$$
\begin{aligned}
& e=\frac{\text { what you get out }}{\text { what you pay for }}=\frac{W_{\text {Out }}}{Q_{H}}=1-\frac{Q_{C}}{Q_{H}} \quad \text { definition of efficiency and formula for a heat engine } \\
& e_{\text {max }}=1-\frac{T_{C}}{T_{H}} \\
& \Delta S= \pm \frac{Q}{T} \\
& k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}=\frac{R}{N_{A}} \\
& p V=N k_{B} T=n R T \\
& E_{\text {th }}=\frac{3}{2} N k_{B} T \\
& \Delta E_{t h}=W_{i n}+Q_{i n} \\
& \Delta S_{\text {system }} \geq 0 \\
& v_{r m s}=\sqrt{\frac{3 k_{B} T}{m}} \\
& E_{t h}=N K_{\text {avg }}=N\left(\frac{1}{2} m v_{r m s}^{2}\right)=\frac{3}{2} N k_{B} T \\
& p=\frac{F}{A} \\
& W_{\text {gas }} \text { out }=p \Delta V=\text { "area under } p V \text { curve" } \\
& p_{i} V_{i}^{\frac{5}{3}}=p_{f} V_{f}^{\frac{5}{3}} \\
& \frac{p_{i} V_{i}}{T_{i}}=\frac{p_{f} V_{f}}{T_{f}} \\
& \rho=\frac{m}{V} \\
& p_{\text {atmos }}=101.3 \mathrm{kPa}=1 \mathrm{~atm} \\
& v_{1} A_{1}=v_{2} A_{2} \\
& \text { ideal gas law, } N \text { is the number of molecules, } n \text { is the num- } \\
& \text { ber of moles, } T \text { is in Kelvin } \\
& \text { for a monatomic gas, also works with } \Delta E_{t h} \text { and } \Delta T \\
& \text { 1st Law of Thermodynamics, you need to modify the signs } \\
& \text { if you are talking about } W_{\text {out }} \text { or } Q \text { that is "leaving" the } \\
& \text { system } \\
& \text { 2nd Law of Thermodynamics for an isolated system, could } \\
& \text { also say state of disorder increases with time } \\
& \text { the average velocity of an atom in a gas at temperature } \\
& T \text {. Can find } m \text { from molecular weight (in } \mathrm{kg} \text {) divided by } \\
& N_{A}=6.02 \times 10^{23} \text {. } \\
& \text { for a monatomic gas the thermal energy represents that the } \\
& \text { total kinetic energy of the molecules which is proportional } \\
& \text { to } v_{r m s}^{2} \text { and } T \\
& \text { definition of pressure, units are Pascals }(\mathrm{Pa}) \text { when } F \text { is in } \\
& \text { Newtons and } A \text { is in } \mathrm{m}^{2} \\
& \text { an expanding gas does work on its environment. If the } \\
& \text { pressure is constant then you may use the simple } \Delta V \text { ex- } \\
& \text { pression, otherwise it is the area } \\
& \text { an adiabatic process } Q=0 \text { and } \Delta S=0 \\
& \text { once you have identified the process you can use this for- } \\
& \text { mula as a second step, a form of the ideal gas law if } N \text { is } \\
& \text { constant } \\
& \text { definition of density, use } m \text { in } \mathrm{kg} \text { and } V \text { in } \mathrm{m}^{3} \text {. } \\
& 1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL} \\
& \text { atmospheric pressure } \\
& \text { equation of continuity for an incompressible fluid }
\end{aligned}
$$

$F_{B}=\rho_{f} V_{f} g$	buoyant force directed upward. V_{f} is the volume of fluid displaced and it equal to the volume of the object if the object is submerged. Object will also experience the force of gravity weight $w=m g$ directed downward.
$Q=v A=\frac{\Delta V}{\Delta t}$	volume flow rate in $\mathrm{m}^{3} / \mathrm{s}$
$p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}=p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}$	Bernoulli's equation. Often used to find a pressure difference $p_{2}-p_{1}$. If the fluid is low density (like air) and the change in y is small you can drop the $\rho g y$ terms. You can also use it for hydrostatics just set $v=0$ on both sides.
$\omega=2 \pi f=\frac{2 \pi}{T}$	relationship between radial frequency ω, frequency f and period T
$x(t)=A \cos (\omega t)=A \cos (2 \pi t)=A \cos \left(2 \pi \frac{t}{T}\right)$	the motion of an object in simple harmonic motion. For vertical mass spring system substitute $y(t)$. For a pendulum either $\theta(t)$ or $s(t)$ (the arc length). $x_{\text {max }}=A$. If you need to calculate an actual x at some time make sure you take the cosine in radians.
$v_{x}(t)=-A \omega \sin (\omega t)$	velocity as a function of time (it comes from the slope). $v_{\max }=A \omega$. Substitute in frequency f and period T as necessary.
$a_{x}(t)=-A \omega^{2} \cos (\omega t)=-\omega^{2} x(t)=-\frac{k x}{m}$	acceleration as a function of time. Substitute in frequency f and period T as necessary. I have inserted N2L for a mass-spring system, which gives...
$\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{g}{L}}$	radial frequency for mass-spring and pendulum systems
$T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{L}{g}}$	period for mass-spring and pendulum systems (just a modification of the previous formula)
$E=K+U=\frac{1}{2} m v(t)^{2}+\frac{1}{2} k x(t)^{2}$	energy relationships in a simple harmonic oscillator, v isn't constant, x isn't constant, E is constant. Look at the next formula.
$K_{\text {max }}=U_{\text {max }}=\frac{1}{2} m\left(v_{\text {max }}\right)^{2}=\frac{1}{2} k A^{2}$	max energies
$y(x, t)=A \cos \left(2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)\right)$	sinusoidal wave moving to the right (change to positive sign for wave to the left)
$v=f \lambda=\frac{\lambda}{T}=\frac{" \Delta x "}{" \Delta t "}$	basic relationship between speed, frequency, period, and wavelength. Use the "quotes" form to relate history and snapshot graphs.
$v_{\text {sound }}=\sqrt{\frac{\gamma k_{B} T}{m}}=\sqrt{\frac{\gamma R T}{M}}$	speed of sound $\gamma=3 / 2$ for monatomic gases, $5 / 2$ for diatomic, m is mass of the molecule
$v_{\text {string }}=\sqrt{\frac{T_{s}}{\mu}}$	waves on a string, T_{s} is tension, μ is linear density
$v_{\text {light }}=c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	speed of electromagnetic waves in vacuum (including light, radio waves)

$$
\begin{aligned}
& m \frac{\lambda_{m}}{2}=L \quad m=1,2,3, \ldots \quad \text { waves on string, closed-closed or open-open pipe (draw a } \\
& \text { picture!), } m \text { is the mode number } \\
& m \frac{\lambda_{m}}{4}=L \quad m=1,3,5, \ldots \quad \text { waves in open-closed pipe (draw a picture!) } m \text { isn't mode } \\
& \text { number; it is the number of quarter-wavelengths in the } \\
& \text { standing wave. Set } m=1 \text { for the fundamental, } m=3 \text { for } \\
& \text { 2nd harmonic etc. } \\
& \text { changing resonant wavelengths to frequency, this formula } \\
& \text { works for either open-open or open-closed with the } m \text { in } \\
& \text { the previous formulas } \\
& f_{\text {beat }}=\left|f_{1}-f_{2}\right| \quad \text { beats arise from a superposition of waves with nearly the } \\
& \text { same frequency }
\end{aligned}
$$

$\begin{gathered} C=\frac{\epsilon_{0} A}{d} \\ U_{C}=\frac{1}{2} C\left(\Delta V_{C}\right)^{2} \end{gathered}$	capacitance for a parallel plate capacitor electrical energy stored in a capacitor
$I=\frac{\Delta q}{\Delta t}$	definition of current. Signs of charge with direction of motion are included in Δq so positive charges going to the right and negative charges going to the left would both contribute to current going to the right.
$\Delta V=I R$	Ohm's law for a resistor, remember an ideal wire has $R=0$ so $\Delta V=0$ no matter the current
$\Delta V_{\text {battery }}=\mathcal{E}$	a battery provides a constant electric potential difference through its emf. It does not provide constant current.
$I_{\text {battery }}=\frac{\Delta V_{\text {battery }}}{R_{\text {equiv }}}$	Current through a battery is determined by the external elements (light bulbs, resistors, and how they are connected).
$\frac{1}{R_{\text {equiv }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$	resistances in parallel add in this "reciprocal manner". Note: $R_{\text {equiv }}$ will end up being smaller than any of the individual resistances. The R values may already be combinations of other resistors. If in parallel the same potential difference must be across all the resistances (or equivalents).
$R_{\text {equiv }}=R_{1}+R_{2}+$	resistances in series add. The R values here may already be combinations of other resistors. If in series the same current must go through all the resistances (or equivalents).
$\sum I_{i}=0$	Kirchhoff's junction/current law. At any junction if you give currents "in" a positive sign and currents "out" a negative sign then the sum of the currents is equal to zero.
$\sum \Delta V_{i}=0$	Kirchhoff's loop/voltage law. For any loop if you look at the sum potential differences around the loop they must be zero.
$P=I \Delta V$	the power dissipated/gained in an electric circuit element
$F_{\text {mag }}=\|q\| v B \sin \alpha$	magnetic force of charged particle, direction of force is given by right-hand rule: \vec{B} along index finger, \vec{v} along thumb, and force on a positive charge is along middle finger when held perpendicular to palm. α is the angle between \vec{B} and \vec{v}
$B=\frac{\mu_{0}}{2 \pi} \frac{I}{r}$	magnetic field from a current carrying wire. If current points along the direction of thumb on right hand then the the field points in the direction of the "curled" fingers. $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$
$B=\mu_{0} \frac{N I}{2 R}$	field at the centre of N coils of wire. If current is counterclockwise then \vec{B} points "out of the page" inside the loop and into the page outside of the loop.
$\tau=N I A B \sin \theta=\|\vec{m}\| B \sin \theta$	the torque on a magnetic dipole moment \vec{m} in magnetic field. A coil of wire has $\|\vec{m}\|=N I A$. Angle θ is measured between the magnetic field and a line normal to the coil/ parallel to the dipole moment. This allows you to use a compass to find the direction of the magnetic field.

