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Advanced Macroeconomics, ECON 402

Optimal Control Theory

1 Introduction to Optimal Control Theory

With Calculus of Variations “in the bag”, and having two essential versions of Growth

Theory, we are now ready to examine another technique for solving Dynamic Optimization

problems. The principle reason we need another method is due to the limitations to

associated with Calculus of Variations:

1. Differentiable functions, and

2. Deals with Interior Solutions

Optimal Control Theory is a modern approach to the dynamic optimization without

being constrained to Interior Solutions, nonetheless it still relies on differentiability. The

approach differs from Calculus of Variations in that it uses Control Variables to optimize

the functional. Once the optimal path or value of the control variables is found, the

solution to the State Variables, or the optimal paths for the state variables are derived.

We will denote as before state variables by y(t), but now include control variables which

will be denoted by u(t). How do we decide which variable is a state and which is a control

variable? A variable qualifies as a control variable if,

1. the variable is subject to the optimizer’s choice, and

2. the variable will have an effect on the value of the state variable of interest.

For example, in creating universal laws to regular fishing, the stock of fishes in the seas

is a state variable, and the control variable would be the rate at which fishes are fished

out of the waters, which affects obviously the stock of fishes.

There are several interesting features to Optimal Control Problems:

1. The Optimal Path for the Control Variable can be piecewise continuous, so that it

can have discrete jumps. Note however that the jump(s) cannot have u(t) =∞.
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2. The Optimal Path for the State Variable must be piecewise differentiable, so that

it cannot have discrete jumps, although it can have sharp turning points which are

not differentiable. Like the control variable y(t) must be finite.

3. Each turn on by the State Variable along its path is associated with a discrete jump

by the Control Variable.

4. A Optimal Control Problem can accept constraint on the values of the control

variable, for example one which constrains u(t) to be within a closed and compact

set. This then allows for solutions at the corner.

The simplest Optimal Control Problem can be stated as,

maxV =

∫ T

0

F (t, y, u)dt (1)

subject to ẏ = f(t, y, u)

y(0) = A ,A is given

y(T ) Free

u(t) ∈ U ∀ t ∈ [0, T ]

Note that to change the problem to a minimization problem, all one needs to do is to add

a negative sign to the objective functional. There are several things you should note with

the change in the statement of the problem,

1. The direction of the optimal path for the state variable, y′(t) is now replaced by the

control variable u(t) in the objective functional. This highlights the fact that the

role of the control variable has to be related to the state variable.

2. The relationship between the control variable and the state variable is described by

the constraint ẏ = f(t, y, u).

3. At the initial time, t = 0, and y(0), so that ẏ(0) = f(0, y(0), u(0)), where u(0)

is chosen by us. In other words, the direction of the control variable at initial

time is completely determined by our choice of u(t)|t=0. Thus, it becomes clear

that the direction that the state variable takes, ẏ is determined by the control

variable. Consequently, this equation is known as the Equation of Motion for the

state variable.
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4. Note that the constraint on the control variable u(t) ∈ U can be either a closed

and compact set, or a open set, U = (−∞,∞). When the latter is the case, it

obviates the use of the constraint, since there is essentially no constraint on the

control variable.

5. When the equation of motion takes the form of ẏ = u(t), then the problem reduces to

our standard vertical terminal line problem in our Calculus of Variations discussion.

2 The Maximum Principle

The first order (necessary) condition in Optimal Control Theory is known as the Maxi-

mum Principle, which was named by L. S. Pontryagin. Firstly, to solve a Optimal Control

problem, we have to change the constrained dynamic optimization problem into a uncon-

strained problem, and the consequent function is known as the Hamiltonian function

denoted as H,

H(t, y, u, λ) = F (t, y, u) + λ(t)f(t, y, u) (2)

where λ(t) is known as the costate variable. It’s interpretation is not unlike the multiplier

in Lagrange Multiplier method, in other words, you can think of it as a shadow price of

the relationship between the state and control variable defined by f(.).

Although, the norm in economics is to write the Hamiltonian in the above form,

strictly speaking, there should be a constant multiplier as a coefficient to the objective

functional integrand F (.), since it should be verified that the integrand is not superfluous

in the problem. Should the integrand be dispensable in the problem, then this constant

term would be equal to zero. However, for all practical purposes in economics, this is

hardly ever the case, and this constant is greater than zero, so that you can treat λ(t) as

the normalized value. In other words,

H ′(t, y, u, λ) = λ0F (t, y, u) + λ′(t)f(t, y, u)

⇒ H(t, y, u, λ) = F (t, y, u) +
λ′(t)

λ0

f(t, y, u)

= F (t, y, u) + λ(t)f(t, y, u)

Read Chiang (1992) for a more in depth discussion.
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The Maximum Principle is unlike the Euler Equation which is a single first order

condition. The first order condition to the Hamiltonian, equation (2) is very much like

the first order conditions of the Lagrangian, where they are obtained differentiating the

Hamiltonian with respect to the control (if the Hamiltonian is differentiable with respect

to the control variable), state and costate variables. We can write them as,

max
u

H(t, y, u, λ) ∀ t ∈ [0, T ] (3)

ẏ =
∂H

∂λ
Equation of Motion for y (4)

λ̇ = −∂H
∂y

Equation of Motion for λ (5)

λ(T ) = 0 Transversality Condition (6)

Notice that the first, first order condition with respect to the control variable is not stated

as a derivative. This principally because, as note previously, Optimal Control Theory does

allow for corner solution, which are points at which the Hamiltonian is not differentiable.

Another way we can state the first condition of the Maximum Principle is,

H(t, y, u∗, λ) ≥ H(t, y, u, λ) ∀ t ∈ [0, T ], ∀ u∗ 6= u, u, u∗ ∈ U (7)

Note in addition the following

1. First note that for conditions described in equations (4) and (5), and are referred

to as the Hamiltonian System or the canonical system,

2. Secondly, although equation (4) is a mere restatement of the relationship between

the state and control variable, the equation of motion for λ is set such that λ̇ equates

with the negative of the derivative of the Hamiltonian function.

3. Finally, both the equation of the Hamiltonian system are first order differential

equations, and there is no differential equation for the control variable.

2.1 A Simple Example

Consider the problem:

max
u

V =

∫ T

0

−(1 + u2)1/2dt

subject to ẏ = u

y(0) = A A is given

y(t) Free, T is given
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To solve this Dynamic optimization problem, we follow the following steps,

1. Write down the Hamiltonian and first order condition with respect to

the control variable u:

The Hamiltonian of the problem is,

H = −(1 + u2)1/2 + λu

and since the integrand of the functional is differentiable, we can write the first

order condition with respect to u as,

∂H

∂u
= −(1 + u2)−1/2u+ λ = 0

⇒ (1 + u2) =
u2

λ2

u2

(
1− 1

λ2

)
= −1

u2 =

(
λ2

1− λ2

)1/2

You should verify that the Hamiltonian is concave in u. Next in light of the fact

that the control variable is dependent on the costate variable, we would need to

solve for the solution for λ.

2. Solve for the optimal value of the costate variable λ:

Since the integrand is not dependent on the state variable, y

λ̇ = −∂H
∂y

= 0

⇒ λ = k

where k is a constant. Since the transversality condition for this terminal line

problem is λ(T ) = 0 = λ(t) for all t ∈ [0, T ], λ∗t = 0, which in turn implies that

u∗(t) = 0 for t ∈ [0, T ].

3. Solve for the Optimal Path of the state variable y:

Since ẏ = u = 0, this means that y(t) = K, where K is a constant. Since the initial

state is y(0) = A, we have K = A, and y∗(t) = A, and the optimal path in this

vertical terminal line problem is a horizontal straight line.
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3 The Intuition Behind Optimal Control Theory

Since the proof, unlike the Calculus of Variations, is rather difficult, we will deal with the

intuition behind Optimal Control Theory instead. We will make the following assump-

tions,

1. u is unconstrained, so that the solution will always be in the interior. In other

words, U is an open set.

2. H is differentiable in all its arguments.

3. The initial point is given, but the terminal point is allowed to vary.

To restate the problem again,

maxV =

∫ T

0

F (t, y, u)dt (8)

subject to ẏ = f(t, y, u)

y(0) = y0 ,y0 is given

y(T ) Free

u(t) ∈ U ∀ t ∈ [0, T ]

1. First note that since the equation of motion will always be obeyed, ẏ−f(t, y, u) = 0

for all values of t, and λ(t)(f(t, y, u)− ẏ) = 0 for all values of t as well.

2. This in turn implies that,

V =

∫ T

0

F (t, y, u)dt+

∫ T

0

λ(t)(f(t, y, u)− ẏ)dt (9)

=

∫ T

0

(
F (t, y, u) +

∫ T

0

λ(t)(f(t, y, u)− ẏ)

)
dt (10)

3. Relating the above to the Hamiltonian, note next that,

V =

∫ T

0

(H(t, y, u, λ)− λ(t)ẏ) dt (11)
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4. Next integrate the second integral by part,

−
∫ T

0

λ(t)ẏdt = − (λ(t)y(t))|T0 +

∫ T

0

y(t)λ̇dt

= −λ(T )yT + λ(0)y0 +

∫ T

0

y(t)λ̇dt

5. The new objective functional is now,

V =

∫ T

0

(
H(t, y, u, λ) + y(t)λ̇

)
dt− λ(T )yT + λ(0)y0

Noting that the first integrand is a decision that spans the entire planning horizon,

the second integrand is concerned with the terminal point, while the last integrand

is concerned with the initial point. Also notice that the value of V dependent on

the optimal paths for y, u, λ, and the values of T and yT .

6. Recalling that λ is just a Lagrange multiplier, since ẏ − f(t, y, u) = 0 for all values

of t, the path of λ is not important, so that without further complication, we can

impose the constraint as a necessary condition,

ẏ = f(t, y, u) =
∂H

∂λ
(12)

7. As in our discussion in Calculus of Variation, to understand the optimal path of

the control variable, we can examine how an optimal control path differs from other

possible paths, and thereby find out what distinguishes the optimal control path.

To that extent, let

u(t) = u∗(t) + εp(t) (13)

where as before ε is just a perturbation constant, and p(t) is a perturbation function.

8. This paths corresponds with a state path determined by the equation of motion, so

that

y(t) = y∗(t) + εq(t) (14)

9. Further, since T and yT are variable,

T = T ∗ + ε∆T (15)

⇒ dT

dε
= ∆T (16)

yT = y∗T + ε∆yT (17)

⇒ dyT
dε

= ∆yT (18)
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10. As before, noting that y and u are all functions of ε, we can think of V as being

functions of ε. Then rewriting V ,

V =

∫ T (ε)

0

(
H(t, y∗ + εq(t), u∗ + εp(t), λ) + (y∗ + εq(t))λ̇

)
dt− λ(T )yT + λ(0)y0

11. Differentiating the above with respect to ε to find the optimal value of ε to maximize

V , we obtain the following first order condition,

∂V

∂ε
=

∫ T (ε)

0

[
∂H

∂y
q(t) +

∂H

∂u
p(t) + λ̇q(t)

]
dt+

[
H + λ̇y

]
t=T

∆T

−
[
λ(T )∆yT + yT

∂λ(T )

∂T
∆T

]
=

∫ T (ε)

0

[(
∂H

∂y
+ λ̇

)
q(t) +

∂H

∂u
p(t)

]
dt+ [H]t=T ∆T − λ(T )∆yT = 0

Since each of the three components to the above solution has individual arbitrary

components, each of them has to be independent equal to zero on the optimal path.

(a) Firstly, since p(t) is arbitrary, then ∂H
∂y

+ λ̇ = 0, which implies,

λ̇ = −∂H
∂y

(19)

as required, and we have the equation of motion for the costate variable.

(b) Secondly, since q(t) is arbitrary,

∂H

∂u
= 0 (20)

as required, which is that u has to maximize the Hamiltonian. Remember that

we have this condition as a derivative because we had assume, to start, that

the set of U is a open set.

(c) Since in the simplest problem T is fixed, ∆T = 0, and we have no concerns

there. However, for other problems, such as the Horizontal Terminal Line

problem, ∆T is arbitrary, which would require that

Ht=T = 0 (21)

which is the transversality condition for that problem.
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(d) Finally, since ∆yT is arbitrary, we have

λ(T ) = 0 (22)

which explains the transversality condition in the simplest Optimal Control

Problem.

12. In the case for the Terminal Curve problem, we need a definition or function which

defines the behavior of the terminal point, such as yT = φ(T ). This then tells us

that the transversality condition should be as follows,

[H]t=T ∆T − λ(T )∆yT = [H]t=T ∆T − λ(T )φ′(T )∆T

= [H − λ(t)φ′(t)]t=T ∆T

and since ∆T is arbitrary,

[H − λ(t)φ′(t)]t=T = 0 (23)

which is the transversality condition for the terminal curve problem.

13. Finally, recall that in deriving the Euler Equation for the Elementary Problem

in Calculus of Variation, we used the idea of a perturbation factor p(t) to find

the difference between all other paths for the state variable as compared against

that of the optimal path. In the case of optimal control theory, this problem is

complicated since conceptually, in deriving the solution, we are seeking to find the

optimal means of “controlling” the control variable so as to influence and ultimately

achieve an optimal path for the state variable. When the terminal point is fixed,

any perturbation of the state variable is defined by the equation of motion for the

state variable, which consequently implies the control variable is “not in control”.

Nonetheless, this is not a substantial problem since all it entails is that we change

the transversality condition to

y(t) = yT (24)

where both T and yT are given.
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4 Current-Value Hamiltonian

In economic problems, as you well know by now, the objective integrand typically involves

a discount factor, e−ρt. So that you can think of the objective integrand being of the form,

F (t, y, u) = G(t, y, u)e−ρt (25)

This then changes the Hamiltonian function to,

H = G(t, y, u)e−ρt + λf(t, y, u) (26)

As you may well see, this adds an additional layer of complication, which of course you

can work through. However, it turns out that you can simplify the Hamiltonian that so

that it does not contain the the discount factor. The resultant Hamiltonian is known

as the Current-Value Hamiltonian. As you may observe, this aim could be achieved by

normalizing the Hamiltonian function by dividing it throughout by eρt. Then all we need

to do is to redefine the Lagrange Multiplier. Note then that after the normalization, we

would have the Lagrange Multiplier in the Hamiltonian as eρtλ(t). Let us then denote it

as γ(t) = eρtλ(t). Similarly, we would have to change the notation for the Hamiltonian,

since it is now Hept, which we will denote as Hc.

This then necessitates an examination of the Maximum Principle for this new Hamil-

tonian.

1. Since the discount factor is not dependent on the control variable u. The condition

that u must maximize Hc for all values of t stands.

2. The equation of the state variable y should now be,

ẏ =
∂Hc

∂γ
(27)

3. To obtain the equation of motion for the costate variable, first note that γ = eρtλ

or λ = e−ρtγ. Next note that the previous condition was λ̇ = ∂H
∂y

. Then,

λ̇ = −ρe−ρtγ + e−ρtγ̇ (28)

∂H

∂y
=

∂Hc

∂y
e−ρt (29)
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Putting the two equations together,

− ρe−ρtγ + e−ρtγ̇ = −∂Hc

∂y
e−ρt (30)

⇒ γ̇ = −∂Hc

∂y
+ ργ (31)

4. Finally, the transversality condition λ(T ) = 0 should now be γ(T )e−ρt = 0, and for

[H]t=T = 0 is now [Hce
−ρt]t=T = 0, or [Hc]t=T e

−ρT .

We will not be discussing, as in our discussion of the Calculus of Variations, the

necessary conditions for optimal control. Nonetheless, should you be interested, you can

refer to Chiang (1992).

5 Infinite Horizon Problems

Just like Calculus of Variations has problems with handling infinite horizon problems,

so too does Optimal Control Theory, and in fact L. S. Pontryagin paid cursory notice

of the problem. Nonetheless, under certain conditions we would still be able to use

Optimal Control Theory. Particularly, when limt→∞ y(t) = y∞, in other words, the state

variable converges, since in that instance it is equivalent to the problem of a horizontal

line problem, or that the Optimal Control problem converges towards such a problem.

What are the implication on the transversality conditions then when we are able to

use Optimal Control Theory. Consider the equation we obtained earlier,

∂V

∂ε
=

∫ T (ε)

0

[(
∂H

∂y
+ λ̇

)
q(t) +

∂H

∂u
p(t)

]
dt+ [H]t=T ∆T − λ(T )∆yT = 0

As in our discussion in Calculus of Variations, what we need in the case of the infinite

horizon problem is the following,

∂V

∂ε
=

∫ ∞
0

[(
∂H

∂y
+ λ̇

)
q(t) +

∂H

∂u
p(t)

]
dt+ lim

t→∞
[H] ∆T − lim

t→∞
λ(t)∆yT = 0

and since both ∆T and ∆yT are arbitrary, we know we then need,

lim
t→∞

[H] = 0 (32)

lim
t→∞

λ(t) = 0 (33)
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