
∆x = xf − xi for any scalar/vector in
place of x

~dnet = ~d1 + ~d2 Knight’s version for vector
displacement

∆~x = ~xf − ~xi Carl’s version for vector
displacement

vx = ∆x
∆t

definition of 1-D (instan-
taneous) velocity, take a
slope of x(t)

ax = ∆vx
∆t

definition of acceleration,
take a slope of vx(t)

∆x = vx∆t ↔ A = hw displacement as area under
vx(t) curve

∆v = ax∆t ↔ A = hw change in vx as area under
ax(t) curve

∆x = (vx)i∆t + 1
2
∆vx∆t displacement as area under

a linear vx(t) curve

xf = xi + vx∆t kinematic formula for con-
stant velocity

y = mx + b high school formula for a
straight line

xf = xi + (vx)i∆t + 1
2
ax(∆t)2 kinematic formula for dis-

placement with constant
acceleration

(vx)f = (vx)i + ax∆t kinematic formula for ve-
locity with constant accel-
eration

(vx)2f = (vx)2i + 2ax∆x the “no-time” formula for
constant acceleration

ay = −g = −9.80 m/s2 free-fall acceleration due to
gravity

sin θ = opps
hyp

, cos θ = adj
hyp

high school trig formulas

tan θ = opps
adj

(hyp)2 = (adj)2 + (opps)2 Pythagoras’ theorem (right
angle triangles)

c2 = a2 + b2 − 2ab cos(6 C) law of cosines for side c op-
posite 6 C

~v =
~d

∆t
= ∆~x

∆t
definition of velocity in 2 or
more dimensions in terms
of displacement vector ~d or
∆~x

~a = ∆~v
∆t

definition of acceleration in
2 or more dimensions

A
B

C

~C = ~A + ~B

A
B

C

~C = ~A− ~B

~A = ~Ax + ~Ay decomposing a vector into
components

| ~A| ≡ mag. or length of ~A quantity is always positive,
sometimes just called A

~A = ~AxR + ~AyR decomposing a vector into
ramp components

axR = ±g cos θ acceleration of free object
on a ramp

∆yR = vyR = ayR = 0 no motion in yR direction

~vAC = ~vAB + ~vBC subscript rule for relative
velocities (Galilean trans-
formation)

(vx)i = |~vi| cos θ

(vy)i = |~vi| sin θ
initial velocity components
for a launched projectile

xf = xi + (vx)i∆t projectile, uniform x-
motion

(vx)f = (vx)i projectile, constant vx,
ax = 0

yf = yi + (vy)i∆t− 1
2
g(∆t)2 projectile, y-displacement,

ay = −g

(vy)f = (vy)i − g∆t projectile, decreasing vy

f = 1
T

relationship between fre-
quency and period

v = 2πr
T

= 2πrf orbital speed (velocity
changes)

~a =
(

v2

r
, toward centre

)
centripetal acceleration

~Fnet = ~0 ⇒ ~v is constant Newton’s 1st law, constant
may or may not be 0

~v is constant ⇒ ~Fnet = ~0 Newton’s 1st law stated in
converse form

~a =
~Fnet
m

or ~Fnet = m~a Newton’s 2nd law, defini-
tion of mass

~F (B on A) = −~F (A on B) Newton’s 3rd law

~Fnet = ~F1 + ~F2 + . . . = Σ~Fi forces sum to produce net
force



wapparent = m(g + ay) apparent weight

n = wyR = mg cos θ magnitude of normal force
for a ramp

fs,max = µsn magnitude of maximum
static friction

fk = µkn magnitude of kinetic fric-
tion ~fk is opposite to direc-
tion of ~v

fr = µrn rolling friction

D = 1
2
CDρAv2 empircal law for drag force

in air

F = T tension in a massless string
or rope provides a force

|~T1| = |~T2| magnitude of tension con-
stant for massless pulley

Fcentripetal = mv2

r
a net force directed toward
the centre

Fgrav = Gm1m2
r2 Newton’s inverse square

law for gravitation; G =
6.67 × 10−11 N·m2/kg2

(Fsp)x = −k ∆x Hooke’s Law for a spring

s = r θ arc length s, only true if θ
is in radians

2π radians=360o=1 rev relations between angular
units

ω = ∆θ
∆t

positive if motion is CCW

v = ωr this is tangential or orbital
motion, ~v changes

acentri = v2

r
= ω2r ~acentri is always directed to-

wards the centre of the cir-
cle

vorbit =
√

gr a freefalling object in circu-
lar orbit; g is not 9.80 if not
at earth’s surface

g = GM
r2 a generalized gravita-

tional acceleration near a
“planet” with mass M

T 2 =
(

4π2

GM

)
r3 = kr3 Kepler’s 3rd law. Use k

form when comparing or-
biting objects.

α = ∆ω
∆t

angular acceleration

θf = θi + ωi∆t + 1
2
α(∆t)2 an example of an “angular”

kinematic equation

atan = αr tangential component of
acceleration

τ = rF⊥ = r⊥F = rF sin φ torque about a pivot

τnet = τ1 + τ2 + . . . = Στi summing torques

xcg = m1x1+m2x2+m3x3+...
m1+m2+m3+...

centre of gravity in x, sim-
ilar expression for ycg

I = Σmir
2
i moment of intertia, de-

pends on choice of centre

α = τnet
I

Newton’s 2nd law for rota-
tion

I = MR2 moment of intertia for a
hoop

I = 1
2
MR2 moment of intertia for a

disc or cylinder

I = 2
5
MR2 moment of intertia for a

solid sphere

aobj = αR example of a constraint
equation for a pulley of ra-
dius R

v = ωR rolling constraint, rolling
object as a whole moves at
v

vtop = 2v, vbottom = 0 speeds at top and bottom
of a rolling object

Fx,net = Fy,net = τnet = 0 conditions for static equi-
librium of extended object,
choose any pivot point

θc = tan−1
(

t
2h

)
critical tipping angle if
c.o.g. is height h above
and centred over a base of
width t

F
A

= Y ∆L
L

relationship between
stress, strain, and Young’s
modulus

tensile strength=Fmax
A

tensile strength is related
to maximum stress before
breaking

~J = (~Fnet)avg∆t = ~pf − ~pi impulse defined and
impulse-momentum theo-
rem

~p = m~v momentum defined

~P = Σimi~vi system momentum



~Pi = ~Pf conservation of momentum for no external
forces

L = Iω angular momentum

Lsystem =
∑

Iiωi system angular momentum

(Lsystem)i = (Lsystem)f conservation of angular momentum for no ex-
ternal torques

∆L = (τnet)avg∆t angular impulse-momentum theorem

E = K + Ug + Us + Eth + Echem + . . . total energy of a system

∆E = ∆K + ∆Ug + ∆Us + ∆Eth + ∆Echem + . . . total energy change of a system

W = ∆E work-energy theorem; work done “on” the
system represents only energy input

W = Fenvd cos θ work done on the system by the environment,
not Fnet

K = 1
2
mv2 + 1

2
Iω2 kinetic energy from translation and rotation

Ug = mgy gravitational potential energy for constant g,
you have choosen a potential =0 point

Us = 1
2
kx2 x is the extension of the spring

∆Eth = fk|∆x| thermal energy for a dragged object


