Physics 201: Assignment \#2

Instructor: Carl Adams

Due: Mar. 12, 2013

1. Tipler 6e 1-57 (corresponds to $1-56$ in the 5 th ed.) (10 points)
(Note: in the problem in the 5 th edition the 3 rd line should read $t_{2}^{\prime}-t_{1}^{\prime}$.)
You should find this question is similar to the discussion we had in class. In addition to the questions in the book answer the following: (e) Show that if you use $T_{\min }=D / c$ the events are separated by a light-like interval but if you use the alternate $T_{\min }=D / c^{\prime}$ the interval changes to space-like. Hence light-like is the boundary between events that are causally connected and disconnected.
2. Tipler 2-12 (same in both editions)

In addition make a transform to frame that is moving at $\beta=-0.5$ and recalculate the energy, momentum, rest mass, and velocity. (Assume the proton is moving in the positive- x direction in the original S frame.) (10 points)
3. Tipler 2-14 (same in both editions) Just calculate the percentage difference in E_{K} (don't need to work out momentum) (6 points)
You can likely do this problem with a calculator but you might find

$$
\begin{equation*}
\frac{1}{\sqrt{1-x^{2}}}=1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\ldots \tag{1}
\end{equation*}
$$

useful if you set $x=u / c$. You'll find that the $\frac{3}{8}$ term is what is leftover in the E_{K} calculation.
4. Tipler 2-39 (2-37 in the 5th edition) You may assume that g is still $9.8 \mathrm{~m} / \mathrm{s}^{2}$ even at an altitude of 300 km . Just calculate the general relativistic effect. (10 points) To account for the general relativistic effect I suggest you use

$$
\begin{equation*}
\Delta \tau_{\text {lower }}=\Delta \tau_{\text {upper }}\left(1-\frac{g h}{c^{2}}\right) \tag{2}
\end{equation*}
$$

