$\Delta x = x_f - x_i$	for any scalar/vector in place of x	\vec{C} \vec{B}	$ec{C} = ec{A} + ec{B}$
$ec{d}_{ m net} = ec{d_1} + ec{d_2}$	Knight's version for vector displacement	¥	
$\Delta \vec{x} = \vec{x}_f - \vec{x}_i$	Carl's version for vector displacement	\vec{A} \vec{B}	$ec{C} = ec{A} - ec{B}$
$v_x = \frac{\Delta x}{\Delta t}$	definition of 1-D (instantaneous) velocity, take a slope of $x(t)$	$ec{A} = ec{A}_x + ec{A}_y$	decomposing a vector into components
$a_x = \frac{\Delta v_x}{\Delta t}$	definition of acceleration, take a slope of $v_x(t)$	$ \vec{A} \equiv \text{mag.}$ or length of \vec{A}	quantity is always positive, sometimes just called A
$\Delta x = v_x \Delta t \leftrightarrow A = hw$	displacement as area under $v_x(t)$ curve	$\vec{A} = \vec{A}_{xR} + \vec{A}_{yR}$	decomposing a vector into ramp components
$\Delta v = a_x \Delta t \leftrightarrow A = hw$	change in v_x as area under $a_x(t)$ curve	$a_{xR} = \pm g \sin \theta$	acceleration of free object on a ramp
$\Delta x = (v_x)_i \Delta t + \frac{1}{2} \Delta v_x \Delta t$	displacement as area under a linear $v_x(t)$ curve	$\Delta y_R = v_{yR} = a_{yR} = 0$	no motion in y_R direction
$x_f = x_i + v_x \Delta t$	kin. formula for constant velocity	$\vec{v}_{AC} = \vec{v}_{AB} + \vec{v}_{BC}$	subscript rule for relative velocities (Galilean trans- formation)
y = mx + b	high school formula for a straight line	$(v_x)_i = \vec{v}_i \cos \theta$ $(v_y)_i = \vec{v}_i \sin \theta$	initial velocity components for a launched projectile
$x_f = x_i + (v_x)_i \Delta t + \frac{1}{2} a_x (\Delta t)^2$	kin. formula for displacement with constant accel. aka formula 2.12	$x_f = x_i + (v_x)_i \Delta t$	projectile, uniform x - motion
$(v_x)_f = (v_x)_i + a_x \Delta t$	kin. formula for velocity with constant accel. aka 2.11	$(v_x)_f = (v_x)_i$	projectile, constant v_x , $a_x = 0$
$(v_x)_f^2 = (v_x)_i^2 + 2a_x \Delta x$	the "no-time" formula for	$y_f = y_i + (v_y)_i \Delta t - \frac{1}{2}g(\Delta t)^2$	projectile, y-displacement, $a_y = -g$
	constant accel. aka 2.13	$(v_y)_f = (v_y)_i - g\Delta t$	projectile, decreasing v_y
$a_y = -g = -9.80 \text{ m/s}^2$	free-fall acceleration due to gravity	$f = \frac{1}{T}$	relationship between frequency and period
$\sin \theta = \frac{\text{opps}}{\text{hyp}}, \cos \theta = \frac{\text{adj}}{\text{hyp}}$	high school trig formulas	$v = \frac{2\pi r}{T} = 2\pi r f$	orbital speed (velocity changes)
$\tan \theta = \frac{\text{opps}}{\text{adj}}$		$\vec{a} = \left(\frac{v^2}{r}, \text{toward centre}\right)$	centripetal acceleration
$(hyp)^2 = (adj)^2 + (opps)^2$	Pythagoras' theorem (right angle triangles)	$ec{F}_{ m net} = ec{0} \Rightarrow ec{v} ext{ is constant}$	Newton's 1 st law, constant
$c^2 = a^2 + b^2 - 2ab\cos(\angle C)$	law of cosines for side c opposite $\angle C$	-	may or may not be 0
$ec{v}=rac{ec{d}}{\Delta t}=rac{\Delta ec{x}}{\Delta t}$	definition of velocity in 2 or	\vec{v} is constant $\Rightarrow \vec{F}_{\mathrm{net}} = \vec{0}$	Newton's 1 st law stated in converse form
$\Delta t = \Delta t$	more dimensions in terms of displacement vector \vec{d} or $\Delta \vec{x}$	$ec{a} = rac{ec{F}_{ m net}}{m} \ { m or} \ ec{F}_{ m net} = m ec{a}$	Newton's 2^{nd} law, definition of mass
$ec{a}=rac{\Delta ec{v}}{\Delta t}$	definition of acceleration in 2 or more dimensions	$\vec{F}(B \text{ on } A) = -\vec{F}(A \text{ on } B)$	Newton's $3^{\rm rd}$ law
		$\vec{F}_{ m net} = \vec{F}_1 + \vec{F}_2 + \ldots = \Sigma \vec{F}_i$	forces sum to produce net force

$w_{\text{apparent}} = m(g + a_y)$	apparent weight if you are rightside up	$T^2 = \left(\frac{4\pi^2}{GM}\right)r^3 = kr^3$	Kepler's 3rd law. Use k form when comparing orbiting objects.
$w_{\text{apparent}} = -m(g + a_y)$	apparent weight if you are upside down	$\theta_f = \theta_i + \omega_i \Delta t + \frac{1}{2} \alpha (\Delta t)^2$	an example of an "angular" kinematic equation
$n = w_{yR} = mg\cos\theta$	magnitude of normal force for a ramp	$a_{ an} = lpha r$	tangential component of acceleration
$f_{ m s,max} = \mu_s n$	magnitude of maximum static friction	$\tau = \pm r F_{\perp} = \pm r_{\perp} F = \pm r F \sin \phi$	torque about a pivot, choose pos. sign for CCW
$f_k = \mu_k n$	magnitude of kinetic friction \vec{f}_k is opposite to direction of \vec{v}	$ au_{ m net} = au_1 + au_2 + \ldots = \Sigma au_i$	summing torques
$f_r = \mu_r n$	rolling friction	$x_{cg} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{m_1 + m_2 + m_3 + \dots}$	centre of gravity in x , similar expression for y_{cg}
$D = \frac{1}{2} C_D \rho A v^2$	empircal law for drag force in air	$I = \Sigma m_i r_i^2$	moment of intertia, depends on choice of centre
F = T	tension in a massless string or rope provides a force	$lpha = rac{ au_{ m net}}{I}$	Newton's 2nd law for rotation
$ ec{T}_1 = ec{T}_2 $	magnitude of tension constant for massless pulley	$I = MR^2$	moment of intertia for a hoop
$F_{\text{centripetal}} = \frac{mv^2}{r}$	a net force directed toward the centre	$I = \frac{1}{2}MR^2$	moment of intertia for a disc or cylinder
$F_{\rm grav} = \frac{Gm_1m_2}{r^2}$	Newton's inverse square law for gravitation; $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$	$I = \frac{2}{5}MR^2$	moment of intertia for a solid sphere
$(F_{\mathrm{sp}})_x = -k \Delta x$	Hooke's Law for a spring	$a_{\mathrm{obj}} = \alpha R$	example of a constraint equation for a pulley of radius R
$s = r \theta$	arc length s , only true if θ is in radians	$v = \omega R$	rolling constraint, rolling object as a whole moves at
2π radians= 360° =1 rev	relations between angular units		v
$\omega = \frac{\Delta \theta}{\Delta t} = \frac{2\pi}{T} = \frac{\pi}{30} (\text{rpm})$	positive if motion is CCW	$v_{\text{top}} = 2v, \ v_{\text{bottom}} = 0$	speeds at top and bottom of a rolling object
$v=\omega r$	this is tangential or orbital motion, \vec{v} changes	$F_{x,\mathrm{net}} = F_{y,\mathrm{net}} = au_{\mathrm{net}} = 0$	conditions for static equilibrium of extended object, choose any pivot point
$a_{\mathrm{centri}} = rac{v^2}{r} = \omega^2 r$	$ec{a}_{ ext{centri}}$ is always directed towards the centre of the circle	$\theta_c = \tan^{-1}\left(\frac{t}{2h}\right)$	critical tipping angle if c.o.g. is height h above and centred over a base of
$v_{ m orbit} = \sqrt{gr}$	a freefalling object in circular orbit; g is not 9.80 if not		width t
$_{GM}$	at earth's surface	$ec{P}_i = ec{P}_f$	conservation of momentum for no external forces
$g = \frac{GM}{r^2}$	a generalized gravitational acceleration near a "planet" with mass M	$L=I\omega$	angular momentum
$\alpha = \frac{\Delta\omega}{\Delta t}$	angular acceleration	$ec{J} = (ec{F}_{ m net})_{ m avg} \Delta t = ec{p}_f - ec{p}_i$	impulse defined and impulse-momentum theorem
		$ec{p}=mec{v}$	momentum defined

$ec{P} = \Sigma_i m_i ec{v}_i$	system momentum
$L_{ m system} = \sum I_i \omega_i$	system angular momentum
$(L_{ m system})_i = (L_{ m system})_f$	conservation of angular momentum for no external torques
$\Delta L = (au_{ m net})_{ m avg} \Delta t$	angular impulse-momentum theorem
$E = K + U_{\rm g} + U_{\rm s} + E_{\rm th} + E_{\rm chem} + \dots$	total energy of a system
$\Delta E = \Delta K + \Delta U_{\rm g} + \Delta U_{\rm s} + \Delta E_{\rm th} + \Delta E_{\rm chem} + \dots$	total energy <i>change</i> of a system
$W = \Delta E$	work-energy theorem; work done "on" the system represents only energy input
$W = F_{\rm ext} d\cos\theta = F_{\rm ext} \Delta x \cos\theta$	work done on the system by a force external to the system, not $F_{\rm net}$
$K = \frac{1}{2}mv^2$	kinetic energy from translation, will also work for a point object moving in a circle
$K=rac{1}{2}I\omega^2$	kinetic energy for a rotating rigid body
$U_{ m g}=mgy$	gravitational potential energy for constant g , you have choosen a potential=0 point at $y=0$
$U_{ m s}=rac{1}{2}kx^2$	x is the extension of the spring
$\Delta E_{ m th} = f_k \Delta x $	thermal energy for a dragged object
$(v_{1x})_f = \frac{m_1 - m_2}{m_1 + m_2} (v_{1x})_i$	final velocity for the colliding particle in a 1-D elastic collision
$(v_{2x})_f = \frac{2m_1}{m_1 + m_2} (v_{1x})_i$	final velocity for the target particle in a 1-D elastic collision
$P = \frac{W}{\Delta t} = F_{\rm ext} v \cos \theta$	power
efficiency, $e = \frac{\text{what you get}}{\text{what you had to pay}}$	efficiency in energy transfer
$E_{th} = \frac{3}{2}Nk_BT = \frac{3}{2}N_{\text{mole}}RT$	$k_B = 1.38 \times 10^{-23} \text{ J/K}, \text{ for a monatomic gas,}$ $T \text{ in Kelvin}$

