Chapter 1. Basic Concepts of Thermodynamics

Section 1.1 What is "thermodynamics"?

- a fundamental branch of physical science
- describes the behavior of matter on a macroscopic scale in terms of pressure, temperature, volume, and other measurable variables
- used to analyze transformations between heat, work, and different kinds of energy
- applies to any system (gas, liquid, solid, pure substances, mixtures, ...)
- does not require microscopic information (e.g., molecular or atomic structure, quantum mechanical wave functions, etc.)
- exact, no approximations, and no hand waving

Sections 1.2 and 1.3
 Macroscopic Variables and Thermodynamic Definitions

```
mass
m
kg
temperature
T
K(T/K =t/ }\mp@subsup{}{}{\circ}\textrm{C}+273.15
pressure
p
Pa (1 atm = 101325 Pa)
volumeV\(\mathrm{m}^{3}\)density\(\rho\)
\(\mathrm{kg} \mathrm{m}^{-3}\)
```


Thermodynamic Systems

System

Surroundings
material on which attention is focused for calculations and carrying out processes the rest of the universe

Thermodynamic Systems

Closed System

Open System
Isolated System

Homogenous System
uniform chemical composition and uniform intensive properties (e.g., aqueous NaCl solution at $300 \mathrm{~K}, 1$ bar)
Heterogenous System variable chemical composition and variable intensive properties (e.g., solid $\mathrm{NaCl}+$ aqueous NaCl solution at $300 \mathrm{~K}, 1 \mathrm{bar}$)
no exchange of heat with the surroundings
Diathermal System
no exchange of matter with the surroundings
exchanges matter with the surroundings
no exchange of matter or energy with the surroundings

Adiabatic System
can exchange heat with the surroundings

Thermodynamic ("Absolute") Temperature

$$
T / \mathrm{K} \equiv t /{ }^{\circ} \mathrm{C}+273.15
$$

Ideal Gas Thermometer

$$
\begin{gathered}
p V=n R T \\
T=\lim _{p \rightarrow 0}(p V) /(n R)
\end{gathered}
$$

Thermodynamic Temperature

At the triple point of pure water:

$$
\begin{array}{cll}
& \mathrm{H}_{2} \mathrm{O} \text { (vapour) } \\
\boldsymbol{\swarrow} & & \Xi \\
\mathrm{H}_{2} \mathrm{O} \text { (solid) } & \leftrightarrow & \mathrm{H}_{2} \mathrm{O} \text { (liquid) }
\end{array}
$$

Solid water (ice), liquid water, and water vapor are in equilibrium.

$$
\frac{\boldsymbol{T}_{\mathrm{tp}} \equiv 273.16 \mathrm{~K} \quad\left(=0.01^{\circ} \mathrm{C}\right)}{\text { (exact) }}
$$

Extensive System Properties

Proportional to the size and to the amount of material in a system.

Examples:

mass	m
number of moles	n
volume	V
energy	U
enthalpy	H
entropy	C
heat capacity	$(\partial V / \partial T)_{p},(\partial V / \partial p)_{T}$

Intensive System Properties

Depend on the nature of a system (its composition and state), but not on the size of a system (can be therefore be more convenient than some extensive properties). Examples:

Section 1.4 Equations of State

Equations relating the thermodynamic variables describing macroscopic systems. (Example: $p \boldsymbol{V}=\boldsymbol{n R T}$ for an ideal gas)

Why important?

- essential for understanding the bulk properties of matter
- equations of state are the macroscopic analogs of quantum mechanical wave functions for single atoms and molecules
- used to calculate thermodynamic properties and to design and operate industrial processes, engines, turbines, refrigerators, ...
- molecular models are used to develop equations of state
- inverting this procedure, equations of state are used to provide valuable information about molecular behavior and interactions

Thermodynamic Equation of State
 $$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{V}-p
$$

- Where from? Will be derived later using the First and Second Laws of thermodynamics.
- Describes how the energy (U) of a system changes as the system expands or contracts at constant temperature.
- $(\partial U / \partial V)_{T}$ is positive for molecules that attract each other, negative for molecules repelling each other.
- Useful in practice. The right side of the equation contains easily-measured temperatures, pressures, and volumes. Applies to any system.
- Exercise: Show $(\partial U / \partial V)_{T}=0$ for an ideal gas (noninteracting molecules, no attractive or repulsive forces).

Section 1.5 Ideal Gases

- no interactions between the molecules
- molecules are assumed to be point masses (zero molecular volume)

$$
p V=n R T \quad p V_{\mathrm{m}}=R T \quad p V=N k_{\mathrm{B}} T
$$

$p=$ pressure
$V=$ volume
$V_{\mathrm{m}}=V / n=$ molar volume
$n=$ number of moles of gas
$N=N_{\mathrm{A}} n=$ number of gas molecules
$N_{\mathrm{A}}=$ Avogadro number ($6.02214 \times 10^{23} \mathrm{~mol}^{-1}$)
$T=$ thermodynamic temperature
$R=$ gas constant ($8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}$)
$k_{\mathrm{B}}=R / N_{\mathrm{A}}=$ Boltzmann constant $\left(1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)$

Ideal Gas Isotherms

at a fixed temperature:

$$
p V=\text { constant }
$$

$$
\text { (hyperbola in } p, V \text {) }
$$

- Why is He more likely than NH_{3} to behave ideally?
- Why are all gases ideal in the limit $p \rightarrow 0$?
- The fluid at the center of the sun is under enormous pressure ($p \approx 2.5 \times 10^{9} \mathrm{~atm}, T \approx 15 \times 10^{6} \mathrm{~K}$) but behaves almost like an ideal gas. Why?

Ideal Gas Mixtures

total moles of gas $n=n_{1}+n_{2}+n_{3}+\cdots$
total gas pressure $p=p_{1}+p_{2}+p_{3}+\cdots$

$$
=\frac{n_{1} R T}{V}+\frac{n_{2} R T}{V}+\frac{n_{3} R T}{V}+\cdots
$$

notice:
$\frac{p_{i}}{p}=\frac{\frac{n_{i} R T}{V}}{\sum_{j} \frac{n_{j} R T}{V}}=\frac{n_{i}}{\sum_{j} n_{j}}=\frac{n_{i}}{n}=x_{i} \quad$ (mole fraction of gas i) partial pressure of gas $i \quad p_{i}=x_{i} p$

Section 1.5 Real Gases (Brief Introduction - more in Chapter 7)

The equation $p V=n R T$ is a useful approximation for the for the equation of state of gases. But ...

- real gases liquefy (attractive intermolecular forces)
- real gas molecules occupy volume (not point masses) and resist compression at high densities (repulsive intermolecular forces)

Challenges: • understand the causes of nonideal gas behavior

- develop accurate equations of state for real gases

Compression Factor Z

- \boldsymbol{Z} is dimensionless (no units)

$$
Z=\frac{p V}{n R T}=\frac{p V_{\mathrm{m}}}{R T}
$$

- convenient interpretation:

$$
Z=\frac{p}{\frac{n R T}{V}}=\frac{p}{p_{\text {ideal }}}
$$

- $Z=1$ for ideal gases (at all temperatures and pressures)
- $Z<1$ pressure lower than expected relative to an ideal gas (attractive forces dominate, $p<p_{\text {ideal }}$)
- $Z>1$ pressure higher than expected relative to an ideal gas (repulsive forces dominate, $p>p_{\text {ideal }}$)

Compression Factor $Z=p V / n R T$ of Methane

Typical behavior of real (nonideal) gases:
$\mathrm{Z}<1$ at low temperatures and moderate pressures
$Z>1$ at high pressures
$\mathrm{Z}=1$ as $p \rightarrow 0 \quad\left(V_{\mathrm{m}} \rightarrow \infty\right)$

Why?

At very low pressures, molecules are far apart. No interactions. $Z=1$

As the pressure and density increase, molecules a few diameters apart experience attractive forces. $Z<1$

At very high densities, molecules Experience short-range repulsive Forces. Z > 1

van der Waals equation of State for Real Gases

$$
\begin{aligned}
p & =\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}} \\
& =\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}}
\end{aligned}
$$

Johannes van der Waals
1910 Nobel Physics Prize

- parameter a reduces the gas pressure (representing attractive intermolecular forces)
- parameter \boldsymbol{b} increases the gas pressure (representing repulsive intermolecular forces)
- for ideal gases: $a=0, b=0$

Selected van der Waals a and b Parameters

Gas	$\boldsymbol{a} / \mathrm{bar} \mathrm{L}^{2} \mathrm{~mol}^{-2}$	$\boldsymbol{b} / \mathrm{L} \mathrm{mol}^{-1}$
He	$\mathbf{0 . 0 3 5 8}$	$\mathbf{0 . 0 2 4 0}$
Ne	$\mathbf{0 . 2 2 0}$	$\mathbf{0 . 0 1 7 6}$
Ar	$\mathbf{1 . 3 4}$	$\mathbf{0 . 0 3 1 7}$
Kr	$\mathbf{2 . 3 6}$	$\mathbf{0 . 0 3 9 9}$
CH_{4}	$\mathbf{2 . 2 8}$	0.0427
NH_{3}	$\mathbf{4 . 2 4}$	0.0373
$\mathrm{C}_{3} \mathrm{H}_{8}$	9.38	0.0903

- Why do parameters \boldsymbol{a} and \boldsymbol{b} for the noble gases increase with the number of electrons per atom?
- CH_{4} and NH_{3} both have 10 electrons. Why is \boldsymbol{a} for NH_{3} significantly larger than \boldsymbol{a} for CH_{4} ?
- Parameter \boldsymbol{b} is similar the molar volume of the liquefied gases.

Exercises

- Use the thermodynamic equation of state $\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{V}-p$ to show $\quad\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{a}{V_{\mathrm{m}}^{2}} \quad$ for a van der Waals gas.
- Why does the energy of a van der Waals gas increase as the gas expands isothermally?
- At high temperatures, why does the van der Waals equation simplify to $p=R T /\left(V_{\mathrm{m}}-b\right)$?
- Show that the van der Waals equation reduces to $p=R T / V_{\mathrm{m}}$ (the ideal gas equation) in the limit $p \rightarrow 0$.

Exercise

Calculate the pressure of ethane at $350 \mathrm{~K}\left(77^{\circ} \mathrm{C}\right)$ and a density of $218.1 \mathrm{~g} \mathrm{~L}^{-1}$ using:
a) the ideal gas equation
b) the van der Waals equation.

Data for ethane:

$$
\begin{aligned}
& 30.07 \mathrm{~g} \mathrm{~mol}^{-1} \text { molecular weight } \\
& a=5.58 \mathrm{~L}^{2} \mathrm{bar} \mathrm{~mol}^{-2} \\
& b=0.0651 \mathrm{~L} \mathrm{~mol}^{-1}
\end{aligned}
$$

TABLE 1.1 Units of Pressure and Conversion Factors

Unit of Pressure	Symbol	Numerical Value
Pascal	Pa	$1 \mathrm{Nm}^{-2}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
Atmosphere	atm	$1 \mathrm{~atm}=101,325 \mathrm{~Pa}$ (exactly)
Bar	bar	$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
Torr or millimeters of Hg	Torr	$1 \mathrm{Torr}=101,325 / 760=133.32 \mathrm{~Pa}$
Pounds per square inch	psi	$1 \mathrm{psi}=6,894.8 \mathrm{~Pa}$

TABLE 1.2 The Ideal Gas Constant, R, in Various Units

$$
\begin{aligned}
& R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& R=8.314 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& R=8.314 \times 10^{-2} \mathrm{~L}_{\mathrm{bar} \mathrm{~K}} \\
& -1 \\
& \mathrm{~mol}^{-1} \\
& R=8.206 \times 10^{-2} \mathrm{~L} \text { atm K} \\
& \\
& R \\
& \mathrm{~mol}^{-1} \\
& R=62.36 \mathrm{~L} \mathrm{Torr} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Exercise (cont.)

a) Calculate the pressure of ethane at $350 \mathrm{~K}\left(77{ }^{\circ} \mathrm{C}\right)$ and a density of $218.1 \mathrm{~g} \mathrm{~L}^{-1}$ using the ideal gas law.
ethane molar volume:
$V_{\mathrm{m}}=\frac{\text { molar mass }}{\text { density }}=\frac{30.07 \mathrm{~g} \mathrm{~mol}^{-1}}{218.1 \mathrm{gL}^{-1}}=0.1379 \mathrm{~L} \mathrm{~mol}^{-1}$
ethane pressure (using the ideal gas law):

$$
p=\frac{R T}{V_{\mathrm{m}}}=\frac{\left(0.08314 \mathrm{~L} \mathrm{bar} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) 350 \mathrm{~K}}{0.1379 \mathrm{~K} \mathrm{~mol}^{-1}}=211 \mathrm{bar}
$$

Calculated pressure is too high! (Measured pressure is 100 bar.)

Exercise (cont.)

b) Calculate the pressure of ethane at $350 \mathrm{~K}\left(77{ }^{\circ} \mathrm{C}\right)$ and a density of $218.1 \mathrm{~g} \mathrm{~L}^{-1}$ using the van der Waals equation. ethane pressure:

$$
\begin{aligned}
p & =\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}} \\
& =\frac{\left(0.08314 \mathrm{~L} \mathrm{bar} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) 350 \mathrm{~K}}{0.1379 \mathrm{~L} \mathrm{~mol}^{-1}-0.0651 \mathrm{~L} \mathrm{~mol}^{-1}}-\frac{5.58 \mathrm{~L}^{2} \mathrm{bar} \mathrm{~mol}^{-2}}{\left(0.1379 \mathrm{~L} \mathrm{~mol}^{-1}\right)^{2}} \\
& =399.7 \mathrm{bar}-293.4 \mathrm{bar} \\
& =106 \mathrm{bar}
\end{aligned}
$$

Close! (Measured pressure is 100 bar, ideal-gas pressure is 211 bar.)

Many other equations of state have been developed. Important example:

Virial Equation of State for Real Gases

(a power series in $1 / V_{\mathrm{m}}$)

$$
Z=\frac{p V}{n R T}=1+\frac{B(T)}{V_{\mathrm{m}}}+\frac{C(T)}{V_{\mathrm{m}}^{2}}+\frac{D(T)}{V_{\mathrm{m}}^{3}}+\cdots
$$

$1=$ first virial coefficient
$B(T)=$ second virial coefficient
$C(T)=$ third virial coefficient
$D(T)=$ fourth virial coefficient
$B(T), C(T), D(T)$, etc. are temperature dependent (not constant)

Exercise

Show that the second virial coefficient $B(T)$, a measure of the pairwise interaction of molecules, is related to the van der Waals
a and b coefficients:

$$
B(T)=b-\frac{a}{R T}
$$

Low Temperature Limit ($1 / T \rightarrow \infty$)

Why do this? It shows two models of nonideal gases are related, and gives useful and interesting information.

$$
B(T)=-\frac{a}{R T}
$$

attractive forces dominate

High Temperature Limit ($\mathbf{1 / T} \boldsymbol{\rightarrow} \mathbf{0}$)

$$
B(T)=b
$$

repulsive forces dominate
At the Boyle Temperature ($T_{B}=a / R b$)

$$
B\left(T_{\mathrm{B}}\right)=0=b-\frac{a}{R T_{\mathrm{B}}}
$$

Attractive and repulsive forces are balanced. Looks ideal. Fooled ya!

Exercise

Show that the second virial coefficient $B(T)$, a measure of the pairwise interaction of molecules, is related to the van der Waals a and b coefficients:

$$
\begin{aligned}
p & =\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}} \quad \begin{array}{l}
\text { multiply the van der Waals } \\
\text { equation by } V_{\mathrm{m}} / R T \text { to get } Z
\end{array} \\
\frac{p V_{\mathrm{m}}}{R T} & =Z=\frac{V_{\mathrm{m}}}{V_{\mathrm{m}}-b}-\frac{a}{R T} \frac{1}{V_{\mathrm{m}}} \\
\frac{p V_{\mathrm{m}}}{R T} & =\frac{1}{1-\left(b / V_{\mathrm{m}}\right)}-\frac{a}{R T} \frac{1}{V_{\mathrm{m}}} \\
\frac{p V_{\mathrm{m}}}{R T} & =1+\frac{b}{V_{\mathrm{m}}}+\frac{b^{2}}{V_{\mathrm{m}}^{2}}+\frac{b^{3}}{V_{\mathrm{m}}^{3}}+\cdots-\frac{a}{R T} \frac{1}{V_{\mathrm{m}}}
\end{aligned}
$$

Exercise

Calculate the Boyle temperature for methane, where $B(T)=0$ and the gas "appears" to be ideal.

Data: $\quad a=2.28 \mathrm{~L}^{2}$ bar mol $^{-2}, \quad b=0.0427 \mathrm{~L} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
\mathrm{T}_{\mathrm{B}} & =a / R b \\
& =\left(2.28 \mathrm{~L}^{2} \operatorname{bar~mol}^{-2}\right) /\left(\left(0.08314 \mathrm{~L}^{\text {bar mol }}{ }^{-1} \mathrm{~K}^{-1}\right)\left(0.0427 \mathrm{~L} \mathrm{~mol}^{-1}\right)\right. \\
& =642 \mathrm{~K} \quad\left(370^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Chapter 2. The First Law of Thermodynamics. Heat, Work, Internal Energy, and Enthalpy

Summary

- the internal energy \boldsymbol{U} of systems and its significance are discussed
- the First Law of Thermodynamics ($\Delta \boldsymbol{U}=\boldsymbol{q}+\boldsymbol{w}$) is used to relate changes in internal energy to the heat absorbed by a system (\boldsymbol{q}) and the work done on a system (w)
- enthalpy $\boldsymbol{H}=\boldsymbol{U}+\boldsymbol{p} \boldsymbol{V}$, heat capacities, and calorimetry are introduced
- state functions (e.g., U and H) and path functions (e.g., q, w) are distinguished
- $\Delta U, \Delta H, q$, and w calculations are illustrated for ideal gases
- differences between reversible and irreversible processes are noted

Section 2.1 Internal Energy and the First Law

The internal energy of a system can take many different forms:

- molecular translational, rotational, vibrational energy
- energy stored in chemical bonds
- potential energy due to interactions between atoms or molecules
- potential energy due to applied electrical, magnetic, or gravitational fields

The internal energy does not include kinetic energy of a system moving with respect to an external coordinate system, such as the kinetic energy of a pizza moving in a delivery vehicle.

Joule's Brilliant Experiment, Leading to the First Law

Before the development of microscopic theory, heat was treated (incorrectly!) as a "caloric fluid", flowing from warmer to cooler objects, leading to much confusion.

For a system in a thermally insulated container (no confusing heat flow!) changing from an initial state to a final state, Joule showed that the work done is the same for all processes, independent of the path connecting the two states.

$$
\begin{aligned}
& \text { The First Law of Thermodynamics } \\
& \text { If a system changes from an initial state to a } \\
& \text { final state, the work done is the same for all } \\
& \text { adiabatic processes }(q=0) \text { connecting the two states. }
\end{aligned}
$$

So what? Well, there are important consequences:
I) Because $\Delta U=U_{\text {final }}-U_{\text {initial }}=w_{\text {adiabatic }}$ is independent of the path taken from the initial to the final state of a system, an internal energy function U exists that is a function only of the state variables of systems [e.g., $\left.\Delta U=U\left(T_{\mathrm{f}}, V_{\mathrm{f}}\right)-U\left(T_{\mathrm{i}}, V_{\mathrm{i}}\right)\right]$.
II) Because U is a function, it can be differentiated and integrated.

$$
\mathrm{d} U=\left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial U}{\partial V}\right)_{T} \mathrm{~d} V \quad \Delta U=\int_{i}^{f} \mathrm{~d} U
$$

III) Mechanical definition of heat

$$
\Delta U=w_{\mathrm{ad}}=q+w \quad \text { (path-independent) }
$$

Allows heat flows to be calculated

$$
q=w_{\mathrm{ad}}-w
$$ in terms of well-known mechanical work quantities (a force acting through a distance).

IV) Heat and work are path-dependent, not state functions.

V) For any cyclic process (initial state $\ldots \rightarrow \ldots$ same initial state):

$$
\oint_{i}^{i} \mathrm{~d} U=0
$$

VI) From $\boldsymbol{\Delta} \boldsymbol{U}=\boldsymbol{q}+\boldsymbol{w}$ it follows that the energy of an isolated system $(q=0, w=0)$ is constant.

$$
(\Delta U=0)_{\text {isolated system }}
$$

The energy of the universe ("everything"!) is constant.
\Rightarrow Conservation of Energy

Section 2.2 Work

Thermodynamic work w is defined as energy entering a system from the surroundings due to a force \mathbf{F} acting through a distance \mathbf{x}.

$$
\Delta U=q+w
$$

if w is positive: the surroundings does work on the system and the internal energy of the system increases
if w is negative: the system does work on the surroundings and the internal energy of the system decreases
!! Warning !! In some treatments of thermodynamics, especially mechanical engineering courses, the opposite convention is used: $\Delta U=q-w$. In this case, w is positive if the system (e.g., an engine) does work on the surroundings.

Volume Expansion Work

 (also called $p V$ work)Piston of area A applies force F on the system in the cylinder. The applied force per unit area equals the external pressure acting on the system.

$$
w=\int_{x_{i}}^{x_{f}} \mathbf{F} \cdot \mathrm{~d} \mathbf{x}=-\int_{x_{i}}^{x_{f}} p_{\text {external }} A \mathrm{~d} x
$$

Why the minus sign? Because vectors \mathbf{F} and dx point in opposite directions. Note also that $A \mathrm{~d} x=\mathrm{d} V$, the change in volume of the system, which gives

$$
w=-\int_{V_{i}}^{V_{f}} p_{\text {external }} \mathrm{d} V
$$

Different Kinds of Thermodynamic Work

TABLE 2.1 Types of Work

Types of Work	Variables	Equation for Work	Conventional Units
Volume expansion	Pressure (P), volume (V)	$w=-\int_{V_{i}}^{V_{f}} P_{\text {external }} d V$	Pa m ${ }^{3}=\mathrm{J}$
Stretching	Force (F), length (l)	$w=\int_{x_{i}}^{x_{f}} \mathbf{F} \cdot d \mathbf{l}$	$\mathrm{~N} \mathrm{~m}=\mathrm{J}$
Surface expansion	Surface tension (γ), area (σ)	$w=\int_{\sigma_{i}}^{\sigma_{f}} \gamma \cdot d \boldsymbol{\sigma}$	$\left(\mathrm{~N} \mathrm{~m}^{-1}\right)\left(\mathrm{m}^{2}\right)=\mathrm{J}$
Electrical	Electrical potential (ϕ), electrical charge (Q)	$w=\int_{0}^{Q} \phi d Q^{\prime}$	$\mathrm{VC}=\mathrm{J}$

SI (Systeme International d'Unites) Base Units

length meter (m)
mass kilogram (kg)
time second (s)
from Greek metros (measure)
1000 grams, from Greek gramma (small amount)
second division of an hour, after minutes

SI Units Named after Scientists

force (mass times acceleration): Newton $(\mathrm{N})=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
energy (force times distance): Joule (J) $=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
pressure (force per unit area): $\operatorname{Pascal}(\mathrm{Pa})=\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-2}$
temperature Kelvin (K)

Other Units

liter $(\mathbf{L})=0.001 \mathrm{~m}^{3}$

$$
\begin{aligned}
& \text { bar }(\mathbf{b a r})=100,000 \mathrm{~Pa} \\
& \text { atmosphere }(\mathbf{a t m})=101,325 \mathrm{~Pa}
\end{aligned}
$$

$$
\text { torr }(\text { torr })=1 / 760 \mathrm{~atm}
$$

$$
=101325 / 760 \mathrm{~Pa}
$$

from French litron (a unit of volume)
from Greek baros (weight)
from Greek atmos (vapor) and sphaira (sphere)
named after Torricelli (who developed barometers to measure pressure), the pressure exerted by a 1 mm tall column of liquid mercury
from German molekul (molecule)
mole (mol) $=$ number of atoms in 12 grams of ${ }^{12} \mathrm{C}$

Exercise

2.00 moles of an ideal gas expands isothermally at 300 K from an initial pressure of 5.00 bar to a final pressure of 2.00 bar.
a) The expansion is carried out rapidly and irreversibly with the external pressure suddenly reduced to 2.00 bar: $p_{\text {external }}<p$
b) The expansion is carried out slowly and reversibly with the external pressure infinitesimally less than the gas pressure: $p_{\text {external }}=p$

$$
V_{i}=\frac{n R T}{p_{i}}=\frac{(2.00 \mathrm{~mol})\left(0.08314 \mathrm{~L} \mathrm{bar} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K})}{5.00 \mathrm{bar}}=9.977 \mathrm{~L}
$$

$V_{f}=\frac{p_{i}}{p_{f}} V_{i}=\left(\frac{5.00 \mathrm{bar}}{2.00 \mathrm{bar}}\right) 9.977 \mathrm{~L}=24.94 \mathrm{~L}$

Exercise (cont.)

a) 2.00 moles of an ideal gas at 300 K and 5.00 bar expands isothermally and irreversibly against a constant 2.00 bar external pressure to a final pressure of 2.00 bar. Calculate the work.

$$
\begin{aligned}
w & =-\int_{V_{i}}^{\downarrow} p_{\text {external }}^{V_{f}} \uparrow \\
\mathrm{~d} V=-p_{\text {external }} \int_{V_{i}}^{V_{f}} \mathrm{~d} V & \begin{array}{l}
\text { Why? } p_{\text {external }} \\
\text { is constant. }
\end{array} \\
& =-p_{\text {external }} \int_{V_{i}}^{V_{f}} \mathrm{~d} V=-p_{\text {external }}\left(V_{f}-V_{i}\right)=-p_{\text {external }} \Delta V \\
& =-(2.00 \text { bar })(24.94 \mathrm{~L}-9.977 \mathrm{~L})\left(10^{5} \mathrm{~Pa} \mathrm{bar}^{-1}\right)\left(10^{-3} \mathrm{~m}^{3} \mathrm{~L}^{-1}\right)
\end{aligned}
$$

$$
w=-2993 \mathrm{~J}
$$

Work is negative for the expanding gas.
Does this make sense?

Exercise (cont.)

b) 2.00 moles of an ideal gas at 300 K and 5.00 bar expands isothermally and reversibly to 2.00 bar against a slowly reducing external pressure equal to the gas pressure $\left(p_{\text {external }}=p\right)$.

$$
\begin{aligned}
w & =-\int_{V_{i}}^{V_{f}} p_{\text {external }} \mathrm{d} V=-\int_{V_{i}}^{V_{f}} p \mathrm{~d} V=-\int_{V_{i}}^{V_{f}} \frac{n R T}{V} \mathrm{~d} V \\
& =-n R T \int_{V_{i}}^{V_{f}} \frac{\mathrm{~d} V}{V}=-n R T \int_{V_{i}}^{V_{f}} \mathrm{~d} \ln V=-n R T \ln \left(V_{f} / V_{i}\right) \\
& =-(2.00 \mathrm{~mol})\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K}) \ln (24.94 / 9.977)
\end{aligned}
$$

$$
w=-4570 \mathrm{~J}
$$

Important! More work is done on the surroundings if the expansion is reversible.

Indicator Diagrams: plot $p_{\text {external }}$ against V

Area under the curve is $-w$. Graphical representation of work done.

a) Irreversible Expansion

$$
\begin{aligned}
p_{\text {external }} & =2 \mathrm{bar}<p \\
w & =-2993 \mathrm{~J}
\end{aligned}
$$

b) Reversible Expansion

$$
\begin{aligned}
p_{\text {external }} & =p \\
w & =-4570 \mathrm{~J}
\end{aligned}
$$

How do these calculations show that the work $\quad w=-\int_{V_{i}}^{f} p_{\text {external }} \mathrm{d} V$
is a path function, not a state function?

Reversible and Irreversible Expansions

Reversible Expansion: $p_{\text {external }}=p$

The mass holding down the piston is gradually reduced in small increments (e.g., 1 mg). $p_{\text {external }}$ is only infinitesimally smaller than the gas pressure p. The gas pressure in the cylinder and the external pressure are balanced. The small mass increments can be replaced, reversing the expansion.

Irreversible Expansion: $p_{\text {external }}<p$

All of the mass holding down the piston is suddenly removed. The gas expands against a lower external pressure. To reverse the process, the mass would have to be lifted to the top of the piston, requiring additional work - not reversible.

