Supplemental Notes: Unit Vectors

Physics 322: Electromagnetic Theory I, Carl Adams, Fall 2009

What is a unit vector? The direction associated with a change in a variable while other held constant. Also the length of the unit vector should be unity. Length would be calculated using the square root of the dot product. What we are interested in is how the unit vectors in one coordinate system (primed $\hat{\mathbf{e}}_{i}^{\prime}$) are related to the unit vectors in another coordinate system (unprimed $\hat{\mathbf{e}}_{j}$). Primarily I am interested in transforms between Cartesian, spherical polars, and cylindrical polar coordinates i.e. the underlying space is $3-\mathrm{D}$ flat Euclidean and the unit vectors are orthonormal to each other.

Consider first the case of trying to determine $\hat{\theta}$ in terms of \hat{x}, \hat{y}, and \hat{z}. Consider the effect of a change of $d r, d \theta$, and $d \phi$ in $d x, d y$, and $d z$.

$$
\begin{align*}
d x & =\sin \theta \cos \phi d r+r \cos \theta \cos \phi d \theta-r \sin \theta \sin \phi d \phi \tag{1}\\
d y & =\sin \theta \sin \phi d r+r \cos \theta \sin \phi d \theta+r \sin \theta \cos \phi d \phi \tag{2}\\
d z & =\cos \theta d r-r \sin \theta \cos \phi d \theta \tag{3}
\end{align*}
$$

The coefficients of the differentials are simply the partial derivatives $\frac{\partial x}{\partial r}$ etc.
So if r and ϕ are held constant we are moving in the $\hat{\theta}$ direction. We can construct a unit vector then using $d \boldsymbol{\theta}=|d \boldsymbol{\theta}| \hat{\theta}$.

$$
\begin{align*}
d \boldsymbol{\theta} & =d x \hat{x}+d y \hat{y}+d z \hat{z} \tag{4}\\
& =(r \cos \phi \cos \theta \hat{x}+r \sin \phi \cos \theta \hat{y}-r \sin \theta \hat{z}) d \theta \tag{5}\\
|d t h \vec{e} t a| & =\sqrt{d \boldsymbol{\theta} \cdot d \boldsymbol{\theta}} \tag{6}\\
& =\left(r^{2} \cos ^{2} \phi \cos ^{2} \theta+r^{2} \sin ^{2} \phi \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)^{\frac{1}{2}} \tag{7}\\
& =r \tag{8}\\
\hat{\theta} & =\frac{d \boldsymbol{\theta}}{|d \boldsymbol{\theta}|}=\cos \phi \cos \theta \hat{x}+\sin \phi \cos \theta \hat{y}-\sin \theta \hat{z} \tag{9}
\end{align*}
$$

So for the general case $\hat{\mathbf{e}}_{i} \rightarrow \hat{\mathbf{e}}_{j}^{\prime}$

$$
\begin{equation*}
\hat{\mathbf{e}}_{j}^{\prime}=\frac{\left(\frac{\partial x_{i}}{\partial x_{j}^{\prime}} \hat{\mathbf{e}}_{i}\right)}{\left(\frac{\partial x_{i}}{\partial x_{j}^{\prime}} \frac{\partial x_{k}}{\partial x_{j}^{\prime}} \hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{k}^{\prime}\right)} \tag{10}
\end{equation*}
$$

