$$
\begin{aligned}
& \Delta x=x_{f}-x_{i} \quad \text { for any scalar/vector in } \\
& \text { place of } x \\
& \vec{d}_{\text {net }}=\overrightarrow{d_{1}}+\overrightarrow{d_{2}} \quad \text { Knight's version for vector } \\
& \text { displacement } \\
& \Delta \vec{x}=\vec{x}_{f}-\vec{x}_{i} \quad \text { Carl's version for vector } \\
& \text { displacement } \\
& v_{x}=\frac{\Delta x}{\Delta t} \quad \text { definition of 1-D (instan- } \\
& \text { taneous) velocity, take a } \\
& \text { slope of } x(t) \\
& a_{x}=\frac{\Delta v_{x}}{\Delta t} \quad \text { definition of acceleration, } \\
& \text { take a slope of } v_{x}(t) \\
& \Delta x=v_{x} \Delta t \leftrightarrow A=h w \quad \text { displacement as area under } \\
& v_{x}(t) \text { curve } \\
& \Delta v=a_{x} \Delta t \leftrightarrow A=h w \quad \text { change in } v_{x} \text { as area under } \\
& a_{x}(t) \text { curve } \\
& \Delta x=\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} \Delta v_{x} \Delta t \quad \text { displacement as area under } \\
& \text { a linear } v_{x}(t) \text { curve } \\
& x_{f}=x_{i}+v_{x} \Delta t \\
& y=m x+b \\
& x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \\
& \left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t \quad \text { kinematic formula for ve- } \\
& \text { locity with constant accel- } \\
& \text { eration } \\
& \text { the "no-time" formula for } \\
& \text { constant acceleration } \\
& \text { free-fall acceleration due to } \\
& \text { gravity } \\
& \sin \theta=\frac{\text { opps }}{\text { hyp }}, \cos \theta=\frac{\text { adj }}{\text { hyp }} \\
& \tan \theta=\frac{\mathrm{opps}}{\mathrm{adj}} \\
& (\text { hyp })^{2}=(\mathrm{adj})^{2}+(\mathrm{opps})^{2} \quad \text { Pythagoras' theorem (right } \\
& \text { angle triangles) } \\
& c^{2}=a^{2}+b^{2}-2 a b \cos (\angle C) \quad \text { law of cosines for side } c \text { op- } \\
& \text { posite } \angle C \\
& \vec{v}=\frac{\vec{d}}{\Delta t}=\frac{\Delta \vec{x}}{\Delta t} \\
& \vec{a}=\frac{\Delta \vec{v}}{\Delta t} \\
& \text { kinematic formula for con- } \\
& \text { stant velocity } \\
& \text { high school formula for a } \\
& \text { straight line } \\
& \text { kinematic formula for dis- } \\
& \text { placement with constant } \\
& \text { acceleration } \\
& \text { high school trig formulas } \\
& \text { definition of velocity in } 2 \text { or } \\
& \text { more dimensions in terms } \\
& \text { of displacement vector } \vec{d} \text { or } \\
& \Delta \vec{x} \\
& \text { definition of acceleration in } \\
& 2 \text { or more dimensions }
\end{aligned}
$$

$$
\begin{aligned}
& \overbrace{\vec{A}}^{\vec{B}} \\
& \vec{C}=\vec{A}+\vec{B} \\
& \vec{A}=\vec{A}_{x}+\vec{A}_{y} \\
& \vec{C}=\vec{A}-\vec{B} \\
& \text { decomposing a vector into } \\
& \text { components } \\
& |\vec{A}| \equiv \text { mag. or length of } \vec{A} \quad \text { quantity is always positive, } \\
& \text { sometimes just called } A \\
& \vec{A}=\vec{A}_{x R}+\vec{A}_{y R} \quad \text { decomposing a vector into } \\
& \text { ramp components } \\
& \text { acceleration of free object } \\
& \text { on a ramp } \\
& \Delta y_{R}=v_{y R}=a_{y R}=0 \quad \text { no motion in } y_{R} \text { direction } \\
& \vec{v}_{A C}=\vec{v}_{A B}+\vec{v}_{B C} \\
& \begin{aligned}
\left(v_{x}\right)_{i} & =\left|\vec{v}_{i}\right| \cos \theta \\
\left(v_{y}\right)_{i} & =\left|\vec{v}_{i}\right| \sin \theta
\end{aligned} \\
& x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t \\
& \left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \\
& y_{f}=y_{i}+\left(v_{y}\right)_{i} \Delta t-\frac{1}{2} g(\Delta t)^{2} \\
& \left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g \Delta t \\
& f=\frac{1}{T} \\
& v=\frac{2 \pi r}{T}=2 \pi r f \\
& \vec{a}=\left(\frac{v^{2}}{r}, \text { toward centre }\right) \\
& \vec{F}_{\text {net }}=\overrightarrow{0} \Rightarrow \vec{v} \text { is constant } \\
& \vec{v} \text { is constant } \Rightarrow \vec{F}_{\text {net }}=\overrightarrow{0} \\
& \vec{a}=\frac{\vec{F}_{\text {net }}}{m} \text { or } \vec{F}_{\text {net }}=m \vec{a} \\
& \vec{F}(\mathrm{~B} \text { on } \mathrm{A})=-\vec{F}(\mathrm{~A} \text { on } \mathrm{B}) \\
& \vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}+\ldots=\Sigma \vec{F}_{i} \\
& \text { subscript rule for relative } \\
& \text { velocities (Galilean trans- } \\
& \text { formation) } \\
& \text { initial velocity components } \\
& \text { for a launched projectile } \\
& \text { projectile, uniform } x \text { - } \\
& \text { motion } \\
& \text { projectile, constant } v_{x} \text {, } \\
& a_{x}=0 \\
& \text { projectile, } y \text {-displacement, } \\
& a_{y}=-g \\
& \text { projectile, decreasing } v_{y} \\
& \text { relationship between fre- } \\
& \text { quency and period } \\
& \text { orbital speed (velocity } \\
& \text { changes) } \\
& \text { centripetal acceleration } \\
& \text { Newton's } 1^{\text {st }} \text { law, constant } \\
& \text { may or may not be } 0 \\
& \text { Newton's } 1^{\text {st }} \text { law stated in } \\
& \text { converse form } \\
& \text { Newton's } 2^{\text {nd }} \text { law, defini- } \\
& \text { tion of mass } \\
& \text { Newton's } 3^{\text {rd }} \text { law } \\
& \text { forces sum to produce net } \\
& \text { force }
\end{aligned}
$$

$w_{\text {apparent }}=m\left(g+a_{y}\right)$	apparent weight
$n=w_{y R}=m g \cos \theta$	magnitude of normal force for a ramp
$f_{s, \text { max }}=\mu_{s} n$	magnitude of maximum static friction
$f_{k}=\mu_{k} n$	magnitude of kinetic friction $\overrightarrow{f_{k}}$ is opposite to direction of \vec{v}
$f_{r}=\mu_{r} n$	rolling friction
$D=\frac{1}{2} C_{D} \rho A v^{2}$	empircal law for drag force in air
$F=T$	tension in a massless string or rope provides a force
$\left\|\vec{T}_{1}\right\|=\left\|\vec{T}_{2}\right\|$	magnitude of tension constant for massless pulley
$F_{\text {centripetal }}=\frac{m v^{2}}{r}$	a net force directed toward the centre
$F_{\text {grav }}=\frac{G m_{1} m_{2}}{r^{2}}$	Newton's inverse square law for gravitation; $G=$ $6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
$\left(F_{\text {sp }}\right)_{x}=-k \Delta x$	Hooke's Law for a spring
$s=r \theta$	arc length s, only true if θ is in radians
2π radians $=360^{\circ}=1 \mathrm{rev}$	relations between angular units
$\omega=\frac{\Delta \theta}{\Delta t}$	positive if motion is CCW
$v=\omega r$	this is tangential or orbital motion, \vec{v} changes
$a_{\text {centri }}=\frac{v^{2}}{r}=\omega^{2} r$	$\vec{a}_{\text {centri }}$ is always directed towards the centre of the circle
$v_{\text {orbit }}=\sqrt{g r}$	a freefalling object in circular orbit; g is not 9.80 if not at earth's surface
$g=\frac{G M}{r^{2}}$	a generalized gravitational acceleration near a "planet" with mass M
$T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3}=k r^{3}$	Kepler's 3rd law. Use k form when comparing orbiting objects.
$\alpha=\frac{\Delta \omega}{\Delta t}$	angular acceleration

$$
\begin{array}{cl}
\vec{P}_{i}=\vec{P}_{f} & \begin{array}{l}
\text { conservation of momentum for no external } \\
\text { forces }
\end{array} \\
L=I \omega & \begin{array}{l}
\text { angular momentum } \\
L_{\mathrm{system}}=\sum I_{i} \omega_{i} \\
\left(L_{\mathrm{system}}\right)_{i}=\left(L_{\mathrm{system}}\right)_{f}
\end{array} \\
\begin{array}{l}
\text { system angular momentum } \\
\text { conservation of angular momentum for no ex- } \\
\text { ternal torques }
\end{array} \\
\Delta L=\left(\tau_{\mathrm{net}}\right)_{\mathrm{avg}} \Delta t & \begin{array}{l}
\text { angular impulse-momentum theorem }
\end{array} \\
\Delta E=\Delta K+\Delta U_{\mathrm{g}}+\Delta U_{\mathrm{s}}+\Delta E_{\mathrm{th}}+\Delta E_{\mathrm{chem}}+\ldots & \begin{array}{l}
\text { total energy change of a system }
\end{array} \\
W=\Delta E & \begin{array}{l}
\text { work-energy theorem; work done "on" the } \\
\text { system represents only energy input }
\end{array} \\
W=F_{\mathrm{env}} d \cos \theta & \begin{array}{l}
\text { work done on the system by the environment, } \\
\text { not } F_{\text {net }}
\end{array} \\
K=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} & \begin{array}{l}
\text { kinetic energy from translation and rotation }
\end{array} \\
U_{\mathrm{g}}=m g y & \begin{array}{l}
\text { gravitational potential energy for constant } g, \\
\text { you have choosen a potential =0 point }
\end{array} \\
U_{\mathrm{s}}=\frac{1}{2} k x^{2} & x \text { is the extension of the spring } \\
\Delta E_{\mathrm{th}}=f_{k}|\Delta x| & \begin{array}{l}
\text { thermal energy for a dragged object }
\end{array}
\end{array}
$$

