$$
\begin{gathered}
e=\frac{\text { what you get out }}{\text { what you pay for }}=\frac{W_{\text {out }}}{Q_{H}}=1-\frac{Q_{C}}{Q_{H}} \\
e_{\mathrm{max}}=1-\frac{T_{C}}{T_{H}} \\
\Delta S= \pm \frac{Q}{T}=-\frac{Q_{H}}{T_{H}}+\frac{Q_{C}}{T_{C}} \\
k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}=\frac{R}{N_{A}} \\
p V=N k_{B} T=n R T \\
E_{\text {th }}=\frac{3}{2} N k_{B} T \text { and } \Delta E_{\text {th }}=\frac{3}{2} N k_{B} \Delta T \\
\Delta E_{\text {th }}=W_{\text {in }}+Q_{\text {in }}=-W_{\text {out }}+Q_{\text {in }} \\
\Delta S_{\mathrm{system}} \geq 0 \\
v_{r m s}=\sqrt{\frac{3 k_{B} T}{m}} \\
E_{t h}=N K_{\text {avg }}=N\left(\frac{1}{2} m v_{r m s}^{2}\right)=\frac{3}{2} N k_{B} T \\
p=\frac{F}{A}
\end{gathered}
$$

$$
W_{\text {gas, out }}=p \Delta V=\text { "area under } p V \text { curve" }
$$

$$
V_{i}=V_{f}
$$

$$
T_{i}=T_{f}
$$

$$
p_{i} V_{i}^{\frac{5}{3}}=p_{f} V_{f}^{\frac{5}{3}}
$$

$$
\frac{p_{i} V_{i}}{T_{i}}=\frac{p_{f} V_{f}}{T_{f}}
$$

$$
\rho=\frac{m}{V}
$$

$$
p=p_{0}+\rho_{f} g d
$$

$$
p_{t}=p_{b}-\rho_{f} g h
$$

$$
F_{B}=\rho_{f} V_{f} g
$$

$$
p_{\text {atmos }}=101.3 \mathrm{kPa}=1 \mathrm{~atm}
$$

definition of efficiency and formula for a heat engine, can also use powers in Watts rather than Joules
the maximum or Carnot efficiency of a heat engine $\Delta S_{\text {system }}=0$
entropy change associated with heat or a heat engine
Boltzmann's constant and its relationship to the gas constant $R=8.31 \mathrm{~J} / \mathrm{K}$ and Avogadro's Number $N_{A}=6.02 \times 10^{23}$
ideal gas law, N is the number of molecules, n is the number of moles, T is in Kelvin
for a monatomic gas
1st Law of Thermodynamics, you need to modify the signs if you are talking about a Q that is "leaving" the system

2nd Law of Thermodynamics for an isolated system, could also say state of disorder increases with time
the average velocity of an atom in a gas at temperature T. Can find m from molecular weight (in kg) divided by $N_{A}=6.02 \times 10^{23}$.
for a monatomic gas the thermal energy represents that the total kinetic energy of the molecules which is proportional to $v_{r m s}^{2}$ and T
definition of pressure, units are Pascals (Pa) when F is in Newtons and A is in m^{2}
an expanding gas does work on its environment. If the pressure is constant then you may use the simple ΔV expression, otherwise it is the area
a constant volume process $W_{\text {out }}=0$
an isothermal process $\Delta E_{t h}=0$
an adiabatic process $Q=0$ and $\Delta S=0$
once you have identified the process you can use this formula, a form of the ideal gas law if N is constant
definition of density, use m in kg and V in m^{3}. $1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}$
pressure in a fluid of density ρ_{f} as a function of depth. p_{0} is a "reference pressure" where $d=0$. This equation also supports Pascal's principle: if the pressure changes at one point in the fluid it changes by the same amount at every other point.

If a parcel of fluid with a height of h is in hydrostatic equilibrium then the pressure at the top is lower that the pressure at the bottom.
buoyant force directed upward. V_{f} is the volume of fluid displaced and it equal to the volume of the object if the object is submerged. Object will also experience the force of gravity weight $w=m g$ directed downward.
atmospheric pressure

$$
v_{1} A_{1}=v_{2} A_{2} \quad \text { equation of continuity for an incompressible fluid }
$$

$$
Q=v A=\frac{\Delta V}{\Delta t} \quad \text { volume flow rate in } \mathrm{m}^{3} / \mathrm{s}
$$

$$
f_{m}=\frac{v}{\lambda_{m}}
$$

Bernoulli's equation. Often used to find a pressure difference $p_{2}-p_{1}$. If the fluid is low density (like air) and the change in y is small you can drop the $\rho g y$ terms.
relationship between angular frequency ω, frequency f and period T
This is for a horizontal, frictionless mass-spring system where x represents displacement from equilibrium. This pattern of a linear restoring force is the same for other examples of simple harmonic motion.
the motion of an object in simple harmonic motion. For vertical mass spring system substitute $y(t)$ for a pendulum either $\theta(t)$ or $s(t)$ (the arc length). $x_{\max }=A$. If you need to calculate an actual x at some time make sure you take the cosine in radians.
velocity as a function of time. $v_{\max }=A \omega$. Substitute in frequency f and period T as necessary.
acceleration as a function of time. Substitute in frequency f and period T as necessary.
angular frequency for mass-spring and pendulum systems
period for mass-spring and pendulum systems
energy relationships in a simple harmonic oscillator
max energies
sinusoidal wave moving to the right (change to positive sign for wave to the left)
basic relationship between speed, frequency, period, and wavelength. Use the "quotes" form to relate history and snapshot graphs.
speed of sound $\gamma=3 / 2$ for monatomic gases, $5 / 2$ for diatomic
waves on a string, T_{s} is tension, μ is linear density
speed of electromagnetic waves in vacuum (including light, radio waves)
waves on string, closed-closed or open-open pipe (draw a picture!), m is the mode number
waves in open-closed pipe (draw a picture!) m isn't mode number; it is the number of quarter-wavelengths in the standing wave. Set $m=1$ for the fundamental, $m=3$ for 2 nd harmonic etc.
changing resonant wavelengths to frequency, this formula works for either open-open or open-closed with the m in the previous formulas

$$
\begin{aligned}
& p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}=p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1} \\
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& \left(F_{\text {net }}\right)_{x}=-k x \\
& x(t)=A \cos (\omega t)=A \cos (2 \pi t)=A \cos \left(2 \pi \frac{t}{T}\right) \\
& v_{x}(t)=-A \omega \sin (\omega t) \\
& a_{x}(t)=-A \omega^{2} \cos (\omega t)=-\omega^{2} x(t) \\
& \omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{g}{L}} \\
& T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{L}{g}} \\
& E=K+U=\frac{1}{2} m v_{x}(t)^{2}+\frac{1}{2} k x(t)^{2} \\
& K_{\max }=U_{\max }=\frac{1}{2} m\left(v_{\max }\right)^{2}=\frac{1}{2} k A^{2} \\
& y(x, t)=A \cos \left(2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)\right) \\
& v=f \lambda=\frac{\lambda}{T}=\frac{" \Delta x "}{\Delta t} \\
& v_{\text {sound }}=\sqrt{\frac{\gamma k_{B} T}{m}}=\sqrt{\frac{\gamma R T}{M}} \\
& v_{\text {String }}=\sqrt{\frac{T_{s}}{\mu}} \\
& v_{\text {light }}=c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& m \frac{\lambda_{m}}{2}=L \quad m=1,2,3, \ldots \\
& m \frac{\lambda_{m}}{4}=L \quad m=1,3,5, \ldots
\end{aligned}
$$

