# Physics 475: Assignment \#4 

Carl Adams

Due: Apr. 6, 2011

1. Foot 3.6 (10 points)
2. Foot 4.6 (10 points)

A couple of things to keep in mind for this question.
(a) Because of the selection rules on $\Delta \ell$ these transitions out of the ground state can only go to certain $\ell$ values.
(b) It might make more sense to treat the ionized state as the "zero" of energy. That way you can more easily see the $1 / n^{* 2}$ hydrogen-like dependence.
(c) Remember that $n^{*}$ is sometimes treated as a constant $(13.6 / \mathrm{IE})^{\frac{1}{2}}$ but there are other times it is treated as a variable $n^{*}=n-\delta_{\ell}$.
(d) There is an additional correction to the quantum defect as a function of $n$ known as the Ritz correction.

$$
\begin{equation*}
n-n^{*}=\delta_{\ell}+\frac{k}{n^{2}} \tag{1}
\end{equation*}
$$

where $k$ is a heuristic constant. Make a graph to determine $k$.
(e) $Z_{i}$ should be similar to and scale like $Z$ but it isn't supposed to be the same. It is again another heuristic constant.
(f) I really recommend using a spreadsheet.
3. Foot 5.4 (10 points)
4. Foot 5.13 (10 points)

