$$\begin{split} \Delta x &= x_f - x_i & \text{for any scalar/vector in place of } x \\ \vec{d}_{ext} &= \vec{d}_i + \vec{d}_i & \text{Kinght's version for vector displacement} \\ \Delta \vec{x} &= \vec{x}_f - \vec{x}_i & \text{Carl's version for vector displacement} \\ u_x &= \frac{\Delta u}{\Delta t} & \text{definition of 1-D (instantions) velocity, take a slope of $v_i(t) \\ a_x &= \frac{\Delta u}{\Delta t} & \text{definition of acceleration, take a slope of $v_i(t) \\ \Delta x &= v_i \Delta t \leftrightarrow A = hw & \text{displacement serve under } \\ \Delta x &= v_i \Delta t \leftrightarrow A = hw & \text{displacement serve under } \\ \Delta x &= v_i \Delta t \leftrightarrow A = hw & \text{displacement serve under } \\ a_x &= \frac{\Delta u}{\Delta x} & \text{definition of acceleration } \\ \Delta x &= v_i \Delta t \leftrightarrow A = hw & \text{displacement serve under } \\ \alpha_x(t) & \text{curve} & \text{area under } \\ \alpha_x &= \frac{1}{2} + v_x \Delta t & \text{displacement area rea under } \\ \alpha_x &= -x_i + v_x \Delta t & \text{displacement area rea under } \\ x_f &= x_i + v_x \Delta t & \text{displacement area rea under } \\ u_x &= -x_i + v_x \Delta t & \text{displacement area rea under } \\ (v_y)_f &= (v_y), \Delta t + \frac{1}{2} \sigma_x(\Delta t)^2 & \text{displacement area rea under } \\ (v_y)_f &= (v_y), \Delta t + \frac{1}{2} \sigma_x(\Delta t)^2 & \text{displacement area rea under } \\ (v_y)_f &= (v_y), \Delta t + \frac{1}{2} \sigma_x(\Delta t)^2 & \text{displacement area rea under } \\ (v_y)_f &= (v_y), \Delta t + \frac{1}{2} \sigma_x(\Delta t)^2 & \text{displacement area rea under } \\ (v_y)_f &= (v_y), \Delta t + \frac{1}{2} \sigma_x(\Delta t)^2 & \text{displacement area rea under } \\ (v_y)_f &= (v_y), \Delta t + \frac{1}{2} \sigma_x(\Delta t)^2 & \text{displacement area rea under } \\ (v_y)_f &= (v_y), \Delta t + \frac{1}{2} \sigma_x(\Delta t)^2 & \text{displacement area rea under } \\ (v_y)_f &= (v_y), \Delta t + \frac{1}{2} \sigma_x(\Delta t)^2 & \text{displacement area value area under } \\ (v_y)_f &= (v_y), \Delta t + \frac{1}{2} \sigma_x(\Delta t)^2 & \text{displacement area rea under } \\ (v_y)_f &= (v_y), \Delta t - \frac{1}{2} (\cos \theta) & \text{initial velocity components for a lame to (if volutions) in transformation } \\ (v_y)_f &= (v_y), \Delta t - \frac{1}{2} (x_y) \Delta t & \text{displacement, } \\ (v_y)_f &= (v_y), \Delta t - \frac{1}{2} (x_y) \Delta t & \text{displacement, } \\ (v_y)_f &= (v_y), \Delta t - \frac{1}{2} (x_y) \Delta t & \text{displacement, } \\ (v_y)_f &= (v_y), \Delta t - \frac{1}{2} (x_y) \Delta t & \text{displacement, } \\ (v_y)_f &= (v_y$$$$

$w_{\mathrm{apparent}} = m(g + a_y)$	apparent weight if you are rightside up	
$w_{\text{apparent}} = -m(g + a_y)$	apparent weight <i>if</i> you are upside down	$ heta_{f}$
$n = w_{yR} = mg\cos\theta$	magnitude of normal force for a ramp	
$f_{ m s,max} = \mu_s n$	magnitude of maximum static friction	au =
$f_k = \mu_k n$	magnitude of kinetic fric- tion \vec{f}_k is opposite to direc- tion of \vec{v}	$ au_{ m n} = x_{cg}$
$f_r = \mu_r n$	rolling friction	
$D = \frac{1}{2}C_D\rho Av^2$	empircal law for drag force in air	
F = T	tension in a massless string or rope provides a force	
$ \vec{T_1} = \vec{T_2} $	magnitude of tension con- stant for massless pulley	
$F_{\text{centripetal}} = \frac{mv^2}{r}$	a net force directed toward the centre	
$F_{\rm grav} = \frac{Gm_1m_2}{r^2}$	Newton's inverse square law for gravitation; $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$	
$(F_{\rm sp})_x = -k\Delta x$	Hooke's Law for a spring	
$s=r\theta$	arc length s , only true if θ is in radians	
2π radians= $360^{\circ}=1$ rev	relations between angular units	1
$\omega = rac{\Delta heta}{\Delta t}$	positive if motion is CCW	F
$v = \omega r$	this is tangential or orbital motion, \vec{v} changes	F_{z}
$a_{\text{centri}} = \frac{v^2}{r} = \omega^2 r$	\vec{a}_{centri} is always directed towards the centre of the circle	
$v_{\rm orbit} = \sqrt{gr}$	a freefalling object in circu- lar orbit; g is not 9.80 if not at earth's surface	
$g = \frac{GM}{r^2}$	a generalized gravita- tional acceleration near a "planet" with mass M	\vec{J} :
$\alpha = \frac{\Delta \omega}{\Delta t}$	angular acceleration	

$T^2 = \left(\frac{4\pi^2}{GM}\right)r^3 = kr^3$	Kepler's 3rd law. Use k form when comparing or- biting objects.
$f = \theta_i + \omega_i \Delta t + \frac{1}{2}\alpha(\Delta t)^2$	an example of an "angular" kinematic equation
$a_{ an} = lpha r$	tangential component of acceleration
$= rF_{\perp} = r_{\perp}F = rF\sin\phi$	torque about a pivot
$\tau_{\rm net} = \tau_1 + \tau_2 + \ldots = \Sigma \tau_i$	summing torques
$_{cg} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{m_1 + m_2 + m_3 + \dots}$	centre of gravity in x , similar expression for y_{cg}
$I = \Sigma m_i r_i^2$	moment of intertia, de- pends on choice of centre
$\alpha = \frac{\tau_{\rm net}}{I}$	Newton's 2nd law for rota- tion
$I = MR^2$	moment of intertia for a hoop
$I = \frac{1}{2}MR^2$	moment of intertia for a disc or cylinder
$I = \frac{2}{5}MR^2$	moment of intertia for a solid sphere
$a_{\rm obj} = \alpha R$	example of a constraint equation for a pulley of radius R
$v = \omega R$	rolling constraint, rolling object as a whole moves at v
$v_{\rm top} = 2v, \ v_{\rm bottom} = 0$	speeds at top and bottom of a rolling object
$F_{x,\text{net}} = F_{y,\text{net}} = \tau_{\text{net}} = 0$	conditions for static equi- librium of extended object, choose any pivot point
$\theta_c = \tan^{-1}\left(\frac{t}{2h}\right)$	critical tipping angle if c.o.g. is height h above and centred over a base of width t
$\vec{P_i} = \vec{P_f}$	conservation of momentum for no external forces
$L = I\omega$	angular momentum
$\vec{r} = (\vec{F}_{\rm net})_{\rm avg} \Delta t = \vec{p}_f - \vec{p}_i$	impulse defined and impulse-momentum theo- rem
$\vec{p} = m\vec{v}$	momentum defined

$ec{P} = \Sigma_i m_i ec{v}_i$	system momentum
$L_{ m system} = \sum I_i \omega_i$	system angular momentum
$(L_{\text{system}})_i = (L_{\text{system}})_f$	conservation of angular momentum for no ex- ternal torques
$\Delta L = (au_{ m net})_{ m avg} \Delta t$	angular impulse-momentum theorem
$E = K + U_{\rm g} + U_{\rm s} + E_{\rm th} + E_{\rm chem} + \dots$	total energy of a system
$\Delta E = \Delta K + \Delta U_{\rm g} + \Delta U_{\rm s} + \Delta E_{\rm th} + \Delta E_{\rm chem} + \dots$	total energy <i>change</i> of a system
$W = \Delta E$	work-energy theorem; work done "on" the system represents only energy input
$W = F_{\rm ext} d\cos\theta = F_{\rm ext} \Delta x \cos\theta$	work done on the system by a force external to the system, not $F_{\rm net}$
$K = \frac{1}{2}mv^2$	kinetic energy from translation, will also work for a point object moving in a circle
$K = \frac{1}{2}I\omega^2$	kinetic energy for a rotating rigid body
$U_{ m g}=mgy$	gravitational potential energy for constant g , you have choosen a potential=0 point at $y = 0$
$U_{ m s}=rac{1}{2}kx^2$	x is the extension of the spring
$\Delta E_{\rm th} = f_k \Delta x $	thermal energy for a dragged object
$(v_{1x})_f = \frac{m_1 - m_2}{m_1 + m_2} (v_{1x})_i$	final velocity for the colliding particle in a 1- D elastic collision
$(v_{2x})_f = \frac{2m_1}{m_1 + m_2} (v_{1x})_i$	final velocity for the target particle in a 1-D elastic collision
$P = \frac{W}{\Delta t} = F_{\text{ext}} v \cos \theta$	power
efficiency, $e = \frac{\text{what you get}}{\text{what you had to pay}}$	efficiency in energy transfer
$E_{th} = \frac{3}{2}Nk_BT = \frac{3}{2}N_{\text{mole}}RT$	$k_B = 1.38 \times 10^{-23}$ J/K, for a monatomic gas, T in Kelvin