
Physics 322: Example of multipole expansion
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All distances in this problem are scaled by d.
The source charge q is offset by distance d along the z-axis.

1. Let’s start by calculating the exact potential at the field point r = 4dx̂ + 3dẑ. This is easy to
do since there is only one source charge.

V (4d, 0, 3d) =
1

4πǫ0

qr =
q

4πǫ0d

1√
20

≈ 0.223607 V0 (1)

With V0 = q
4πǫ0d

as a convenient unit of voltage.

2. As I said in class the beauty of the multipole expansion is that we attribute QT , p, and
Q2 to properties of the charge distribution in the same way we would give our own height,
weight, and shoe size; they don’t depend on the field point. Also when they are complete
they contain information about the source coordinates but they don’t contain the source
coordinates as direct variables. Now with just one charge in the distribution I would not
recommend using a multipole expansion to approximate V (r) (i.e. you can easily write the
closed, exact expression) so the steps I am showing here are merely meant to illustrate how
you would do this for general charge distributions.

(a) The total charge Q is simply q.
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(b) The dipole moment
p =

∑

k

qkrk = qdẑ (2)

The sum k is over all of the charges in the array. There are analogous expressions for
line charges, surface charges, and general ρ(r′) that involve integrals rather than sums.

(c) The quadrupole moment tensor

Q2 =
∑

k

qk

2

(

3rkrk − r2
k Î

)

=
qd2

2

(

3ẑẑ − Î
)

(3)

We can also represent the quadrupole moment tensor as a matrix where we multiply
column vector ẑ by row vector ẑ rather than the opposite order (which would give a dot
product).

Q2 =
qd2

2
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(4)

So which one is correct expression 3 or 4? Both are equally correct since all we are
trying to do is “represent” a geometrical, mathematical object. (i.e. five, V,

√
25, ��||||, a

hand held up in the air with fingers spread apart all represent ’5’ the integer that is one
bigger than four and one smaller than six but one of them is good for Superbowls and
movie sequels while another is great for keeping count).

3. Now let’s calculate the separate monopole, dipole, and quadrupole contributions to the po-
tential.

The multipole expansion is

V (r) ≈ 1

4πǫ0

(

QT

r
+

r̂ · p
r2

+
r̂ · Q2 · r̂

r3

)

(5)

Notice that this expression contains r only. There is neither r nor any source coordinates.

(a) First we need r̂

r̂ =
r

r
=

4dx̂ + 3dẑ
√

(4d)2 + (3d)2
= 0.8x̂ + 0.6ẑ (6)

(b) The monopole contribution is

Vmono(r) =
1

4πǫ0

QT

r
=

q

4πǫ0

1
√

(4d)2 + (3d)2
= 0.200000 V0 (7)

Wow, we are already pretty close. The quality of the monopole approximation should go
as roughly the size of the charge distribution divided by the distance to the field point.
In this case this is d/5d or 20%. This looks reasonable.

(c) The dipole contribution is

Vdip(r) =
1

4πǫ0

r̂ · p
r2

=
1

4πǫ0

(0.8x̂ + 0.6ẑ) · qdẑ

25d2
==

q�d

4πǫ0

0.6ẑ

25d�2
== 0.024000 V0 (8)

A bit improvement. The percentage difference between the multipole approx with two
terms and the actual answer is 0.18 %. This is actually way better than we would expect!
(and should have been my first clue to the problems I would enounter later). We would
expect it to be as least as good as 4% (square of the size/distance ratio).
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(d) The quadrupole contribution is

Vquad(r) =
1

4πǫ0

r̂ · Q2 · r̂
r3

(9)

Let’s use the matrix multiplication technique first. The first r̂ is represented as a row
matrix and the second as a column matrix. The idea is that Vquad must be a scalar

Vquad =
q��d

2

4πǫ0

1

2 × 125
d�3

(

0.8 0 0.6
)







−1 0 0
0 −1 0
0 0 2













0.8
0

0.6







=
1

250

(

0.8 0 0.6
)







−0.8
0

1.2






V0

=
−0.64 + 0.72

250
V0 = 0.00032 V0 (10)

As long as we realize that r̂ · Î · r̂ = 1 and remember to do the dot products from the
front and back we can also use expression 3

Vquad(r) =
1

4πǫ0

qd2

2

r̂ · (3ẑẑ − Î) · r̂
(5d)3

=
(0.8x̂ + 0.6ẑ) · (3ẑẑ − Î) · (0.8x̂ + 0.6ẑ)

2 × 125
V0

=
3 × 0.6 × 0.6 − 1

250
V0 = 0.00032 V0 (11)

So the 3-term multipole expansion now gives us V ≈ 0.200000 + 0.024000 + 0.00032 =
0.22432V0 . Hmm, but this is slightly worse than a 2-term expansion (but still pretty good
0.33%). More confusing is that if we subtract the quadrupole term we get V ≈ 0.2236800
which is almost exactly the exact answer given in equation 1 (within 0.033%). Arrgh!

4. The problem is that I have choosen a location in space where the magnitude of the quadrupole
correction is very small (I did know that going in) and where the octupole correction is roughly
twice as big in magnitude and opposite in sign (that was a surprise)! You probably don’t
want to work with third-rank tensors or go back and work out the other terms in the 1/r
expansion so I will use a shortcut to figure out the octupole moment that works when the
charges are distributed along the z-axis.

(a) Recognize that r̂ · ẑ = cos θ if we give r in (r, θ, φ). This allows us to replace the dot
products in Vdip and Vquad to give

V (r, θ, φ)mono =
1

4πǫ0

q

r
(1) (12)

V (r, θ, φ)dip =
1

4πǫ0

qd

r2
(cos θ) (13)

V (r, θ, φ)quad =
1

4πǫ0

qd2

r3

1

2
(3 cos2 θ − 1) (14)

Hey, those terms in brackets are Pℓ(u = cos θ). This is not an accident. We have tried
to rank the contributions to the potential in terms of powers of r so each term should

be a separable solution to Laplace’s equation.
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(b) So with this in mind

V (r, θ, φ)oct =
1

4πǫ0

qd3

r4

1

2
(5 cos3 θ − cos θ) (15)

since Pℓ=3(u) = 1
2
(5u3 − u). (This isn’t true for all charge distributions; just this one).

In this case cos θ = 0.6

V (r, θ, φ)oct =
1

4πǫ0

qd3

(5d)4
1

2
(5(0.6)3 − 0.6) = −0.000576 V0 (16)

(c) Now V ≈ 0.200000 + 0.024000 + 0.00032 − 0.000576 = 0.223744, a percentage difference
of 0.06% from the exact answer. We expect something on the order of (d/r)4 = 0.16%
so we are still doing better than expected.

(d) The lesson here. There are times that because of the charge distribution or because of
the field point that the “poles” can get out of order. If you look at the expression in
terms of θ you can see where the “nodes” are. Even a clock that doesn’t work is exactly

right twice a day.
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