Physics 201: Assignment \#1

Carl Adams

Due: Feb. 1, 2013

1. An application of the Galiliean transformation and Newtonian relativity is the centre of mass frame. Don't need to use special relativity for this problem.
(a) Suppose that an alpha particle has a kinetic energy of $8.0 \times 10^{-13} \mathrm{~J}$ as measured in the S frame. The mass of an alpha particle is 4.00 u (unified mass units, see the back cover of the book). What is the speed of the α particle? Is it much less than c ? (2)
(b) Now we will consider a head-on, 1-dimensional collision with an aluminum nucleus ($m_{\mathrm{Al}}=27.0 \mathrm{u}$) that is at rest in the S frame. The frame S^{\prime} does not move with the α particle but instead moves at "centre of mass" velocity

$$
\begin{equation*}
v=\frac{m_{\alpha} u_{x \alpha}+m_{\mathrm{Al}} u_{x, \mathrm{Al}}}{m_{\alpha}+m_{\mathrm{Al}}} \tag{1}
\end{equation*}
$$

Calculate the centre of mass velocity and then use the Galilean transforms to give $u_{x, \alpha}^{\prime}$ and $u_{x, \mathrm{Al}}^{\prime}$. (4)
(c) Numerically calculate p_{x}^{\prime} for the system and also show symbolically that $p_{x}^{\prime}=0$. (4)
(d) Why all of this work? Because the collision in the S^{\prime} frame conserves energy and momentum and because $p_{x}^{\prime}=0$ the final primed velocities are just the negatives of the intial primed velocities (they "bounce" off each other). Use inverse Galilean transforms to calculate the final velocities in the S frame and show the kinetic energy in this frame is still $8.0 \times 10^{-13} \mathrm{~J}$. (4)
2. Tipler 1-24 (same in the 5th edition) In addition include a space-time diagram that shows the event of the typical pions decaying and how it would be graphically interpreted. (12 points)
3. Tipler 1-10 (same in 5th edition). (10 points)

Note that the order of A, B and C is not the same as it was in the relativity of simultaniety explanation; B is now in the middle. If you want put A on the right and C on the left.
4. Tipler 1-50 (I think this is the same as 1-49 in the 5 th edition. Might be able to look up the answers.) (10 points)

