$$
\begin{aligned}
& e=\frac{\text { what you get out }}{\text { what you pay for }}=\frac{W_{\text {Out }}}{Q_{H}}=1-\frac{Q_{C}}{Q_{H}} \quad \text { definition of efficiency and formula for a heat engine } \\
& e_{\max }=1-\frac{T_{C}}{T_{H}} \\
& \Delta S= \pm \frac{Q}{T} \\
& k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}=\frac{R}{N_{A}} \\
& p V=N k_{B} T=n R T \\
& E_{t h}=\frac{3}{2} N k_{B} T \\
& \Delta E_{t h}=W_{i n}+Q_{i n} \\
& \Delta S_{\text {system }} \geq 0 \\
& v_{r m s}=\sqrt{\frac{3 k_{B} T}{m}} \\
& E_{t h}=N K_{a v g}=N\left(\frac{1}{2} m v_{r m s}^{2}\right)=\frac{3}{2} N k_{B} T \\
& p=\frac{F}{A} \\
& W_{\text {gas, out }}=p \Delta V=" \text { area under } p V \text { curve" } \\
& \text { an expanding gas does work on its environment. If the } \\
& \text { pressure is constant then you may use the simple } \Delta V \text { ex- } \\
& \text { pression, otherwise it is the area } \\
& \text { an isobaric or constant pressure process } \\
& \text { a constant volume process } W_{\text {out }}=0 \\
& \text { an isothermal process } \Delta E_{t h}=0 \\
& \text { an adiabatic process } Q=0 \text { and } \Delta S=0 \\
& \text { once you have identified the process you can use this for- } \\
& \text { mula, a form of the ideal gas law if } N \text { is constant } \\
& \text { definition of density, use } m \text { in } \mathrm{kg} \text { and } V \text { in } \mathrm{m}^{3} \text {. } \\
& 1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL} \\
& \text { pressure in a fluid of density } \rho_{f} \text { as a function of depth. } p_{0} \\
& \text { is a "reference pressure" where } d=0 \text {. This equation also } \\
& \text { supports Pascal's principle: if the pressure changes at one } \\
& \text { point in the fluid it changes by the same amount at every } \\
& \text { other point. } \\
& p_{\text {atmos }}=101.3 \mathrm{kPa}=1 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
& F_{B}=\rho_{f} V_{f} g \quad \text { buoyant force directed upward. } V_{f} \text { is the volume of fluid } \\
& \text { displaced and it equal to the volume of the object if the } \\
& \text { object is submerged. Object will also experience the force } \\
& \text { of gravity weight } w=m g \text { directed downward. } \\
& \rho_{\text {avg }}=\rho_{f} \quad \text { neutral buoyancy } F_{B}=w \\
& v_{1} A_{1}=v_{2} A_{2} \quad \text { equation of continuity for an incompressible fluid } \\
& Q=v A=\frac{\Delta V}{\Delta t} \quad \text { volume flow rate in } \mathrm{m}^{3} / \mathrm{s} \\
& p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}=p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1} \\
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& x(t)=A \cos (\omega t)=A \cos (2 \pi t)=A \cos \left(2 \pi \frac{t}{T}\right) \\
& v_{x}(t)=-A \omega \sin (\omega t) \\
& a_{x}(t)=-A \omega^{2} \cos (\omega t)=-\omega^{2} x(t) \\
& \omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{g}{L}} \\
& T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{L}{g}} \\
& E=K+U=\frac{1}{2} m v(t)^{2}+\frac{1}{2} k x(t)^{2} \\
& K_{\max }=U_{\max }=\frac{1}{2} m\left(v_{\max }\right)^{2}=\frac{1}{2} k A^{2} \\
& x_{\max }(\text { at } t=\tau)=A e^{-1} \approx 0.37 A \\
& y(x, t)=A \cos \left(2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)\right) \\
& v=f \lambda=\frac{\lambda}{T}=\frac{" \Delta x "}{" \Delta t "} \\
& v_{\text {sound }}=\sqrt{\frac{\gamma k_{B} T}{m}}=\sqrt{\frac{\gamma R T}{M}} \\
& v_{\text {string }}=\sqrt{\frac{T_{s}}{\mu}} \\
& v_{\text {light }}=c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { Bernoulli's equation. Often used to find a pressure differ- } \\
& \text { ence } p_{2}-p_{1} \text {. If the fluid is low density (like air) and the } \\
& \text { change in } y \text { is small you can drop the } \rho g y \text { terms. } \\
& \text { relationship between radial frequency } \omega \text {, frequency } f \text { and } \\
& \text { period } T \\
& \text { the motion of an object in simple harmonic motion. For } \\
& \text { vertical mass spring system substitute } y(t) \text { for a pendulum } \\
& \text { either } \theta(t) \text { or } s(t) \text { (the arc length). } x_{\max }=A \text {. If you need } \\
& \text { to calculate an actual } x \text { at some time make sure you take } \\
& \text { the cosine in radians. } \\
& \text { velocity as a function of time. } v_{\max }=A \omega \text {. Substitute in } \\
& \text { frequency } f \text { and period } T \text { as necessary. } \\
& \text { acceleration as a function of time. Substitute in frequency } \\
& f \text { and period } T \text { as necessary. } \\
& \text { radial frequency for mass-spring and pendulum systems } \\
& \text { period for mass-spring and pendulum systems } \\
& \text { energy relationships in a simple harmonic oscillator } \\
& \text { max energies } \\
& \text { how to find the time constant } \tau \text { that describes the decay } \\
& \text { of oscillations in a damped system } \\
& \text { sinusoidal wave moving to the right (change to positive } \\
& \text { sign for wave to the left) } \\
& \text { basic relationship between speed, frequency, period, and } \\
& \text { wavelength. Use the "quotes" form to relate history and } \\
& \text { snapshot graphs. } \\
& \text { speed of sound } \gamma=3 / 2 \text { for monatomic gases, } 5 / 2 \text { for di- } \\
& \text { atomic } \\
& \text { waves on a string, } T_{s} \text { is tension, } \mu \text { is linear density } \\
& \text { speed of electromagnetic waves in vacuum (including light, } \\
& \text { radio waves) }
\end{aligned}
$$

