
Solutions Midterm Quiz: Atomic and Molecular Physics 475

March 9, 2011

Use of text book (Foot) permitted. Total 44 points. Individual values follow each question. Try
and resist the temptation to look up all of the answers or you will run out of time. The written
answers don’t need to be long; they need to convince me that you know and understand the answer.

1. Give some evidence for the atomic theory of matter with names of prominent scientists.
(Doesn’t need to be complete but I would like 2 concrete pieces of evidence/contributions
and show the relation to atomic theory.) (6)

Answer:

(a) Faraday did electrolysis experiments to show that forces in matter were electromagnetic
in nature, different elements had different valences, there was a light, charged, funda-
mental constituent to atoms (electrons). He also found the Faraday constant which gives
the charge of one mole of electrons.

(b) Rutherford scattering by using alpha particles showed that there were very small, very
dense, highly positively charged parts to matter, what we now call the atomic nucleus.

(c) Balmer, Rydberg, and Ritz measured and modelled the spectral lines of one-electron
atoms. The spectral lines could uniquely identify different elements.

(d) Zeeman measured the splitting of spectral lines dues to a magnetic field. This effect
could be predicted by oscillations of particles with a particular e/m inside of atoms.

(e) Thomson’s measurement of e/m of cathode rays and the verification that the e/m was
the same for all cathode materials and trace gases in the tube verified that “electrons”
were a fundamental constituent of matter (a bit harder to link to atomic theory except
that electrons were identified as part of atomic structure).

(f) Einstein and Perrin made predictions and measurements of Brownian motion in matter
that was caused by impacts with individual molecules. This was one of the first definitive
measurements of Avogadro’s number.

(g) Bohr’s theory explained the Rydberg formula. It was based on quantization but it was
also based on a planetary model of individual atoms. It also predicted that atoms would
be roughly 1 Åin size.

2. What is the Zeeman effect? By explicit calculation give a scale for the frequency splitting
between optical modes with B = 1 T. What are the 3 modes of oscillation when a magnetic
field is applied to an oscillating electron (eigenvectors and eigenfrequencies) and how are they
named? How are these modes related to the selection rules for m for electric dipole transitions
in hydrogen? (10)

Answer: The Zeeman effect is the splitting of spectral lines when atoms are placed in a DC
magnetic field. For the normal Zeeman effect the splitting is given by the Larmor frequency,
ΩL. Converting from radial frequency to cyclic frequency

δf =
ΩL

2π
=

eB

4πme
(1)

(Note the fundamental role played by e/m.) Substituting B = 1 T this gives ΩL = 8.8 ×
1010 s−1 and δf = 14 GHz. If you compare to a typical optical frequency of c/(500 nm) =
6 × 1014 Hz then δf/f ≈ 2 × 10−5 ≈ 20 ppm.

1



The three modes of oscillation are σ+, σ− and π with radial frequencies of ω0+ΩL, ω0−ΩL and
ω0 respectively. If the direction of the magnetic field is the z-direction then the 3 respective
position eigenvectors are
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(2)

The radiation has a very particular polarization depending on the mode; σ+ is left-circularly
polarized, σ− is right-circularly polarized , and π is linear polarized. It is through this
polarization that the relationship is made to the δm selection rules. By using complex numbers
is it possible to express the polarization vector of any monochromatic wave in terms of these
components (see equation 2.33). The different A components correspond to radiation emitted
or absorbed from each of the three different values for δm.

3. Express y/r in terms of spherical harmonics and explicitly demonstrate the equality. (4)

I essentially covered this in the tutorial and it pretty much written in equation 2.31.

y

r
= sin θ sinφ = i

√

2π

3
(Y1,−1 + Y1,1) (3)

Using the definitions of spherical harmonics in Table 2.1

i

√

2π

3
(Y1,−1 + Y1,1) = i

√

2π

3

(
√

3

8π
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sin θeiφ
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(4)
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√

(

2π

3
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3
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sin θ(−2i)
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)

(5)

= −2i2
1

2
sin θ sinφ =

y

r
(6)

4. Give an example of a metastable state in hydrogen. Why is it metastable? Label this state
as appropriate for LS coupling (4)

Answer: The 2s electron configuration of hydrogen is metastable. It is metastable because it
is not the ground state (or lowest energy state) 1s and given time it will decay to the ground
state but at a rate much slower than say 2p. The reason for this is that the selection rules
for electric dipole radiation state that ∆ℓ = ±1. The transition from the ℓ = 0 2s state to
the ℓ = 0 1s state would have ∆ℓ = 0 so it cannot decay by electric dipole radiation.

In the LS coupling scheme this state would be labelled 2s 2S1/2.

5. What is fine structure? Physically (not just the formula) why is the degree of fine stucture
splitting so much bigger in lead than in hydrogen? Referring to Fig. 1.3 where is fine structure
evident? How big is it in this case? (6)

Answer: Fine structure arises from an extension of the Hamiltonian to include relativistic
effects. A proper solution would involve the Dirac equation but it possible to class them as
the relativistic mass correction, spin-orbit interaction, and Darwin term (for ℓ = 0 states).
(Note: the Lamb shift is not predicted by the Dirac equation; you need to quantize the electric
and magnetic fields as well to calculate it).
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Our studies of relativity have told us that the first order relativistic corrections are on the
order of v2

c2
(consider the γ factor of special relativity). The inner electrons in lead move much

faster than they do in hydrogen so we expect larger corrections. We also expect relativistic
corrections to break the degeneracy with respect to ℓ (recall our discussion of Sommerfeld’s
ellipitical orbits). That is exactly what we see in Fig. 1.3. The innermost or K shell with
n = 1 only permits ℓ = 0. The n = 2 or L shell can have ℓ = 0 or ℓ = 1 and the degeneracy is
broken. The overall splitting is between 3 and 4 keV. (I believe that the 3 levels correspond
to a Lamb shifted 2 S1/2, 2 P1/2, and 2 P3/2. Remember they are flipped upside down on this
diagram.)

6. In our discussion of excited states of helium we used degenerate perturbation theory. Why?
Give the expressions for the energy shifts and the names that go with them in the early part of
Foot Chapter 3. What modification is made to the perturbing Hamiltonian later in Chapter
3 and how is that modification related to the energy levels shown in Foot Fig. 3.4? (8)

Answer: There are two electrons in helium and the Hamiltonian, which involves the Coulomb
potential of the nucleus and the perturbation (electrostatic repulsion between the electrons),
predicts that the excited states are degenerate with respect to exchange of the electrons
(so for example being a bit loose with the notation the state 1s1p has the same energy
as 1p1s). However because we are dealing with identical fermions the state itself must be
antisymmetric (in both spin and spatial coordinates) under particle exchange. The spin
and spatial coordinates are distinct so in order to have overall antisymmetry one of them
must change sign under exchange and the other must not. Consider the spatial coordinates:
ψ1s1p 6= ±ψ1p1s so the eigenstates under particle exchange must be a linear combination of
these degenerate states. These linear combinations have different energies because of the K
exchange term and the same energy under the J or direct integral term.

Later in the chapter we change the “perturbation” so that we treat the “inner” electron as
though it sees a 2e nucleus and the outer electron as though it sees a shielded nucleus with
a charge 1e. You might also consider that setting the zero of energy to singly ionized He a
modification. (Of course there is no such thing as inner and outer in QM since you still need
to be able to switch the electrons and get the same state but it is very convenient to use
this language.). Now J and K are different and both become smaller as the outer electron
moves farther away, so the higher energy states approach the H energy levels. The new J is
represents a downward shift for both singlet and triplet states and the 2K is still the splitting
between the states.

7. Don’t calculate it but include the correct expressions for the R functions in equation 3.31 to
give a closed expression for J1s2p for helium (Be careful with the Z-values.) (6)

Answer: From Table 2.2
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(7)
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(8)

and then subbing into (3.31) and combining some terms
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Then if you wanted to actually evaluate it make sure that a0 matches all of the length
dimensions.

J1s2p =
e2

3πǫ0a0

∫

∞

0

{

∫

∞

r2

(

a0

r1
− a0

r2

)(

r1
a0

)2

exp

(

−4r1
a0

)

d

(

r1
a0

)

}

(

r2
a0

)4

exp

(

− r2
a0

)

d

(

r2
a0

)

(10)

4


