 + rt) + a2t

)
= 0

This is a valid solution since both the original guess, and the new guess has the root r,

they will both be zero, thus not impinging on the differential equation. Therefore, in the

case when we have a distinct root, the complementary function is of the form,

A1e
rt + A2te

rt

At this juncture, it is an opportune moment to discuss dynamic stability. Dynamic

stability occurs only when the complementary function tends towards zero, as time t tends

towards ∞, or in short, yc → 0, as t→∞. When this occurs, then as time proceeds, the

path would eventually reach the particular integral, yp! The only way this can happen

is the case when we have two roots is if and only if both the roots are negative, since as

t→∞ ert → 0. However, should any one of the roots be positive, the positive portion of

the complementary function, yc, would dominate as t → ∞ (It should also be clear now

why we have a negative sign in our complementary function for the first order differential
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equation.) This condition likewise holds for the distinct root case when r < 0, since for

r < 0

lim
t→∞

tert = lim
t→∞

t

e−rt

= lim
t→∞

1

−re−rt
= 0

Therefore, as long as r < 0, the solution is dynamically stable.

3.2 Second Order Non-Homogeneous Differential Equation

As in the first order case, we have to contend with the Particular Integral when the

differential equation is non-homogeneous.

y′′ + a1y
′ + a2y = b (18)

There are several cases we need to contend with. When a1 and a2 are non-zero (Note

that there is no t for the particular integral),

yp =
b

a2
(19)

When a2 = 0,

yp =
b

a1
t (20)

The solution is just the sum of the Complementary Function and the Particular Inte-

gral. Note that it is unlike the first order case.

y(t) = A1e
r1t + A2e

r2t + yp (21)

When both a1 and a2 are zero,

y′′ = b

⇒ y′ = bt+ α

⇒ y(t) =
b

2
t2 + αt+ β

The particular integral here is b
2
t2.
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