$$\begin{split} \Delta x = x_f - x_i & \text{for any scalar/vector in place of x} \\ \vec{d}_{w,i} = \vec{d}_i + \vec{d}_2 & \text{Kinght's version for vector displacement} \\ \Delta \vec{x} = \vec{x}_f - \vec{x}_i & \text{Carl's version for vector displacement} \\ x_s = \frac{\Delta x}{\Delta t} & \text{definition of I-D (instantines) velocity, take a slope of $v_i(t)$ } \\ \vec{u}_s = \frac{\Delta x}{\Delta t} & \text{definition of acceleration, take a slope of $v_i(t)$ } \\ \vec{d} = \pi_s - \frac{\Delta v_s}{\Delta t} & \text{definition of acceleration, take a slope of $v_i(t)$ } \\ \vec{d} = \pi_s - \frac{\Delta v_s}{\Delta t} & \text{definition of acceleration, take a slope of $v_i(t)$ } \\ \vec{d} = \pi_s - \frac{\Delta v_s}{\Delta t} & \text{definition of acceleration, take a slope of $v_i(t)$ } \\ \vec{d} = \pi_s - (v_i)_i \Delta t + \frac{1}{2} \Delta v_i \Delta t & \text{displacement as area under a linear $v_a(t)$ curve x_a area under $a_a (t)$ curve x_a area under $a_a (t) = w_a - \sigma_{a,R} - 0$ no motion in y_c direction $x_s = (v_c)_i \Delta t + \frac{1}{2} \Delta v_i \Delta t & \text{displacement as area under a linear $v_a(t)$ curve x_a $x_a = x_g \cos \theta$ and start velocity $x_s = x_s + v_a \Delta t & \text{dimentic formula for a start velocity (the curve area transfer the matrix formula for a start velocity $y_c = x_s + (v_s)_s \Delta t + \frac{1}{2} \sigma_s(\Delta t)^2 & \text{hinematic formula for a content acceleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s \Delta t & \text{hinematic formula for vecleration $(v_s)_f - (v_s)_s + a_s - a_s$$$$$$$$$$$$$$$$$$

(velocity

constant

$w_{\mathrm{apparent}} = m(g + a_y)$	apparent weight	$\theta_f = \theta_i + \omega_i \Delta t + \frac{1}{2} \alpha (\Delta t)^2$	an example of an "angular" kinematic equation
$n = w_{yR} = mg\cos\theta$	magnitude of normal force for a ramp	$a_{ an} = lpha r$	tangential component of acceleration
$f_{ m s,max}=\mu_s n$	magnitude of maximum static friction	$\tau = rF_{\perp} = r_{\perp}F = rF\sin\phi$	torque about a pivot
$f_k = \mu_k n$	magnitude of kinetic fric- tion \vec{f}_k is opposite to direc-	$\tau_{\rm net} = \tau_1 + \tau_2 + \ldots = \Sigma \tau_i$	summing torques
f u.m.	tion of \vec{v}	$x_{cg} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{m_1 + m_2 + m_3 + \dots}$	centre of gravity in x , similar expression for y_{cg}
$f_r = \mu_r n$ $D = \frac{1}{2} C_D \rho A v^2$	rolling friction empircal law for drag force	$I = \Sigma m_i r_i^2$	moment of intertia, de- pends on choice of centre
F = T	in air	$\alpha = \frac{\tau_{\rm net}}{I}$	Newton's 2nd law for rota-
$\Gamma = 1$	tension in a massless string or rope provides a force	$I = MR^2$	tion moment of intertia for a
$ \vec{T_1} = \vec{T_2} $	magnitude of tension con- stant for massless pulley		hoop
$F_{\text{centripetal}} = \frac{mv^2}{r}$	a net force directed toward the centre	$I = \frac{1}{2}MR^2$	moment of intertia for a disc or cylinder
$F_{\rm grav} = \frac{Gm_1m_2}{r^2}$	Newton's inverse square	$I = \frac{2}{5}MR^2$	moment of intertia for a solid sphere
	law for gravitation; $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$	$a_{ m obj} = \alpha R$	example of a constraint equation for a pulley of ra-
$(F_{\rm sp})_x = -k\Delta x$	Hooke's Law for a spring		dius R
$s = r \theta$	arc length s , only true if θ is in radians	$v = \omega R$	rolling constraint, rolling object as a whole moves at v
2π radians= $360^{\circ}=1$ rev	relations between angular units	$v_{\rm top} = 2v, \ v_{\rm bottom} = 0$	speeds at top and bottom of a rolling object
$egin{aligned} & \omega &= rac{\Delta heta}{\Delta t} \ & v &= \omega r \end{aligned}$	positive if motion is CCW this is tangential or orbital motion, \vec{v} changes	$F_{x,\text{net}} = F_{y,\text{net}} = \tau_{\text{net}} = 0$	conditions for static equi- librium of extended object, choose any pivot point
$a_{\text{centri}} = \frac{v^2}{r} = \omega^2 r$	\vec{a}_{centri} is always directed to- wards the centre of the cir- cle	$\theta_c = \tan^{-1}\left(\frac{t}{2h}\right)$	critical tipping angle if c.o.g. is height h above and centred over a base of width t
$v_{\rm orbit} = \sqrt{gr}$	a freefalling object in circu- lar orbit; g is not 9.80 if not at earth's surface	$\frac{F}{A} = Y \frac{\Delta L}{L}$	relationship between stress, strain, and Young's modulus
$g = \frac{GM}{r^2}$	a generalized gravita- tional acceleration near a "planet" with mass M	tensile strength= $\frac{F_{\text{max}}}{A}$	tensile strength is related to maximum stress before breaking
$T^2 = \left(\frac{4\pi^2}{GM}\right)r^3 = kr^3$	Kepler's 3rd law. Use k form when comparing or- biting objects.	$\vec{J} = (\vec{F}_{\rm net})_{\rm avg} \Delta t = \vec{p}_f - \vec{p}_i$	impulse defined and impulse-momentum theo- rem
$\alpha = \frac{\Delta\omega}{\Delta t}$	angular acceleration	$\vec{p} = m\vec{v}$	momentum defined
		$\vec{P} = \Sigma_i m_i \vec{v}_i$	system momentum

$\vec{P}_i = \vec{P}_f$	conservation of momentum for no external forces	
$L = I\omega$	angular momentum	
$L_{ m system} = \sum I_i \omega_i$	system angular momentum	
$(L_{\mathrm{system}})_i = (L_{\mathrm{system}})_f$	conservation of angular momentum for no ex- ternal torques	
$\Delta L = (\tau_{\rm net})_{\rm avg} \Delta t$	angular impulse-momentum theorem	
$E = K + U_{\rm g} + U_{\rm s} + E_{\rm th} + E_{\rm chem} + \dots$	total energy of a system	
$\Delta E = \Delta K + \Delta U_{\rm g} + \Delta U_{\rm s} + \Delta E_{\rm th} + \Delta E_{\rm chem} + \dots$	total energy $change$ of a system	
$W = \Delta E$	work-energy theorem; work done "on" the system represents only energy input	
$W = F_{\rm env} d\cos\theta$	work done on the system by the environment, not $F_{\rm net}$	
$K = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$	kinetic energy from translation and rotation	
$U_{ m g}=mgy$	gravitational potential energy for constant g , you have choosen a potential =0 point	
$U_{ m s} = rac{1}{2}kx^2$	x is the extension of the spring	
$\Delta E_{ m th} = f_k \Delta x $	thermal energy for a dragged object	