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1 Introduction

The Fabry-Perot interferometer is an optical device that uses multiple beam
interference to provide very high wavelength resolution.

2 References

1. Hecht

2. Jenkins and White

3 Operation

3.1 What do you look at?

The source should not be a point i.e. it is an extended source. In this way it
is quite distinct from a spectrometer with a slit which is purposely made small
and the resolution partially depends on the size of the slit. The key feature of
the extended source is that it provides roughly uniform source strength over a
modest angular range (i.e. it is not directed) and over a modest lateral size that
is roughly comparable to the lateral size of the Fabry-Perot mirrors. A lens can
be a great help since you can change the image size versus the object size.

3.2 What do you see?

When the spectrometer is properly set up with both mirrors exactly parallel
what you see is a set of rings that correspond to fringes of equal inclination

arising from multiple beam interference. The fringes themselves are localised at
infinity so in order to see them you need to use your own eye, a telescope, or
possibly a converging lens to focus them on a screen.
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4 Formulae

4.1 Ring Pattern

The key formula refers to the phase difference δ between any two beams that
exit from the space between the mirrors (the transmitted beams) at some angle
θ. This formula comes from thin films but is also applicable here.

δ =
4πnf

λ0
d cos θt + 2φ (1)

nf is index of refraction of the film or the medium between the mirrors (air in
our case so nf = 1). λ0 is the wavelength of the incident light. d is the spacing
between the mirrors. θt is the angle of the transmitted beam measured from
the normal (i.e. it is the deflection angle). φ is a phase difference that occurs
when light reflects from a metallic surface. For the present case with a d on the
order of millimetres the φ term is comparitively small.

The set of transmitted beams arising from multiple reflections all exit at
the same angle if the mirrors are parallel to each other. In addition a ray that
emenates from a different location on the source will produce a set of transmitted
rays at the same angle if the beams are parallel as they leave the source. The
transmitted parallel beams will then be seen as if they come from infinity as
opposed to a nearby object.

When will we see a maximum? When δ = 2πm where m is some natural
number.

m =
2d

λ0
cos θmax +

φ

π
(2)

Since d � λ0, m will be quite large. As long as d remains fixed m decreases
for the bright rings going out from the centre. This is in contrast to a grating
spectrometer where m decreases as you go to higher deflection angles.

Suppose that we see a maximum in the centre at θt = 0. We can estimate
m for the λ0 ≈ 590nm yellow line of sodium with d = 2 mm.

mcentre = 2
d

λ0
+

φ

π
≈ 2

0.002

5.9× 10−7
= 6780 (3)

Obviously you will need some coherence in the incoming wave so it can interfere
with itself over this many wavelengths.

Now where are the other rings? If the centre corresponds to m = 6780
then the first ring corresponds to m − 1 = 6779. Returning to equation 2 and
decreasing m by 1 we find if the maximum is at the centre then the angle of the
first ring is

θ =

√

λ0

d
. (4)

We have used the approximation cos θ ≈ 1 −
θ2

2 for small angles in radians.
With our previous example then θ = 17 milliradians=0.98o. Using a telescope
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is the easiest way to resolve this small angle (and also is easily set to focus at
infinity).

If you wanted to plot the angles for a series of rings n at small angles, calling
n = 0 the inner most ring and get a linear relationship you would modify
equation 2

mcentre − n =
2d

λ0

(

1 −
θ2

2

)

+
φ

π
(5)

θ2 =
λ0

d
n +

λ0

d

(

2
d

λ0
+

φ

π
− mcentre

)

(6)

Note that these rings are separated in angle not in position so that makes them
distinct from fringes of equal thickness which you saw with Newton’s rings.

4.2 Lines that are separated by roughly 1 Å

The example that I give in the lab for this is the yellow line of sodium. If
you look at it with a conventional spectrometer with a grating the sodium
yellow line looks single because of the resolving power of the spectrometer. In
principle you could use equation 6 to find the slopes of the two graphs for
the slightly different λ components but you might not be able to tell which
ring pattern is which. A better method involves changing d and noting the
positions of maximum discordance and maximum concordance. If λ1 and λ2 are
quite different from each other then you observe two distinct ring patterns of
different colour. However, if λ1 and λ2 are fairly close together the ring spacing
(related to the slope in equation 6) is almost the same. What is different for
the two wavelengths is the value of mcentre (i.e. the number of wavelengths
that fit betweent the mirrors) so the intercept in equation 6 is different. If the
intercepts happen to be the same then the two ring patterns almost overlap,
which you would call maximum concordance. If d is such that the bright spot
is in the centre (at θ = 0) then

m1,centre =
2d

λ1
+

φ

π
(7)

m2,centre =
2d

λ2
+

φ

π
(8)

If you change d slightly by ∆x then the rings you see have different mcentre

values. However, the intercept changes at different rates for the different wave-
lengths. It is easiest to see this with an example. Suppose that λ1 = 590.0 nm
and λ2 = 590.1 nm. For our earlier example the nominal values of mcentre

are m1,centre = 6779.7 and m2,centre = 6778.5. So roughly one more λ1 fits
between the mirrors than λ2. As we increase In fact let’s calculate d if we have
m1,centre−m2,centre = 1. Substitute this into equation 8 and take the difference
between the two equations

1 = 2d

(

1

λ1
−

1

λ2

)

(9)
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d =
1

2

λ1λ2

∆λ
(10)

which gives d = 1.74 mm for my example numbers. I have choosen the difference
between the m values to be 1. How much do I increase the d for the m values
to be different by j?

d =
j

2

λ1λ2

∆λ
(11)

Each time this happens the rings will be lined up for maximum concordance so
a plot of d versus j will give a straight line with slope λ2/2∆λ.

4.3 Very fine splitting

Suppose that you keep d fixed and look at a ring that is some angle θ0 away
from the centre. We introduce a magnetic field that causes the wavenumber
σ = λ−1 to change by ∆σ

∆σ = σ

(

cos θ0

cos θ
− 1

)

(12)

θ is the angle of a new line. You can expand for a small difference in θ0 and θ
(angular splitting) and for small angles. If θ = θ0 + ∆θ

∆σ ≈ σ

(

1 −
θ2

0

2

1 −
(θ0+∆θ)2

2

− 1

)

(13)

∆σ ≈ σ

((

1 −
θ2
0

2

)(

1 +
θ2
0 + 2θ0∆θ + ∆θ2

2

)

− 1

)

(14)

∆σ ≈ σ

((

1 +
θ2
0

2
+ θ0∆θ +

∆θ2

2
−

θ2
0

2
−

θ4
0

4
−

∆θθ3
0

2
−

∆θ2θ2
0

4

)

− 1

)

(15)

∆σ ≈ σθ0∆θ (16)

You could also use a Taylor expansion around θ0 to say that

cos(θ0 + ∆θ) ≈ cos θ0 − cos θ0 sin θ0 ∆θ. (17)

You can also use your angle information to find angular splitting versus magnetic
field. You can find the formula in your text for how much frequency changes in
the normal Zeeman effect and relate it to e/m.
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