$y(x, t)=A \cos \left(2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)\right)$	sinusoidal wave moving to the right (change to positive sign for wave to the left)
$v=f \lambda$	basic relationship between speed, frequency, and wavelength
$v_{\text {sound }}=\sqrt{\frac{\gamma k_{B} T}{m}}=\sqrt{\frac{\gamma R T}{M}}$	$k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, R=8.31 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mole}, \gamma=3 / 2$ for monatomic gases, $5 / 2$ for diatomic
$v=\sqrt{\frac{T}{\mu}}$	waves on a string, T is tension, μ is linear density
$\beta=(10 \mathrm{db}) \log _{10}\left(\frac{I}{I_{0}}\right)$	$I_{0}=1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ is the threshold of hearing
$f=\frac{1}{T}=\frac{\omega}{2 \pi}$	relationship between period, frequency, and radial frequency
$m \frac{\lambda_{m}}{2}=L \quad m=1,2,3, \ldots$	waves on string, closed-closed or open-open pipe, or deBroglie particles in a box (draw a picture!)
$(2 m-1) \frac{\lambda_{m}}{4}=L \quad m=1,2,3, \ldots$	waves in open-closed pipe (draw a picture!)
$f_{m}=\frac{v}{\lambda_{m}}$	changing resonant wavelengths to frequency
$f_{\text {beat }}=\left\|f_{1}-f_{2}\right\|$	beats arise from a superposition of waves with nearly the same frequency
$\Delta r=d \sin \theta_{m}=m \lambda$	path length difference for constructive interference in Young's double slit, $m=\ldots-2,-1,0,1,2, \ldots$
$y_{m}=\frac{m \lambda L}{d}$	bright fringes Young's double slit interference (small angle approximation)
$w=\frac{2 \lambda L}{a}$	width of diffraction maximum from single slit
$w \approx \frac{2.44 \lambda L}{D}$	width of diffraction maximum from circular aperature
$n=\frac{\text { speed of light in a vacuum }}{\text { speed of light in the material }}=\frac{c}{v}$	index of refraction defined
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$	Snell's law of refraction
$\theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)$	critical angle for total internal reflection
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$	thin lens law for image formation
$m=-\frac{s^{\prime}}{s}$	lateral magnification
$\mid \vec{F}_{1}$ on $2\|=\| \vec{F}_{2}$ on $1 \left\lvert\,=\frac{K\left\|q_{1}\right\|\left\|q_{2}\right\|}{r_{12}^{2}}\right.$	magnitude of forces in Coulomb's law, $K=8.99 \times 10^{9} \mathrm{~N}$ $\mathrm{m}^{2} / \mathrm{C}^{2}$ direction of force is along the line connecting the charges, attractive if charges have unlike signs, repulsive if they have like signs
$\vec{F}_{\text {elec on } q}=q \vec{E}$	force on a charge, if a test charge can define \vec{E}
$\vec{E}(x, y, z)=\left(\frac{K \mid q}{r^{2}},\left[\begin{array}{l} \text { away from } q \text { if } q>0 \\ \text { toward } q \text { if } q<0 \end{array}\right]\right)$	electric field of a point charge when distance r from charge

$$
\vec{E}_{\text {total }}=\vec{E}_{1}+\vec{E}_{2}+\ldots \quad \text { total electric field from several charges, } r \text { will be different }
$$ for each and so will the direction!

$$
\begin{gathered}
\vec{E}=\left(\frac{Q}{\epsilon_{0} A}, \text { from positive to negative }\right) \\
\epsilon_{0}=\frac{1}{4 \pi K}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\
\tau=q d E \sin \alpha
\end{gathered}
$$

electric field in parallel plate capacitor
torque on an electric dipole with q and $-q$ separated by d. α is the angle between the vector pointing from the negative to the positive charge and \vec{E}

$$
\begin{gathered}
U_{\text {elec }}=q V \\
V(x, y, z)=\frac{K q}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \\
V_{\text {total }}(x, y, z)=\sum_{i} \frac{1}{4 \pi \epsilon_{0}} \frac{q_{i}}{r_{i}} \\
V(x, y, z)=\frac{x}{d} \Delta V_{C} \\
K_{f}+q V_{f}=K_{i}+q V_{i} \\
1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{gathered}
$$

$\vec{E}=\left(\frac{\Delta V}{d}\right.$, from high potential to low potenial $)$

$$
\begin{array}{cl}
Q=C \Delta V_{C} & \text { definition of capacitance } \\
C=\frac{\epsilon_{0} A}{d}=\frac{\kappa \epsilon_{0} A}{d} & \begin{array}{l}
\text { capacitance for a parallel plate capacitor, } \kappa \text { used if the } \\
\text { capacitor is filled with a dielectric }
\end{array} \\
U_{C}=\frac{1}{2} C\left(\Delta V_{C}\right)^{2} & \text { electrical energy stored in a capacitor } \\
u_{E}=\frac{1}{2} \kappa \epsilon_{0} E^{2} & \begin{array}{l}
\text { energy density in an electric field }
\end{array} \\
\hline I=\frac{\Delta q}{\Delta t} & \begin{array}{l}
\text { definition of current. Signs of charge with direction of mo- } \\
\text { tion are included in } \Delta q \text { so positive charges going to the } \\
\text { right and negative charges going to the left would both } \\
\text { contribute to current going to the right. }
\end{array} \\
\Delta V=I R & \begin{array}{l}
\text { Ohm's law for a resistor, remember an ideal wire has } \\
R=0 \text { so } \Delta V=0 \text { no matter the current }
\end{array} \\
\Delta V_{\text {battery }}=\text { emf } & \begin{array}{l}
\text { a battery provides a constant electric potential difference } \\
\text { through its emf. It does not provide constant current. }
\end{array}
\end{array}
$$

the electric potential energy for a charge q at a location with electric potential V
electric potential at a point (x, y, z) if a point charge is distance r away (assumes $V=0$ at infinity) (can also be used for a conducting sphere if $r \geq R$
electric potential is the sum of electric potential for a set of i point charges
electric potential between plates of a parallel plate capacitor if the x direction is normal to the plates and the plate at $x=0$ is set to $V=0$
kinetic energy for a charged particle moving in a region with an electric potential (no "external" forces)
electron-Volt - Joules conversion

$$
\begin{aligned}
& I_{\text {battery }}=\frac{\Delta V_{\text {battery }}}{R_{\text {equiv }}} \quad \text { Current through a battery is determined by the external } \\
& \text { elements (light bulbs, resistors, and how they are con- } \\
& \text { nected). } \\
& \frac{1}{R_{\text {equiv }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \quad \begin{array}{l}
\text { resistances in parallel add in this "reciprocal manner". } \\
\text { Note. } R
\end{array} \\
& \text { Note: } R_{\text {equiv }} \text { will end up being smaller than any of the in- } \\
& \text { dividual resistances. The } R \text { values may already be combi- } \\
& \text { nations of other resistors. If in parallel the same potential } \\
& \text { difference must be across all the resistances (or equiva- } \\
& \text { lents). } \\
& R_{\text {equiv }}=R_{1}+R_{2}+\ldots \quad \text { resistances in series add. The } R \text { values here may already be } \\
& \text { combinations of other resistors. If in series the same cur- } \\
& \text { rent must go through all the resistances (or equivalents). } \\
& R=\frac{\rho L}{A} \quad \rho \text { is the resistivity of the material } \\
& \sum I_{i}=0 \quad \text { Kirchhoff's current law. At any junction if you give cur- } \\
& \text { rents "in" a positive sign and currents "out" a negative } \\
& \text { sign then the sum of the currents is equal to zero. } \\
& \sum \Delta V_{i}=0 \quad \text { Kirchhoff's voltage law. For any loop if you look at the } \\
& \text { sum potential differences around the loop they must be } \\
& \text { zero. (in class I joked that this is the same as when you } \\
& \text { go to the Cape Breton Highlands and back you have gone } \\
& \text { "up" just as much as you have gone "down".) } \\
& P=I \Delta V \quad \text { the power dissipated/gained in an electric circuit element } \\
& F_{\operatorname{mag}}=|q| v B \sin \alpha \quad \text { magnetic force of charged particle, direction of force is } \\
& \text { given by right-hand rule: } \vec{B} \text { along index finger, } \vec{v} \text { along } \\
& \text { thumb, and force on a positive charge is along middle finger } \\
& \text { when held perpendicular to palm. } \alpha \text { is the angle between } \\
& \vec{B} \text { and } \vec{v} \\
& F_{\text {mag }}=I L B \sin \alpha \quad \text { magnetic force on a current carrying wire. Thumb points } \\
& \text { along direction of current and use right-hand rule } \\
& B=\frac{\mu_{0}}{2 \pi} \frac{I}{r} \quad \text { magnetic field from a current carrying wire. If current } \\
& \text { points along the direction of thumb on right hand then } \\
& \text { the the field points in the direction of the "curled" fingers. } \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
& B=\mu_{0} \frac{N I}{2 R} \quad \text { field at the centre of } N \text { coils of wire. If current is counter- } \\
& \text { clockwise then } \vec{B} \text { points "out of the page". } \\
& B=\mu_{0} \frac{I N}{L} \quad \text { field inside a solenoid with } N \text { coils over a length } L \\
& \tau=N I A B \sin \theta=|\vec{m}| B \sin \theta \quad \text { the torque on a magnetic dipole moment } \vec{m} \text { in magnetic } \\
& \text { field. A coil of wire has }|\vec{m}|=\text { NIA. Angle } \theta \text { is measured } \\
& \text { between the magnetic field and a line normal to the coil/ } \\
& \text { parallel to the dipole moment. This allows you to use a } \\
& \text { compass to find the direction of the magnetic field. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { emf }=v L B \quad \text { motional emf for a conductor moving transversely through } \\
& \vec{B} \\
& \operatorname{emf}=-\frac{\Delta \Phi_{B}}{\Delta t} \quad \text { Faraday's law of induction, the negative sign is for Lenz' } \\
& \text { Law which states the response will oppose the change that } \\
& \text { causes it }
\end{aligned}
$$

