$$
\begin{equation*}
(\text { Gain })(\text { Bandwidth }) \sim(\text { unity gain bandwidth }) \tag{21}
\end{equation*}
$$

$$
\begin{align*}
& V_{\text {amplitude }}=\sqrt{2} V_{R M S} \tag{1}\\
& A_{V}=\frac{V_{\text {out }}}{V_{\text {in }}} \tag{2}\\
& A_{V}(\text { ideal })=\frac{V_{\text {out }, \text { OC }}}{V_{\text {in }}} \tag{3}\\
& V=I R \tag{4}\\
& R_{T h}=R_{N}=\frac{V_{\mathrm{OC}}}{I_{\mathrm{SC}}} \tag{5}\\
& \text { Gain }(\mathrm{dB})=10 \log _{10} \frac{P_{2}}{P_{1}} \stackrel{*}{=} 20 \log _{10} \frac{V_{2}}{V_{1}} \tag{6}\\
& Z_{R}=R \tag{7}\\
& Z_{C}=(j \omega C)^{-1} \tag{8}\\
& Z_{L}=j \omega L \tag{9}\\
& \text { if } z=x+j y=r e^{j \phi} \text { then } \tag{10}\\
& r=\sqrt{x^{2}+y^{2}} \quad \phi=\operatorname{Tan}^{-1}\left(\frac{y}{x}\right) \tag{11}\\
& x=r \cos \phi \quad y=r \sin \phi \tag{12}\\
& \text { Gain }(\text { closed-loop })=\frac{A}{1+A B} \tag{13}\\
& f_{3 \mathrm{~dB}}=(2 \pi R C)^{-1}=(2 \pi \tau)^{-1} \tag{14}\\
& \text { Gain (non-inverting) }=\frac{R_{1}+R_{2}}{R_{2}},\left(R_{1}\right. \text { connected to the output) } \tag{15}\\
& \text { Gain (inverting) }=-\frac{R_{1}}{R_{2}},\left(R_{1} \text { connected to the output }\right) \tag{16}\\
& V_{\text {out }}(t)=-\frac{1}{R C} \int_{0}^{t} d t^{\prime} V_{\text {in }}\left(t^{\prime}\right)+\text { constant } \tag{17}\\
& V_{\text {out }}=-R C \frac{d V_{\text {in }}(t)}{d t} \tag{18}\\
& V_{\text {out }}=-\left(V_{1}+V_{2}\right) \frac{R_{1}}{R_{2}},\left(R_{1} \text { connected to the output }\right) \tag{19}\\
& V_{o u t}=-\left(V_{1}-V_{2}\right) \frac{R_{1}}{R_{2}},\left(R_{1} \text { connected to output and ground }\right) \tag{20}
\end{align*}
$$

