$$e = \frac{\text{what you get out}}{\text{what you pay for}} = \frac{W_{\text{out}}}{Q_{H}} = 1 - \frac{Q_{C}}{Q_{H}}$$
 definition of efficiency and formula for a heat engine

$$e_{\text{max}} = 1 - \frac{T_{C}}{T_{H}}$$
 the maximum or Carnot efficiency of a heat engine

$$\Delta S = \pm \frac{Q}{T}$$
 entropy change associated with heat

$$k_{B} = 1.38 \times 10^{-23} \text{ J/K} = \frac{R}{N_{A}}$$
 Boltzmann's constant and its relationship to the gas con-
stant $R = 8.31 \text{ J/K}$ and Avogadro's Number $N_{A} = 6.02 \times 10^{23}$

$$pV = Nk_{B}T = nRT$$
 ideal gas law, N is the number of molecules, n is the num-
ber of moles, T is in Kelvin

$$E_{th} = \frac{3}{2}Nk_{B}T$$
 for a monatomic gas, also works with ΔE_{th} and ΔT

$$\Delta E_{th} = W_{in} + Q_{in}$$
 1st Law of Thermodynamics, you need to modify the signs
if you are talking about W_{out} or Q that is "leaving" the
system

$$\Delta S_{\text{system}} \ge 0$$

$$2nd Law of Thermodynamics for an isolated system, could
also say state of disorder increases with time
$$v_{rms} = \sqrt{\frac{3k_{B}T}{m}}$$
 the average velocity of an atom in a gas at temperature
 T . Can find m from molecular weight (in kg) divided by
 $N_{A} = 6.02 \times 10^{23}$.$$

for a monatomic gas the thermal energy represents that the total kinetic energy of the molecules which is proportional to v_{rms}^2 and T

definition of pressure, units are Pascals (Pa) when F is in Newtons and A is in m²

an *expanding* gas does work on its environment. If the pressure is constant then you may use the simple ΔV expression, otherwise it is the area

an adiabatic process Q = 0 and $\Delta S = 0$

once you have identified the process you can use this formula as a second step, a form of the ideal gas law if N is constant

definition of density, use m in kg and V in m^3 . $1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 = 10^6 \text{ mL}$

 $v_1 A_1 = v_2 A_2$ equation of continuity for an incompressible fluid

atmospheric pressure

 $p_{\rm atmos} = 101.3$ kPa=1 atm

 $\rho = \frac{m}{V}$

 $E_{th} = NK_{avg} = N(\frac{1}{2}mv_{rms}^2) = \frac{3}{2}Nk_BT$

 $p = \frac{F}{A}$

 $W_{\text{gas, out}} = p\Delta V =$ "area under pV curve"

 $p_i V_i^{\frac{5}{3}} = p_f V_f^{\frac{5}{3}}$

 $\frac{p_i V_i}{T_i} = \frac{p_f V_f}{T_f}$

$$\begin{split} F_{\mathcal{B}} &= \rho_l V_l g & \text{buyant force directed upward. } V_l \text{ is the volume of fluid displaced and it equal to the volume of the object if the object is submerged. Object will also experience the force of gravity weight $w = ng$ directed downward. $Q = vA = \frac{\Delta V}{\Delta M}$ volume flow rate in m³/s $p_2 + \frac{1}{2}\rho u_2^2 + \rho gy_2 = p_1 + \frac{1}{2}\rho u_1^2 + \rho gy_1$ Bernoulli's equation. Often used to find a pressure difference $p_2 - p_1$. If the fluid is low density (like air) and $p_2 - p_1$. If the fluid is low density (like air) and $p_2 - p_1$. If the fluid is low density (like air) and $p_2 - p_1$. If the fluid is low density (like air) and $p_2 - p_1$. If the fluid is low density (like air) and $p_2 - p_1$. If the fluid is low density (like air) and $p_2 - p_2$. The fluid is low density (like air) and $p_2 - p_2$ and $p_2 - q_2 - q_2$. The fluid is low density (like air) and $p_2 - q_2$ and $p_2 - q_2$. The fluid is are densitive $q_1 - A\omega \cos(\omega t) = A\cos(2\pi f_2)$ the motion of an object in simple harmonic motion. For vertical mass spring system substitute $q_1(l)$, for a pendulum either $P(l) \circ s(t)$ (the are length), $p_{2} - q_2 - M$. If the fluid of T as necessary. $s_1 - A\omega \sin(\omega t)$ velocity as a function of time (it comes from the slope), $v_{max} = A\omega$. Substitute in frequency f and period T as necessary. $a_x(t) = -A\omega \sin(\omega t)$ velocity as a function of time. Substitute in frequency f and period T as necessary. $\omega = \sqrt{\frac{K}{m}} = \sqrt{\frac{T}{2}}$ radial frequency for mass-spring and pendulum systems (just a modification of the previous formula) $T = 2\pi\sqrt{\frac{M}{m}} = 2\pi\sqrt{\frac{T}{2}}$ radial frequency for mass-spring and pendulum systems (just a modification of the previous formula) $T = 2\pi\sqrt{\frac{M}{m}} = 2\pi\sqrt{\frac{T}{2}}$ max energies $y(x, t) = A\cos\left(2\pi\left(\frac{\pi}{2} - \frac{\pi}{2}\right)\right)$ sinusoidal wave moving to the right (change to positive sign for wave to the left) $v = f\lambda = \frac{\Lambda}{2} = \frac{\sqrt{2\pi}}{2M}$ max energies y_{1} and period T as necessary. Law V_{1} and period T as necessary V_{1} and period T is is mos$$

$$a_x(t) = -A\omega^2 \cos(\omega t) = -\omega^2 x(t) = -\frac{kx}{m}$$

$$E = K + U = \frac{1}{2}mv(t)^2 + \frac{1}{2}kx(t)^2$$

$$K_{\max} = U_{\max} = \frac{1}{2}m(v_{\max})^2 = \frac{1}{2}kA^2$$
$$y(x,t) = A\cos\left(2\pi\left(\frac{x}{\lambda} - \frac{t}{T}\right)\right)$$

ve

nd nd

li-

nt,

$$\begin{split} m^{\frac{\lambda_{1}}{2}} &= L \quad m = 1, 2, 3, \dots \\ m^{\frac{\lambda_{1}}{2}} &= L \quad m = 1, 3, 5, \dots \\ m^{\frac{\lambda_{1}}{2}} &= L \quad m = 1, 3, 5, \dots \\ m^{\frac{\lambda_{1}}{2}} &= L \quad m = 1, 3, 5, \dots \\ m^{\frac{\lambda_{1}}{2}} &= L \quad m = 1, 3, 5, \dots \\ m^{\frac{\lambda_{1}}{2}} &= L \quad m = 1, 3, 5, \dots \\ f_{m} &= \frac{v}{\lambda_{m}} \\ f_{m} &= \frac{v}{\lambda_{m}} \\ f_{m} &= \frac{v}{\lambda_{m}} \\ f_{peat} &= |f_{1} - f_{2}| \\ p_{eat} &= |f_{1} - f_{2}| \\ p_{eat} &= |f_{1} - f_{2}| \\ p_{eat} &= |f_{1} - f_{2}| \\ m^{\frac{\lambda_{1}}{2}} &= \frac{k (y_{1})|g_{2}|}{\tau_{1}} \\ m^{\frac{\lambda_{1}}{2}} &= \frac{k (y_{1})|g_{2}|}{\tau_{1}} \\ p_{eat} &= |f_{1} - f_{2}| \\ m^{\frac{\lambda_{1}}{2}} &= \frac{k (y_{1})|g_{2}|}{\tau_{1}} \\ p_{eat} &= |f_{1} - f_{2}| \\ p_{eat} &= |f_{1} - f_{2}| \\ m^{\frac{\lambda_{1}}{2}} &= \frac{k (y_{1})|g_{2}|}{\tau_{1}} \\ m^{\frac{\lambda_{1}}{2}} &= \frac{k (y_{1})|g_{2}|}{\tau_{1}} \\ p_{eat} &= |f_{1} - f_{2}| \\ m^{\frac{\lambda_{1}}{2}} &= \frac{k (y_{1})|g_{2}|}{\tau_{1}} \\ p_{eat} &= |f_{1} - f_{2}| \\ m^{\frac{\lambda_{1}}{2}} &= \frac{k (y_{1})|g_{2}|}{\tau_{1}} \\ p_{eat} &= |f_{1} - f_{2}| \\ m^{\frac{\lambda_{1}}{2}} &= \frac{k (y_{1})|g_{2}|}{\tau_{1}} \\ p_{eat} &= hore \\ p_{eat} &= hor$$

$C = \frac{\epsilon_0 A}{d}$	capacitance for a parallel plate capacitor
$U_C = \frac{1}{2}C(\Delta V_C)^2$	electrical energy stored in a capacitor
$I = \frac{\Delta q}{\Delta t}$	definition of current. Signs of charge with direction of motion are included in Δq so positive charges going to the right and negative charges going to the left would both contribute to current going to the right.
$\Delta V = IR$	Ohm's law for a resistor, remember an ideal wire has $R = 0$ so $\Delta V = 0$ no matter the current
$\Delta V_{\text{battery}} = \mathcal{E}$	a battery provides a constant electric potential difference through its emf. It does not provide constant current.
$I_{\text{battery}} = \frac{\Delta V_{\text{battery}}}{\frac{R_{\text{equiv}}}{R_{\text{equiv}}}}$	Current through a battery is determined by the external elements (light bulbs, resistors, and how they are connected).
$\frac{1}{R_{\text{equiv}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$	resistances in parallel add in this "reciprocal manner". Note: R_{equiv} will end up being smaller than any of the individual resistances. The R values may already be combinations of other resistors. If in parallel the same potential difference must be across all the resistances (or equivalents).
$R_{\text{equiv}} = R_1 + R_2 + \dots$	resistances in series add. The R values here may already be combinations of other resistors. If in series the same current must go through all the resistances (or equivalents).
$\sum I_i = 0$	Kirchhoff's junction/current law. At any junction if you give currents "in" a positive sign and currents "out" a negative sign then the sum of the currents is equal to zero.
$\sum \Delta V_i = 0$	Kirchhoff's loop/voltage law. For any loop if you look at the sum potential differences around the loop they must be zero.
$P = I\Delta V$	the power dissipated/gained in an electric circuit element
$F_{\rm mag} = q v B \sin \alpha$	magnetic force of charged particle, direction of force is given by right-hand rule: \vec{B} along index finger, \vec{v} along thumb, and force on a <i>positive</i> charge is along middle finger when held perpendicular to palm. α is the angle between \vec{B} and \vec{v}
$B = \frac{\mu_0}{2\pi} \frac{I}{r}$	magnetic field from a current carrying wire. If current points along the direction of thumb on right hand then the the field points in the direction of the "curled" fingers. $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$
$B = \mu_0 \frac{NI}{2R}$	field at the centre of N coils of wire. If current is counterclockwise then \vec{B} points "out of the page" inside the loop and into the page outside of the loop.
$\tau = NIAB\sin\theta = \vec{m} B\sin\theta$	the torque on a magnetic dipole moment \vec{m} in magnetic field. A coil of wire has $ \vec{m} = NIA$. Angle θ is measured between the magnetic field and a line normal to the coil/ parallel to the dipole moment. This allows you to use a compass to find the direction of the magnetic field.