Lecture Summaries: Physics 322: Electromagnetic Theory I Carl Adams, Fall 2009

- 1. Sept. 10
 - (a) Review of course outline
 - (b) Basic goal of EM theory
 - (c) Topics and technologies that involve EM theory
 - (d) Concepts of electric and magnetic vector fields and the charges and currents.
 - (e) Gauss' Law: spreading of electric field, ϵ_0 as a physical constant
 - (f) Gauss' Law for magnetism: absence of magnetic "charges"
- 2. Sept. 14
 - (a) Ampéere's Law with Maxwell's displacement current
 - (b) Electric currents (and current density) as a source of "curling" magnetic fields
 - (c) The permeability of free space as a defined quantity
 - (d) Faraday's Law and a reminder from circuits
 - (e) Possibility of wave-solutions where the time-dependent fields are self-generating.
 - (f) The continuity equation and local charge conservation
 - (g) The force equation including the Lorentz force; relationship to experiments in PHYS 201.
 - (h) Decoupling of \mathbf{E} and \mathbf{B}
 - (i) The electric potential and the Laplacian operator (very brief)
 - (j) Considering how the position vector and scalar quantities are seen differently in rotated coordinate systems.
- 3. Sept. 16
 - (a) Working out R_{ij} the rotation matrix for our simple case
 - (b) Einstein summation convention and repeated indicies
 - (c) The Levi-Civita alternating tensor ϵ_{ijk} and the cross product
 - (d) The Knoenecker delta δ_{ij}
 - (e) Definition of a vector $\bar{A}_i = R_{ij}A_j$
 - (f) Generalisation to tensors (in 3-dimensional flat space)
 - (g) Extra: generalisation to tensors with general transforms
- 4. Sept. 17
 - (a) Motivation for vectors and tensors: physical laws applicable to all reference frames.
 - (b) Concept of a field and sketching vector fields.
 - (c) Example of converting a Cartesian vector field to a rotated frame.
 - (d) The necessity of the inverse rotation transform and ways to determine it.
 - (e) Using different coordinate systems

- (f) Necessity of changing unit vectors, line elements, area elements, volume elements, and forms of gradient, divergence, curl, and the Laplacian (scalar and vector)
- (g) Not quite complete example of this for $\mathbf{F}(\mathbf{r}) = x\hat{x}$ and its divergence in Cartesian and spherical polar coordinates.
- 5. Sept. 21
 - (a) Response to student question: what *is* the electric field?
 - (b) The Laplacian, a 2nd derivative.
 - (c) Scalar and vector forms of the Laplacian
 - (d) Vector identities on the front and back cover.
 - (e) Vanishing 2nd derivatives
 - (f) The line integral
- 6. Sept. 23
 - (a) An example of a line integral.
 - (b) Parametrizing the line
 - (c) The differential line element.
 - (d) Complicated integral, simple result
- 7. Sept. 24
 - (a) A variation: line integral over a source
 - (b) Warning concerning moving non-Cartesian unit vectors outside of integrals.
 - (c) Surface integrals
 - (d) Volume integrals
 - (e) Fundamental theorem of calculus
 - (f) Physical picture of adding up small steps being equivalent to looking at boundaries.
 - (g) Gradient, Gauss', and Stokes' theorems
- 8. Sept. 28
 - (a) The gradient and Laplacian of 1/r.
 - (b) Using Gauss theorem to understand the discontinuity at the origin.
 - (c) The differential area element $d\mathbf{a}$
 - (d) Concept of a delta function, a sharp spike.
 - (e) The finite integral of a delta function.
 - (f) Definition of $\delta^3(\mathbf{r} \mathbf{r'})$
 - (g) Dirac delta function in 1-dimension and its properties under integration.
- 9. Sept. 30
 - (a) The 3-D delta function and its ability to simplify integrals
 - (b) Question concerning the realness and the usefulness of the Dirac delta function: generalised dot product and orthogonality and Green's functions

- (c) Helmholtz Theorem: how to get a vector function from its divergence and curl when function goes to zero at the boundary
- (d) Construction of the scalar and vector potentials
- (e) Proof of Helmholtz theorem using Dirac delta functions
- $10. \ {\rm Oct.} \ 1$
 - (a) A pictorial example of the $\psi(\mathbf{r})$ function for a unit cube "source" of divergence.
 - (b) Geometric/qualitative picture of the relationship between $\nabla \cdot \mathbf{F}(\mathbf{r})$, $\psi(\mathbf{r})$, and $\mathbf{F}(\mathbf{r})$.
 - (c) Coulomb's Law
 - (d) Superposition, positive/ negative charges, other properties
 - (e) The field concept
 - (f) Source points versus field points
- 11. Oct. 5
 - (a) The electric field of a charged line
 - (b) Conversion to convenient, symmetric coordinates
 - (c) Conversion back to Cartesian coordinates
 - (d) Working out all the parts of the integrand
 - (e) Checking the answer against a known limit
- 12. Oct. 7
 - (a) The electric field of charged shell; two possible regions
 - (b) Exploiting symmetry to remove θ and ϕ dependence.
 - (c) Eliminating E_{θ} and E_{ϕ} components to give a purely radial field.
 - (d) Focussing on $E_z(0,0,z)$ "without loss of generality".
 - (e) Determining the differential field element
 - (f) The geometric approach to determining \mathbf{i} and $\hat{\mathbf{i}} \cdot \hat{z}$
 - (g) Calculating the double integral.
- 13. Oct. 8
 - (a) Explaining the difference between inside and outside results
 - (b) The surprisingly simple result for **E** of a spherical shell (last topic on 1st midterm)
 - (c) Differential and integral forms of Gauss' Law
 - (d) Using the Dirac delta function and **E** of a point charge as a bridge from Coulomb's Law to Gauss' Law
 - (e) Demonstrating that **E** is the gradient of some function and therefore is irrotational
- 14. Oct. 14
 - (a) The forms of **E** for spheres, lines, and planes.
 - (b) Using Gauss' Law and symmetry to determine \mathbf{E} of a solid, uniformly charged sphere of radius R.

- (c) A Gaussian surface
- (d) Details of calculation for a solid charged wire of radius a and linear charge density λ
- 15. Oct. 15 Midterm

16. Oct. 19

- (a) Continuation, field of a charged wire
- (b) The constant field of an infinite charged plane
- (c) Definition of scalar potential in terms of a path-independent path integral
- 17. Oct. 21
 - (a) Using the gradient theorem to show that $\mathbf{E} = -\nabla V$
 - (b) Determining V from **E** for a charged wire
 - (c) Options for choosing \mathcal{O}
 - (d) Getting the correct sign when calculating path integrals

18. Oct. 22

- (a) Poisson's equation
- (b) Green's function for Poisson's equation
- (c) Solution to Poisson's equation for $\mathbf{E} \to 0$ as $r \to \infty$
- (d) Boundary conditions for **E** at charged surfaces
- (e) Using Gaussian pillboxes and Stokes' loops

19. Oct. 26

- (a) Further discussion on the boundary conditions
- (b) The example of a charge spherical shell
- (c) Which small surfaces are smaller?
- (d) Taking the proper limits
- (e) Defining the normal and tangential components
- (f) Boundary conditions for scalar potential

20. Oct. 28

- (a) Work-energy theorem
- (b) The energy of an assembled charge array
- (c) General formula for a continuous charged distribution
- (d) Warning concerning infinity for point charges
- (e) The formula for the energy density of electric fields
- 21. Oct. 29
 - (a) Limitations of Coulomb's Law for Conductors
 - (b) The equilibrium assumption for conductors in electrostatics

- (c) **E**=0 and $\rho = 0$ inside of a conductor
- (d) Inquiry: what is the scalar potential at different points in a conductor?
- (e) Poisson's equation and boundary conditions
- (f) The uniqueness theorem
- (g) **E** inside of a cavity
- (h) **E** outside of a spherical conductor

22. Nov. 2

- (a) The FISHTANK method
- (b) General solution to Laplace's equation in spherical polar coords only r dependence
- (c) Fitting to the boundary conditions
- (d) Determining the surface charge
- (e) Capacitance C = Q/V a geometric quantity
- 23. Nov. 4 (quite a few students missing)
 - (a) Parallel plate capacitor
 - (b) Dirichlet (voltage specified) and Neumann (charge specified) boundary conditions
 - (c) Finding $V(\mathbf{r})$, C, and U with Dirichlet boundary conditions
 - (d) Finding $V(\mathbf{r})$ and C with Neumann boundary conditions but maintaining the FISH-TANK approach
 - (e) Finding $V(\mathbf{r})$ with Neumann boundary conditions using the "**E** is known through Gauss Law" approach
- 24. Nov. 5
 - (a) (you are not responsible for this) Laplace's equation doesn't allow local minima and maxima
 - (b) Great freedom allowed in Poisson's equation by including virtual charges
 - (c) Solving for $V(\mathbf{r})$ of a point-charge above an infinite grounded conducting plane
 - (d) Solution by imagining an image charge to fit the boundary conditions
 - (e) Determining the induced charge on the plane by calculating the gradient of V
 - (f) Gauss Law shows that total induced charge is equal to -q
- 25. Nov. 9
 - (a) Using the image charge method to solve for a grounded sphere with an external point charge
 - (b) Checking that boundary conditions are satisfied.
 - (c) Separating Laplace's equation in Cartesian coordiates with z symmetry
 - (d) The role of the k constants and how they originate
 - (e) How to choose the functions? Role of grounded boundaries.

26. Nov. 12

- (a) The use of "Fourier's trick" to solve for the coefficients to fit the last boundary condition
- (b) Sketches of the terms that solve the problem
- 27. Nov. 16
 - (a) Separating Laplace's equation in spherical polar coordinates.
 - (b) The R(r) solutions as r^{ℓ} and $r^{-1-\ell}$
 - (c) Generating $P_{\ell=0}(u)$ and $P_{\ell=1}(u)$ using Rodrigues's formula
 - (d) Notice how familiar the solutions are
- 28. Nov. 18
 - (a) Generating $P_{\ell=2}(u)$ using Rodrigues's formula
 - (b) Looking at the separable solutions of Laplace's equation as *Tetris* pieces
 - (c) Using separable solutions to Laplace's equation to solve the problem of a conducting sphere in a uniform electric field
- 29. Nov. 19: Midterm II
- 30. Nov. 23
 - (a) Mini-plan for the next few classes
 - (b) Multipole expansion
 - (c) Expansion of $1/\imath$ in terms of r_k/r
 - (d) Use and an example of Taylor series
 - (e) Definition of monopole, dipole, and quadrupole terms
 - (f) What is a 2nd rank tensor and how do we represent it?
- 31. Nov. 25
 - (a) Numeric example of a charge displaced along the z-axis
 - (b) Calculating Q_T , **p**, and Q_2
 - (c) Different approaches to handling Q_2
 - (d) Convergence of monopole, dipole, and quadrupole terms to the exact answer.
- 32. Nov. 26
 - (a) The relationship between Legendre polynomials and the mutipole expansion when there is no ϕ dependence
 - (b) A form for the octupole term in our previous expansion and how it helps our approximation
 - (c) The effect of choosing a different origin
 - (d) The field of an ideal dipole
- 33. Nov. 30
 - (a) Dipole moments in materials: induced, thermal, ferroelectrics

- (b) Definition of \mathbf{P} the polarisation
- (c) The potential of a polarised object
- (d) Bound charges
- (e) Definition of **D** the displacement field (or electric displacement)
- (f) Gauss Law for ${\bf D}$
- $34. \ \mathrm{Dec.}\ 2$
 - (a) Boundary conditions for **E** and **D**
 - (b) The constitutive relation and the various dielectric constants
 - (c) A parallel-plate capacitor filled with dielectric
 - (d) Locations of bound and free charge

$35. \ \mathrm{Dec.} \ 3$

- (a) Half-filled capacitor with left-half filled
- (b) **E** and **D** in the different regions and the boundary conditions
- (c) Locations of charges
- (d) Half-filled capacitor with one conductor covered