As a professional courtesy, please: - answer the questions in the order provided

- write your answers only on one side of each page
- leave some blank spaces for comments

1. For math practice, give the ordinary derivatives $(\mathrm{d} f / \mathrm{d} x)$ of the following functions:
a) $f(x)=-(10-x)^{2}$
[3] b) $f(x)=15 x /(x-3)$
c) $f(x)=a_{0}+a_{1} x+a_{2} x^{2} \quad\left(a_{0}, a_{1}, a_{2}\right.$ are constants $)$
2. Evaluate the following integrals:
a) $\int_{1}^{3} \frac{12}{x} \mathrm{~d} x$
b) $\int_{1}^{3} \frac{12}{x^{2}} \mathrm{~d} x$
c) $\int_{-1}^{3}\left(a_{0}+a_{1} x+a_{2} x^{2}\right) \mathrm{d} x$
3. The Stefan-Boltzmann law gives

$$
p=\beta T^{4} \quad\left(\beta=2.522 \times 10^{-16} \mathrm{~Pa} \mathrm{~K}^{-4}\right)
$$

for the pressure of thermal radiation (a "photon gas") at temperature T.
a) For thermal radiation, why is it permissible to replace the partial derivative $(\partial p / \partial T)_{V}$ with the ordinary derivative $\mathrm{d} p / \mathrm{d} T$?
[3] b) Use the thermodynamic equation of state $\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{V}-p$ to show $(\partial U / \partial V)_{T}=3 p$ for thermal radiation.
c) Does the energy of thermal radiation increase if it is compressed $(\Delta V<0)$ isothermally? Briefly justify your answer.
4. The van der Waals equation gives $p=\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}} \quad$ for the pressure of a nonideal gas.
a) Use $\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{V}-p$ to show $\quad\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{a}{V_{\mathrm{m}}^{2}} \quad$ for a gas described by the van der Waals equation of state.
[3] b) Does the energy of the gas increase if it is compressed isothermally? Justify your answer.
c) Prove a gas described by the van der Waals equation becomes ideal in the limit $p \rightarrow 0$.
5. a) The van der Waals a parameter for $\mathrm{Ar}\left(1.36 \mathrm{bar}_{\left.\mathrm{L}^{2} \mathrm{~mol}^{-2}\right)}\right.$ is significantly larger than a for He (0.0346 bar L ${ }^{2} \mathrm{~mol}^{-2}$). Why?
[2] b) The van der Waals b parameter for $\operatorname{Ar}\left(0.0320 \mathrm{~L} \mathrm{~mol}^{-1}\right)$ is significantly larger than b for He ($0.0238 \mathrm{~L} \mathrm{~mol}^{-1}$). Why?
6. The gravitational energy of mass m at elevation h above sea level is $U_{\mathrm{g}}=m g h$. Near the surface of the earth, the gravitational acceleration is $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$.
a) Calculate the change in gravitational energy $\left(\Delta U_{\mathrm{g}}\right)$ for 5.00 kg of water flowing over Niagara Falls, a drop of 51.0 m .
[2] b) The average flow rate of the Niagara River is $5.80 \times 10^{6} \mathrm{~kg} \mathrm{~s}^{-1}$. Calculate the power that could be generated if all the water flowing over the Falls is used to produce hydroelectricity. Give your answer in Watts, the SI unit of power ($1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$).
7. A 50.0 L tank is filled with methane at $-100^{\circ} \mathrm{C}$. A pressure gauge on the tank reads 100.0 bar.
a) Calculate the number of moles of methane in the tank using the ideal gas equation.
b) Repeat part a using the compression factors for methane plotted below.
[4] c) Explain why the calculation in part \mathbf{b} is more reliable than the calculation in \mathbf{a}.
d) Do repulsive $\mathrm{CH}_{4}-\mathrm{CH}_{4}$ intermolecular forces dominate attractive $\mathrm{CH}_{4}-\mathrm{CH}_{4}$ forces at $-100{ }^{\circ} \mathrm{C}$ and 100.0 bar? Justify your answer.

Compression Factor $Z=p V / n R T$ of Methane

