Chapter 2. The First Law of Thermodynamics.
Heat, Work, Internal Energy, and Enthalpy

summary
the internal energy U of systems and its significance are discussed

the First Law of Thermodynamics ( AU =g + w ) is used to relate
changes in internal energy to the heat absorbed by a system (q) and the
work done on a system (w)

enthalpy H = U + pV, heat capacities, and calorimetry are introduced
state functions (e.g., U and H) and path functions (e.g., q, w) are distinguished
AU, AH, g, and w calculations are illustrated for ideal gases

differences between reversible and irreversible processes are noted



Section 2.1 Internal Energy and the First Law

The internal energy of a system can take many different forms:

® molecular translational, rotational, vibrational energy
® cnergy stored in chemical bonds

® potential energy due to interactions between atoms or
molecules

® potential energy due to applied electrical, magnetic, or
gravitational fields

The internal energy does not include kinetic energy of a system
moving with respect to an external coordinate system, such as the
Kinetic energy of a pizza moving in a delivery vehicle.



Joule’s Brilliant Experiment, Leading to the First Law

Before the development of microscopic theory, heat was treated (incorrectly!) as a
“caloric fluid”, flowing from warmer to cooler objects, leading to much confusion.

For a system in a thermally insulated container (no confusing heat flow!) changing
from an initial state to a final state, Joule showed that the work done is the same
for all processes, independent of the path connecting the two states.

adiabatic (q = 0) processes:

1000 J electrical work

or

1 ' k ..
H,0 (liquid) 000 J viscous wor H,0 (liquid)

1.000 mol or 1.000 mol
33.28 °C

20.00 °C o
1000 J tat | k
1.000 bar g 1.000 bar

or

1000 J frictional work

INnitial state 1 same final state f



The First Law of Thermodynamics
If a system changes from an initial state to a
final state, the work done is the same for all
adiabatic processes (g = 0) connecting the two states.

So what? Well, there are important consequences:

) Because AU = Ug i — Uiniia = Wagianatic 1S INdependent of the
path taken from the initial to the final state of a system,
an internal energy function U exists that is a function only of the

state variables of systems [e.g., AU = U(T;,Vy) — U(T;,V)) ].

1) Because U is a function, it can be differentiated and integrated.

oU oU
dU = | — | dT — | dV —
(aT)V " (ava AU = [dU



[11) Mechanical definition of heat

adiabatic path
initial final
state w=2800J,q=200J state

non-adiabatic path

AU = w4, = g + w (path-independent)

Allows heat flows to be calculated
=Wy — W In terms of well-known mechanical

work quantities (a force acting through
a distance).




I\VV) Heat and work are path-dependent, not state functions.

T VG ) S P
WD) O, (WT AW S —w

V) For any cyclic process (initial state ...—... same initial state):

VI) From AU = g + w it follows that the energy of
an isolated system (q = 0, w = 0) is constant.

(AU = O)isolated system

The energy of the universe (“everything™!) 1s constant.

—> Conservation of Energy



Section 2.2 Work

Thermodynamic work w is defined as energy entering a system from
the surroundings due to a force F acting through a distance X.

W:jF-dx AU = q + w

If w is positive: the surroundings does work on the system and the
Internal energy of the system increases

If wis negative: the system does work on the surroundings and the
Internal energy of the system decreases

T Warning ! In some treatments of thermodynamics, especially mechanical _
engineering courses, the opposite convention is used: AU = g — w. In this case, w Is
positive if the system (e.g., an engine) does work on the surroundings.



Volume Expansion Work
(also called pV work)

ggggamcal : (_ XI
i Piston of area A applies force F on the

~ .. system in the cylinder. The applied force

- per unit area equals the external pressure

ystem acting on the system.
P . N
X:// X y
Initial state W = -“F . dX = — I pexternal AdX
X; Xi

Why the minus sign? Because vectors

F and dx point in opposite directions.
Note also that Adx = dV, the change in
volume of the system, which gives

Final state

Vi
W= - j pexternaldv
Vi




Different Kinds of Thermodynamic Work

TABLE 2.1 Types of Work

Types of Work Variables

Volume expansion Pressure (P), volume (V)

Stretching Force (F), length (/)

Surface expansion Surface tension (7y), area (o)

Electrical Electrical potential (¢), electrical charge (Q)

Equation for Work Conventional Units
Vs
w = _/V Pexterna AV Pam’ =]

.\'f
w=/ F-dl Nm=]
Xi
()'f
w=/ v do (Nm™)(m?) =]
a;

0
w=/¢dQ' vVC=1]
0




S| (Systeme International d’Unites) Base Units

length meter (m) from Greek metros (measure)
mass kilogram (kg) 1000 grams, from Greek gramma (small amount)
time second (s) second division of an hour, after minutes

SI Units Named after Scientists

force (mass times acceleration): Newton (N) = kg m s
energy (force times distance): Joule (J) = kg m? s

pressure (force per unit area): Pascal (Pa) = kg m=2s2

temperature Kelvin (K)




Other Units

liter (L) = 0.001 m3 from French litron (a unit of volume)
bar (bar) = 100,000 Pa from Greek baros (weight)
atmosphere (atm) = 101,325 Pa from Greek atmos (vapor) and

sphaira (sphere)

1/760 atm named after Torricelli (who developed
101325/760 Pa barometers to measure pressure),
the pressure exerted by a 1 mm tall
column of liquid mercury

torr (torr)

mole (mol) = number of atoms from German molekul (molecule)
in 12 grams of 12C



Exercise

2.00 moles of an ideal gas expands isothermally at 300 K from an
Initial pressure of 5.00 bar to a final pressure of 2.00 bar.

a) The expansion is carried out rapidly and irreversibly with the
external pressure suddenly reduced to 2.00 bar: Pgyerna < P

b) The expansion is carried out slowly and reversibly with the
external pressure Infinitesimally less than the gas pressure: Peyernal = P

~ nRT  (2.00 mol)(0.08314 L bar K™ mol™) (300 K)

= 9977L
P, 5.00 bar

T [5.00 bar

V, = 2LV
2.00 bar

J 0977L = 2494 L
P+



Exercise (cont.)

a) 2.00 moles of an ideal gas at 300 K and 5.00 bar expands
Isothermally and irreversibly against a constant 2.00 bar external
pressure to a final pressure of 2.00 bar. Calculate the work.

e
v ] v ST
_ pexternaldv - = pexternal Idv is Cohstgﬁitnal
Vi V;

W =

Vi
=~ Pexterna Jdv - - pexternal(vf _Vi) - p9Xterna|AV
Vi

= —(2.00 bar) (24.94 L-9.977 L) (10° Pa bar™) (10° m° L)

— Work is negative for the expanding gas.
W= —2993J Does this make sense?




Exercise (cont.)

0) 2.00 moles of an ideal gas at 300 K and 5.00 bar expands
Isothermally and reversibly to 2.00 bar against a slowly reducing
external pressure equal to the gas pressure (Peyternat = P)-

W = —\]I PoriernadV = —\} pdV :—\}ﬂdv
Vi V, V, Vv

v p
_ —nRTj7 = —nRT [dInV = —nRTIn(V, /V,)
V, V,

= —(2.00 mol) (8.314 J K™ mol™) (300 K) In(24.94/9.977)

Important! More work is done on the

W= —-4570 surroundings if the expansion is reversible.




Indicator Diagrams: plot p,ina 8gainst V

Area under the curve is —w. Graphical representation of work done.

a) lrreversible Expansion b) Reversible Expansion
pexternal - 2 bar < p pexternal = p
w =-2993 J w=-4570J
6 T T T T T T T T T T T
51 ¢ Py Y
« 4F p
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\g 3 I | ‘_EU
5 Pr. Vs &
o 2 | |
—> >
LT area = J '
08 10 12 14 16 18 20 22 o4 o6 8 10 12 14 16 18 20 22 24 26
V/iL VIL

Vs
How do these calculations show that the work w = — j PoyternadV
IS a path function, not a state function? V,




Reversible and Irreversible Expansions

Reversible Expansion:  Payternal — P

The mass holding down the piston is

gradually reduced in small increments (e.g., 1 mg).
Pexternat 1S ONNY Infinitesimally smaller than the gas
pressure p. The gas pressure in the cylinder and the
external pressure are balanced. The small mass
Increments can be replaced, reversing the expansion.

Irreversible Expansion: Peyternal < P

All of the mass holding down the piston is

suddenly removed. The gas expands

against a lower external pressure. To reverse the
process, the mass would have to be lifted to the top

of the piston, requiring additional work — not reversible.




Sections 2.3-2.5 Heat and Heat Capacity

Heat is defined as energy flowing into a system from the
surroundings because of a temperature difference.

Heat flows spontaneously from regions of higher temperature
to regions of lower temperature.

Electrical
generator

/“'
Heating |

M

Mass

Propane Bunsen burner




Molecular Interpretation of Heat

The internal energy U of a system increases If:

e the system absorbs heat g from the surroundings
e Work w is done on the system

AU =g+ w First Law

Work is easily understood in mechanical terms of a force
acting through a distance.

But what is heat?



Molecular Energy Levels

Quantum mechanics shows that molecules have electronic,
vibrational, rotational, and translational energy levels.

AE electronic
AE, vibration < AE rotation < AE. translation
Rotational Translational
Vibrational energy Iene: aqy
energy levels evels
levels
Electronic
energy

levels



Typical Molecular Energy Level Spacings

TABLE 2.2 Energy Level

Spacings for Different Degrees

of Freedom

Degree of Energy Level
Freedom Spacing
Electronic 5% 107197
Vibration 2 % 167297
Rotation 2510727

Translation 2 X 1074 ]




Molecules are Raised to Higher Energy Levels
When a System Absorbs Heat

4x1028 -

4x102
300 K 350 K

ElO

3%10%° = 3% 1023 -
heat Es

—
E z
3 2x10% - 2x 102 i
Ll

1x 1028 — 1x 1028

Internal Energy U =» N,E



Heat Capacity C

Add heat g to a system, increasing its temperature

by AT=T,—T,
c - lim L
AT >0 AT

Why take the limit AT — 0?

C gives the amount of heat required to increase the temperature

of asystemby 1K (= 1°C).

The heat capacity (extensive guantity) increases with the
mass of a system and with the number of accessible molecular
energy levels.



Heat Capacity Measurements

thermometer = hed an electric heater

In the system.

Electric current I flowing through
voltage difference ¢ for time t
delivers heat

Electrical
generator

Mass q — | ¢t
Heating
coil

to the system. For small
temperature changes (AT = 0):

T

AT




Heat Capacity at Constant Volume (C,))

Add heat dg to a system at constant volume (dV = 0).
If the only kind of work is p-V work, then

dU, = dg + dw (First Law)
= dqv - pexternala\éO

— qu
Heat capacity at constant volume:
C, = dg, _ du,
dT dT better notation:

oU
()




Molar Heat Capacities at Constant Volume (C, ) for Gases

Cy m/J K-1mol -1

o
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CO,
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He

200

400 600 800 1000
Temperature/K

For He at low pressures (assuming 1deal
behavior, i.e. no He-He interactions),
the energy of one mole of gas 1s the
kinetic energy of the atoms moving

in three dimensions.

E quipartition Theorem:
Each energy mode contributes R/2 to Cp, |

For He (and other monatomic gases):

Cp = 3(R/2) = 12.51 Kmol!

CO, CO,, C,H,, and other polyatomics
have translational, rotational, and
vibrational energies, and therefore
larger heat capacities.



Heat Capacity at Constant Pressure (C,)

Add heat dqj, to a system at constant pressure (P = Peyternar)-

If the only kind of work is p-V work, then dU =dqg + dw Is
du = dqp o pexternaldv

Notice dg, = dU + d(pV) = d(U + pV). Suggests ...
Define the enthalpy H=U + pV (anew state function)
dg, = dH,

Heat capacity at constant pressure Is

oH
P
dT  dT )




Molar Heat Capacity
at Constant Pressure 60
for ClI, ”

N
o

C, gnd C,m are generally
easier to measure
than C,, and C,...

Cpm/J KT mol~1
W
o

N
o

IlllllllllllIlIllllIllllIllllIllll

Gas

Why?

.
o

Solids and liquids heated at
constant volume exert enormous L LR B

- 100 200 300 400
prelslsures on the container Temperature/K
walls.




Why Measure Heat Capacities?

U (oH
G :(a—Tl Cp‘(m)p

Example A Heat a system at constant volume from temperature T,
to final temperature T; . The internal energy U(T,V) is a state function.
Why not directly calculate the initial and final internal energy?

AU = Ue(T¢, V) = U(T,, V) = qy

Example B Heat a system at constant pressure from temperature T,
to final temperature T; . The enthalpy H(T,p) Is a state function.
Why not directly calculate the initial and final enthalpy?

AH = H(T¢, p) — Hi(T;,p) = q,




Why Measure Heat Capacities?

Example A Heat a system at constant volume from
temperature T, to final temperature T .

AU = U(T;, V) —U(T;, V) = ay

Example B Heat a system at constant pressure from
temperature T, to final temperature T .

AH = H(Ts p) —Hi(T, p) = q,

Functions U(T,V) and H(T,p) are known to exist, from the First Law.

But there’s a big problem :

Except for very simple systems, such as ideal gases,
the state functions U(T,V) and H(T, p) are unknown!




What to do?

Example A Heat a system at constant volume from
temperature T, to final temperature T .

AU = Uf(Tﬁ V) _Ui(ThV) = Qv

Absolute internal energies U¢ (T¢,V) and Uy(T;,V) are unknown.

But: C, :(Z—?j multiply both sides by dT
V
CVdTV = dUV integrate at constant volume
Tf Uf
[c,dT = [du, = U.V) -U@V) = AU,
T, U,

Can use C,, data to calculate the change in the internal energy.




What to do?

Example B Heat a system at constant pressure from
temperature T, to final temperature T .

AH = H{(Ts, p) — Hi(T;, p) = q,
Absolute enthalpies H¢ (T¢,p) and H(T;,p) are unknown.

But: Cp = (@j multiply both sides by dT
oT ),
C pdTp = de integrate at constant pressure
T, H,
[cdT = [dH, = H(T,p) - H(T.p) = AH,
T, H.

Can use C, data to calculate the change in the enthalpy.




Relation Between C,, and C,

First Law (at constant pressure): dU = dqg+ dw = dqp _

U(V, T) is a function that can be differentiated.

dU - (auj 4V + (auj 4T =dg, — pdV
N ). oT

Divide by dT at constant pressure to get

(auj dV (au) dr _da, v
NV ) dT, \aT ) dT, dT, ' dT,

(ﬂj Cy 1" C, (ﬂj
oT ), oT ),

pdV



Relation Between C,, and C, (cont.)

oU oV oV
(a—vl(a—ij = p(a—Tl

Rearranges to

oU oV
C - = + | — —
& {p (@vu(mjp

Application: Measure C,, then use the equation for C, - C,, to
calculate C,, (difficult to measure for gases and solids).




Relation Between C,, and C, (cont.)

Use the thermodynamic VY _ +(op| _ )
equation of state oV J; oT )y

to get

_ (9P (Vv
“m &S T(@TM@TL

Significance: The heat capacity difference C,— C,, for any system
can be calculated from p-V-T data or from equations
equations of state (calorimetry not required)




Exercise: Evaluate C,—C,, for Ideal Gases

(pV = nRT)

For ideal gases, recall from Chapter 1 that (0U/6V); = 0. Proof:

|

au
oV

)

p
= 7| _
(aij P

_ T(@[nRT/V]) b
o )

TnR(@Tj_p

v Lot ),

nR

- T—U-p = p-p=0
V() p = p-p

Important The internal energy of an ideal gas
depends only on the temperature.




Exercise: Evaluate C,—C,, for Ideal Gases (cont.)

er-e=[o (&)%),

jp 0

(2
oT

(8[nRT/ p]j

P

C, — Cy = nR
Com — Cum = R

Pl T
2
P
R 1

divide by n:

per mole of gas

n, R, p are constant

e Why is C, larger
than C,/?




Section 2.6 State Functions and Path Functions

® internal energy U and enthalpy H are state functions
(also called point functions)

® state functions depend only on the state variables of systems,
such as T, V, composition

® the change in a state function is identical for any process
connecting two states of a system

® work w and heat g are path-dependent (not state functions or
functions)

® (ifferent values of g and w are obtained for different
processes connecting two states of a system



Mathematical Test for a State Function

Given df =g(x, y)dx+h(x, y)dy

the state function f(x,y) exists only if

5_9 =(ahj the *“test”
oy ) OX y

Why? If the function f(x,y) exists, then f can be differentiated

df = (6fj dx + (2;] dy = g(x, y)dx+h(x,y)dy

OX

(o of
g(x,y)—(axjy h(x,y) = (8yj

Because the order of second partial differentiation doesn’t matter:

23] -2 553

(ox first then oy) (0y first then ox)



Exercise: For the function f(x,y) = 6x2y3, prove

ESIREG

Left Side (ox first then oy):

O (N | _ | 0(a6XYT) | 10 (s 0w o3\ g oy 2y
{ay(ax)yl‘ ay( ox j {ay(6 2”)1‘6” »

= 36xy°

Right Side (oy first then ox):

0 ( of (A YT | | 0 (nvz a2} 1oy au?
LﬂX(é‘yMy_ {@XK oy ” _L’?X(GX ’ y)l_lzx K

y
= 36Xy’




Exercise: Show that C,, is constant for an isothermal (fixed T )
Ideal gas.

oC, | I 8 8U reverse the order of
EYa differentiation

Rk (&9\) }

(8(O)j 0 for an ideal gas
oT




Exercise: Show that the state function q(T,V) does not exist
for an ideal gas.

dU = dgq + dw First Law
The internal energy of an ideal gas (dU = C,dT) depends only on T.
C,dT = dgq + dw = dg — pdV

Rearrangesto |dg = C,dT + pdV

Test: q(T,V) exists if (0C,/oV); and (Jp/oT), are identical.

But for an ideal gas, (0C,/0V); = 0 (previous slide) and

(@) - {8(nRT/V)} _nR(@Tj _MR
aT ), or J, V\or), V

Conclusion: the state function q(T,V) does not exist for an ideal gas.




Sections 2.7 to 2.11. Expansion and Compression of Ideal Gases

Why studied?
® mportant for the design and operation of engines, turbines,

compressors, rockets, ...

® refrigeration and heat pumps

® meteorology (e.g., rising air cools, sinking air warms up) and
fluid mechanics

® understanding sound waves, shock waves, ballistics,
explosions, ...

® uyseful application of thermodynamic calculations



Application: Steam Turbines

e heat is produced by burning
coal, oil, natural gas, or by
nuclear fission of uranium

e the heat is used to boil
water, producing
high-pressure steam

e the expanding steam spins
the blades of a turbine

e the rotating turbine shaft
runs a generator to produce
electricity



|deal Gas Internal Energy Calculations. du =C,dT

T Constant or variable volume.
Integrated AU = ijdT Reversible or irreversible
. processes. Why?
| Tf
Constant C,, AU =C, j dT =C,(T; —T.)
Ti
Enthalpy (H = U + pV ) Calculations. dH =C.,dT
Tt Constant or variable pressure.
Integrated AH = ijdT Reversible or irreversible
T processes. Why?

Tf
Constant C, AH = CdeT =C, (T, -T,)
Ti



Work Calculations. dW = —PyiernadV

Integrated W= —j Pesterna @V

Constant Pgyernal W= = Peyternal _[dv = ~ Pexterna (Vf _Vi)
V.

Vi
Reversible process |, — _J’ odV = jﬂdv
(pexternal p)

Vs
Reversible process v _ _RT jidv — _nRTIn Vi
(constant T) v Vi

Reversible process W:—p\i‘:dv = _p(V, -V.) = —nR(T, -T)
(constant p) | o Fo



Heat Calculations. ¢

Calculate w and AU, then use the First law to calculate
q=AU-w

Add heat at constant volume (w = 0):

qy = AU

Add heat at constant pressure:

q, = AH

Adiabatic processes: q = 0

Whyare AQ = ¢; — g; and Aw = w; — w; nhever used ?




Example Problem 2.4

2.00 mol of ideal gas expands isothermally along three different paths:

1) Areversible expansion from p; = 25.0 bar and V; = 4.50 L
to ps = 4.50 bar.

2) Asingle-step irreversible expansion against a constant
external pressure of 4.50 bar.

3) Atwo-step irreversible expansion against

a constant external pressure of 11.0 bar to a gas pressure of
11.0 bar followed by a second irreversible expansion against
a constant external pressure of 4.50 bar until p; = 4.50 bar.



P/bar

25

20

15

o,

ke v beesral 3 oy g

Example Problem 2.4 (cont.)

Path 1. «o-Step. Work = —(4, + A, + A, +A,+ A,)

------ (reversible) -19,300 J
Path 2. 1-step. Work = —(A,+A;) =-9,200J
Path 3. 2-step. Work = —(4A;+A,+A) = —-12,900J
NN
} 4%
, WO

;.i"""'il;.4'ilf§f///////////////////////

VIL



Example Problem 2.4 (cont.)

Work done by the isothermal expansion of 2.00 mol of ideal gas
from 25.0 bar and 4.50 L to 4.50 bar and 25.0 L

Path work w work done on surroundings -w
1-step irrev. -9,200 J 9,200 J
(Pext < P)
2stepirrev.  —12,00 ] 12,900 J
(Pext < P)
oo-Step rev. -19,300 J 19,300 J

(Pexe = P = NRTIV)

Important result: Reversible (quasi-static) expansion does
maximum work on the surroundings




Comparison of Reversible (co-step) and Irreversible Processes

- ; EXxpansions
-5 -? (w<0)

= B Wiev < Wirrey

More work done on the
surroundings for a
reversible expansion.

: i ; Compressions
] i ] (W > O)
Wrev < Wirrev

Less work required for a
reversible compression.

v

© 2013 Pearson Education, Inc.



Adiabatic (g = 0) Expansions and Compressions

e no heat flow In to or out of a system

e applies to processes for insulated systems and to
“fast” processes (no time for heat conduction)

e Important examples: explosions, shock waves, sound waves,
and power-generating steps in engine cycles

0
dU :%"' dw = dw = _pexternaldv

For ideal gases (U depends onlyon T, dU = C,dT), get:

T

Vs
CVdT = _pexternaldv _[CvdT - = j pexternaldv
Vi

T




Reversible Adiabatic Expansion or Compression of an Ideal Gas

reversible: Pegierna = P

CVdT - = pexternaldv = —pdV = _n\F;—TdV
dT dVv
S — _nR_
S T V
Ty Vi
jcvd_T _ R jd_V
1T Y

Tricky to integrate! C,, T, V are all changing!

But if the heat capacity C,, is constant, ...



Reversible Adiabatic Expansion or Compression of an Ideal Gas
Constant C,,

T T Vv
- dT -dT - dV
C,— =CJ— = -mR|T
& =a]5 = Iy
T V
C, Ian = —anan use C,,, = Cy/n to get:
T V. o gonstant Cym
CimIn— = —RIn—| e ideal gas
Ti V e valid for monatomic gases

and polyatomics over small
temperature ranges (then
Cypm, 18 “almost” constant)



Exercise: Air, initially at 25 °C, is compressed adiabatically by a
factor of 9 (= compression factor V;/V;).
Estimate the final temperature T-.

N, and O, molecules have three translational modes and two
rotational modes of kinetic energy, each contributing R/2 to C,,,...

Data: Cym = 3(R/2)yans T 2(R/2),.. = 5(R/2)
T. = (25+273.15) K =298.15K
vf/vi = 1/9
Use: '|'f Vf
In— = —RIn—
o Ti v
7( K 1 solve for:
— = —RIn= T,=718 K (445 °C)
298. 15K d "1 HHHot 111

(assumes compression is reversible and C,,,, is constant)

Application: Diesel engines (reliable and efficient) don’t need spark plugs.




No heat is added to adiabatically
compressed systems, but they can
get very hot.

No heat is lost from adiabatically

expanded systems, but they can
get very cold.

Make sure you know why!



Fire Piston

Fuel and air in a cylinder adiabatically
compressed by a piston get hot, reach
Ignition temperature.

Used for hundreds of years to start fires
for heat and cooking (without matches).

Inspired Rudolph Diesel to invent the
diesel engine in the 1890s.

Slam-Rod™ Fire Starter

No matches, no rubbing sticks together,
no flint, no electricity, and re-usable.

(USD 22.75 from Amazon, plus shipping and taxes)




What’s causing the white cloud? Is it smoke? A fire?




adiabatic

Sounds and music we hear are waves of

compression and expansion moving through air.

Why adiabatic? Why not isothermal?




4
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Fast (Adiabatic) Compressions and Expansions

sound waves, hearing, music, ... but also:

ultrasonic imaging without electromagnetic radiation
sonar for sound echo location and mapping (bats do it too!)
hydrophones for long-range passive listening and detection
SOSUS (ocean SOund SUrveillance System)

seismology studies of earthquakes the interior of the earth
seismic mapping of petroleum and natural gas deposits
sonochemistry (chemical reactions produced by sound waves)

shock wave studies of matter under extreme conditions



Reversible Adiabatic Expansion or Compression of an Ideal Gas

Constant C,,,, (another useful result) /

CVm |nT_f — —Rln\& recall Cy, +R = C,
T ][ PV, ) v v
T
C,.In—-| =¢C, . In|-"R_| = ¢ In P ) _Rint
T, PV PV, \%
. NR )
P: Vi \Z Vi V.
In— = — In— - RIn—=-C_In—=C__In—
Cpm/CVm C /CV
C - _ pm m
InPr = Zer Inizln Vi P _ [V
P n Vi Vi p. V;

Oftenwrittenas: | P;Vi? = pgVy? with y = C . /Cy,




Isotherms (fixed T) and Adiabats (g =0) for an Ideal Gas

Isotherms: pV = nRT = constant 5
slope = (6p/oV); =—p/V Adiabatic
E &%
£
Adiabats: pV 7 = constant E
1 —
slope = (0p/oV)q=q =—ypIV -
7 Isothermal
0 llllIIIIIIIIIIIIIIIIIIIII

V:Cp/Cv = Cymt+tR)/Cyy >1 10 20 30 40 50 60
adiabats are steeper than isotherms VIL



Isotherm Slopes (Ideal Gas)

pV = nRT = constant
d(pV) = d(constant) = 0

pdV + Vdp = 0 +dV;

p+V(8pj =0
oV );




Adiabat Slopes (lIdeal Gas, ¥ constant)

pV” = constant
d(pV”) = d(constant) = 0

pdv? + Vrdp = 0

pN71dV + Vrdp = 0 +qu:0
pN ™ +Vy(8pj =0
OV Jo-o Significance Isotherm
o . slopes and adiabat slopes
(a\/j =TTy differ by a factor of .
4=0 Will be useful later!




