$$
\begin{aligned}
& \Delta x=x_{f}-x_{i} \quad \text { for any scalar/vector in } \\
& \text { place of } x \\
& \vec{d}_{\text {net }}=\overrightarrow{d_{1}}+\overrightarrow{d_{2}} \quad \text { Knight's version for vector } \\
& \text { displacement } \\
& \Delta \vec{x}=\vec{x}_{f}-\vec{x}_{i} \quad \text { Carl's version for vector } \\
& \text { displacement } \\
& v_{x}=\frac{\Delta x}{\Delta t} \quad \text { definition of 1-D (instan- } \\
& \text { taneous) velocity, take a } \\
& \text { slope of } x(t) \\
& a_{x}=\frac{\Delta v_{x}}{\Delta t} \quad \text { definition of acceleration, } \\
& \text { take a slope of } v_{x}(t) \\
& \Delta x=v_{x} \Delta t \leftrightarrow A=h w \quad \text { displacement as area under } \\
& v_{x}(t) \text { curve } \\
& \Delta v=a_{x} \Delta t \leftrightarrow A=h w \quad \text { change in } v_{x} \text { as area under } \\
& a_{x}(t) \text { curve } \\
& \Delta x=\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} \Delta v_{x} \Delta t \quad \text { displacement as area under } \\
& \text { a linear } v_{x}(t) \text { curve } \\
& x_{f}=x_{i}+v_{x} \Delta t \\
& y=m x+b \\
& \text { kinematic formula for con- } \\
& \text { stant velocity } \\
& x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad \text { kinematic formula for dis- } \\
& \text { placement with constant } \\
& \text { acceleration } \\
& \text { kinematic formula for ve- } \\
& \text { locity with constant accel- } \\
& \text { eration } \\
& \text { the "no-time" formula for } \\
& \text { constant acceleration } \\
& \text { free-fall acceleration due to } \\
& \text { gravity } \\
& \sin \theta=\frac{\text { opps }}{\text { hyp }}, \cos \theta=\frac{\text { adj }}{\text { hyp }} \text { high school trig formulas } \\
& \tan \theta=\frac{\mathrm{opps}}{\mathrm{adj}} \\
& (\mathrm{hyp})^{2}=(\mathrm{adj})^{2}+(\mathrm{opps})^{2} \quad \text { Pythagoras' theorem (right } \\
& \text { angle triangles) } \\
& c^{2}=a^{2}+b^{2}-2 a b \cos (\angle C) \quad \text { law of cosines for side } c \text { op- } \\
& \text { posite } \angle C \\
& \vec{v}=\frac{\vec{d}}{\Delta t}=\frac{\Delta \vec{x}}{\Delta t} \\
& \vec{a}=\frac{\Delta \vec{v}}{\Delta t} \\
& \text { definition of velocity in } 2 \text { or } \\
& \text { more dimensions in terms } \\
& \text { of displacement vector } \vec{d} \text { or } \\
& \Delta \vec{x} \\
& \text { definition of acceleration in } \\
& 2 \text { or more dimensions }
\end{aligned}
$$

$$
\begin{aligned}
& \overbrace{\vec{A}}^{\vec{B}} \\
& \vec{C}=\vec{A}+\vec{B} \\
& \vec{A}=\vec{A}_{x}+\vec{A}_{y} \\
& |\vec{A}| \equiv \text { mag. or length of } \vec{A} \\
& \vec{A}=\vec{A}_{x R}+\vec{A}_{y R} \\
& a_{x R}= \pm g \sin \theta \\
& \Delta y_{R}=v_{y R}=a_{y R}= \\
& \vec{v}_{A C}=\vec{v}_{A B}+\vec{v}_{B C} \\
& \begin{aligned}
\left(v_{x}\right)_{i} & =\left|\vec{v}_{i}\right| \cos \theta \\
\left(v_{y}\right)_{i} & =\left|\vec{v}_{i}\right| \sin \theta
\end{aligned} \\
& x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t \\
& \left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \\
& y_{f}=y_{i}+\left(v_{y}\right)_{i} \Delta t-\frac{1}{2} g(\Delta t)^{2} \\
& \left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g \Delta t \\
& f=\frac{1}{T} \\
& v=\frac{2 \pi r}{T}=2 \pi r f \\
& \vec{a}=\left(\frac{v^{2}}{r}, \text { toward centre }\right) \\
& \vec{F}_{\text {net }}=\overrightarrow{0} \Rightarrow \vec{v} \text { is constant } \\
& \vec{v} \text { is constant } \Rightarrow \vec{F}_{\text {net }}=\overrightarrow{0} \\
& \vec{a}=\frac{\vec{F}_{\text {net }}}{m} \text { or } \vec{F}_{\text {net }}=m \vec{a} \\
& \vec{F}(\mathrm{~B} \text { on } \mathrm{A})=-\vec{F}(\mathrm{~A} \text { on } \mathrm{B}) \\
& \vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}+\ldots=\Sigma \vec{F}_{i} \\
& \vec{C}=\vec{A}+\vec{B} \\
& \vec{C}=\vec{A}-\vec{B} \\
& \text { decomposing a vector into } \\
& \text { components } \\
& \text { quantity is always positive, } \\
& \text { sometimes just called } A \\
& \text { decomposing a vector into } \\
& \text { ramp components } \\
& \text { acceleration of free object } \\
& \text { on a ramp } \\
& \text { no motion in } y_{R} \text { direction } \\
& \text { subscript rule for relative } \\
& \text { velocities (Galilean trans- } \\
& \text { formation) } \\
& \text { initial velocity components } \\
& \text { for a launched projectile } \\
& \text { projectile, uniform } x \text { - } \\
& \text { motion } \\
& \text { projectile, constant } v_{x} \text {, } \\
& a_{x}=0 \\
& \text { projectile, } y \text {-displacement, } \\
& a_{y}=-g \\
& \text { projectile, decreasing } v_{y} \\
& \text { relationship between fre- } \\
& \text { quency and period } \\
& \text { orbital speed (velocity } \\
& \text { changes) } \\
& \text { centripetal acceleration } \\
& \text { Newton's } 1^{\text {st }} \text { law, constant } \\
& \text { may or may not be } 0 \\
& \text { Newton's } 1^{\text {st }} \text { law stated in } \\
& \text { converse form } \\
& \text { Newton's } 2^{\text {nd }} \text { law, defini- } \\
& \text { tion of mass } \\
& \text { Newton's } 3^{\text {rd }} \text { law } \\
& \text { forces sum to produce net } \\
& \text { force }
\end{aligned}
$$

These formulas are for magnitudes of forces. You need to consider the details of the problem to get the directions and eventually the correct signs in equations like $F_{x, \text { net }}=F_{x 1}+F_{x 2}+\ldots$

| $w_{\text {apparent }}=m\left(g+a_{y}\right)$ | apparent weight |
| :---: | :--- |
| $n=w_{y R}=m g \cos \theta$ | magnitude of normal force <br> for a ramp |
| $f_{\mathrm{s}, \text { max }}=\mu_{s} n$ | magnitude of maximum <br> static friction |
| $f_{k}=\mu_{k} n$ | magnitude of kinetic fric- <br> tion $\overrightarrow{f_{k}}$ is opposite to direc- <br> tion of $\vec{v}$ |
| $f_{r}=\mu_{r} n$ | rolling friction |
| $D=\frac{1}{2} C_{D} \rho A v^{2}$ | empircal law for drag force <br> in air |

