
Chapter 2. The First Law of Thermodynamics.

Heat, Work, Internal Energy, and Enthalpy

Summary

 the internal energy U of systems and its significance are discussed

 the First Law of Thermodynamics ( U = q + w ) is used to relate

changes in internal energy to the heat absorbed by a system (q) and the

work done on a system (w)

 enthalpy H = U + pV, heat capacities, and calorimetry are introduced

 state functions (e.g., U and H) and path functions (e.g., q, w) are distinguished

 U, H, q, and w calculations are illustrated for ideal gases

 differences between reversible and irreversible processes are noted



The internal energy of a system can take many different forms:

 molecular translational, rotational, vibrational energy

 energy stored in chemical bonds

 potential energy due to interactions between atoms or 

molecules

 potential energy due to applied electrical, magnetic, or 

gravitational fields

The internal energy does not include kinetic energy of a system 

moving with respect to an external coordinate system, such as the 

kinetic energy of a pizza moving in a delivery vehicle.

Section 2.1  Internal Energy and the First Law



Joule’s Brilliant Experiment, Leading to the First Law

Before the development of microscopic theory, heat was treated (incorrectly!) as a 
“caloric fluid”, flowing from warmer to cooler objects, leading to much confusion.

For a system in a thermally insulated container (no confusing heat flow!) changing 
from an initial state to a final state, Joule showed that the work done is the same 
for all processes, independent of the path connecting the two states.
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adiabatic (q = 0) processes:



The First Law of Thermodynamics

If a system changes from an initial state to a 

final state, the work done is the same for all

adiabatic processes (q = 0) connecting the two states.

So what? Well, there are important consequences:

I) Because U =  Ufinal  Uinitial =  wadiabatic is independent of the 

path taken from the initial to the final state of a system, 

an internal energy function U exists that is a function only of the

state variables of systems [e.g., U = U(Tf,Vf) – U(Ti,Vi) ].

II) Because U is a function, it can be differentiated and integrated.
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III) Mechanical definition of heat

U =  wad =  q +  w   (path-independent)

wad = 1000 J, qad = 0 

adiabatic path 

w = 800 J, q = 200 J 

non-adiabatic path 

initial

state

final

state

q =  wad  w

Allows heat flows to be calculated 

in terms of well-known mechanical 

work quantities (a force acting through

a distance).



IV) Heat and work are path-dependent, not state functions.

q(T,V)           (q/T)V (q/V)T q = qf  qi

w(T,V)           (w/T)V (w/V)T                w = wf  wi

V) For any cyclic process (initial state …… same initial state):

VI) From U =  q +  w it follows that the energy of 

an isolated system (q = 0, w = 0) is constant.

(U = 0)isolated system

The energy of the universe (“everything”!) is constant.

 Conservation of Energy
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Section 2.2   Work     

Thermodynamic work w is defined as energy entering a system from 
the surroundings due to a force F acting through a distance x.

if w is positive:  the surroundings does work on the system and the 
internal energy of the system increases

if w is negative:  the system does work on the surroundings and the 
internal energy of the system decreases

!! Warning !!  In some treatments of thermodynamics, especially mechanical 
engineering courses, the opposite convention is used:  U =  q  w . In this case, w is 
positive if the system (e.g., an engine) does work on the surroundings.
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Volume Expansion Work

(also called pV work) 

Piston of area A applies force F on the 
system in the cylinder. The applied force 
per unit area equals the external pressure 
acting on the system.

Why the minus sign? Because vectors

F and dx point in opposite directions. 
Note also that Adx = dV, the change in 
volume of the system, which gives
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Different Kinds of Thermodynamic Work



SI  (Systeme International  d’Unites)  Base  Units

length meter (m)                       from Greek metros (measure)

mass kilogram (kg)                  1000 grams, from Greek gramma (small amount)

time second (s) second division of an hour, after minutes

SI  Units  Named  after  Scientists

force (mass times acceleration): Newton (N)  =  kg m s2

energy (force times distance): Joule (J)  =  kg m2 s2

pressure (force per unit area): Pascal (Pa)  =  kg m2 s2

temperature Kelvin (K) 



Other Units

liter (L)  =   0.001 m3 from French litron (a unit of volume)

bar (bar)  = 100,000 Pa            from Greek baros (weight)

atmosphere (atm) =  101,325 Pa           from Greek atmos (vapor) and

sphaira (sphere)

torr (torr)  =  1/760 atm named after Torricelli (who developed

=  101325/760 Pa barometers to measure pressure), 

the pressure exerted by a 1 mm tall

column of liquid mercury 

mole (mol) =  number of atoms from German molekul (molecule)

in 12 grams of 12C



Exercise

2.00 moles of an ideal gas expands isothermally at 300 K from an 

initial pressure of 5.00 bar to a final pressure of 2.00 bar.

a) The expansion is carried out rapidly and irreversibly with the 

external pressure suddenly reduced to 2.00 bar:  pexternal <  p

b) The expansion is carried out slowly and reversibly with the 

external pressure infinitesimally less than the gas pressure:  pexternal = p
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Exercise (cont.)

a) 2.00 moles of an ideal gas at 300 K and 5.00 bar expands    

isothermally and irreversibly against a constant 2.00 bar external 

pressure to a final pressure of 2.00 bar. Calculate the work.
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Work is negative for the expanding gas.

Does this make sense?

Why? pexternal

is constant.



Exercise (cont.)

b) 2.00 moles of an ideal gas at 300 K and 5.00 bar expands    

isothermally and reversibly to 2.00 bar against a slowly reducing 

external pressure equal to the gas pressure  (pexternal =  p).
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Indicator Diagrams:   plot pexternal against  V

Area under the curve is –w. Graphical representation of work done.
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area = 2993 J area = 4570 J

a) Irreversible Expansion                                          b)  Reversible Expansion

pexternal = 2 bar  <  p pexternal = p

w = 2993 J                                                                    w = 4570 J

How do these calculations show that the work                                 

is a path function, not a state function?



Reversible and Irreversible Expansions

Reversible Expansion:     pexternal =  p

The mass holding down the piston is 

gradually reduced in small increments (e.g., 1 mg). 

pexternal is only infinitesimally smaller than the gas 

pressure p. The gas pressure in the cylinder and the 

external pressure are balanced. The small mass 

increments can be replaced, reversing the expansion.

Irreversible Expansion:  pexternal <  p

All of the mass holding down the piston is 

suddenly removed. The gas expands

against a lower external pressure. To reverse the 

process, the mass would have to be lifted to the top

of the piston, requiring additional work – not reversible. 



Sections 2.3-2.5   Heat and Heat Capacity

Heat is defined as energy flowing into a system from the 

surroundings because of a temperature difference.

Heat flows spontaneously from regions of higher temperature 

to regions of lower temperature.



Molecular Interpretation of Heat 

The internal energy U of a system increases if:

 the system absorbs heat q from the surroundings

 work w is done on the system

First Law

Work is easily understood in mechanical terms of a force 

acting through a distance. 

But what is heat?

U =  q +  w



Molecular Energy Levels

Quantum mechanics shows that molecules have electronic, 

vibrational, rotational, and translational energy levels.



Typical  Molecular Energy  Level  Spacings



Molecules are Raised to Higher Energy Levels

When a System Absorbs Heat
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Heat Capacity  C

T

q
C


 lim

Add heat q to a system, increasing its temperature 

by T = Tf  Ti. 

C gives the amount of heat required to increase the temperature

of a system by  1 K (=  1 oC).

The heat capacity (extensive quantity) increases with the 

mass of a system and with the number of accessible molecular 

energy levels.

T  0
Why take the limit T  0?



Heat Capacity Measurements

system

Embed an electric heater 

in the system.

Electric current I flowing through 

voltage difference  for time t

delivers heat

q = I  t

to the system. For small 

temperature changes (T  0):
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thermometer



Heat Capacity at Constant Volume (CV)

Add heat dq to a system at constant volume (dV = 0). 

If the only kind of work is p-V work, then

dUV = dq +  dw (First Law)

=  dqV  pexternaldV

=  dqV

Heat capacity at constant volume:
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Heat Capacity at Constant Pressure (Cp)

Add heat dqp to a system at constant pressure (p = pexternal). 

If the only kind of work is p-V work, then dU = dq + dw is

dU =  dqp  pexternaldV

=  dqp  pdV

=  dqp  d(pV)

Notice dqp =  dU +  d(pV)  =  d(U +  pV).   Suggests …

Define the enthalpy  H = U +  pV (a new state function)

dqp =  dHp

Heat capacity at constant pressure is
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Molar Heat Capacity 

at Constant Pressure

for Cl2

Cp and Cpm are generally

easier to measure

than CV and CVm. 

Why?

Solids and liquids heated at 

constant volume exert enormous

pressures on the container

walls.



Why Measure Heat Capacities?

Example B Heat a system at constant pressure from temperature Ti

to final temperature Tf . The enthalpy H(T,p) is a state function.  

Why not directly calculate the initial and final enthalpy?

H =  Hf (Tf , p)   Hi(Ti , p)   =  qp
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Example A Heat a system at constant volume from temperature Ti

to final temperature Tf . The internal energy U(T,V) is a state function.  

Why not directly calculate the initial and final internal energy?

U =  Uf (Tf , V)   Ui(Ti , V)   =  qV
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Why Measure Heat Capacities?

Example B Heat a system at constant pressure from 

temperature Ti to final temperature Tf . 

H =  Hf(Tf, p)   Hi(Ti, p)  =  qp

Example A Heat a system at constant volume from 

temperature Ti to final temperature Tf . 

U =  Uf(Tf, V)   Ui(Ti, V)  =  qV

Functions U(T,V) and H(T,p) are known to exist, from the First Law.

But there’s a big problem :

Except for very simple systems, such as ideal gases, 

the state functions U(T,V) and H(T, p) are unknown!



What to do?

Absolute internal energies Uf (Tf ,V) and Ui(Ti,V) are unknown.

But:

Example A Heat a system at constant volume from 

temperature Ti to final temperature Tf . 

U =  Uf(Tf, V)   Ui(Ti, V)  =  qV
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What to do?

Absolute enthalpies Hf (Tf ,p) and Hi(Ti,p) are unknown.

But:

Example B Heat a system at constant pressure from 

temperature Ti to final temperature Tf . 

H =  Hf(Tf, p)   Hi(Ti, p)  =  qp
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Relation Between CV and Cp

First Law (at constant pressure):

U(V, T) is a function that can be differentiated.                    

Divide by dT at constant pressure to get
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Relation Between CV and Cp (cont.)

Rearranges to

Application: Measure Cp, then use the equation for  Cp – CV to 

calculate CV (difficult to measure for gases and solids).
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Relation Between CV and Cp (cont.)

to get

Significance: The heat capacity difference  Cp – CV for any system

can be calculated from p-V-T data or from equations

equations of state (calorimetry not required)
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Exercise:  Evaluate  Cp  CV for  Ideal  Gases

(pV = nRT )
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Exercise:  Evaluate  Cp  CV for  Ideal  Gases (cont.)
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 Why is Cp larger 
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Section 2.6   State Functions and Path Functions

 internal energy U and enthalpy H are state functions 

(also called point functions)

 state functions depend only on the state variables of systems, 

such as T, V, composition

 the change in a state function is identical for any process 

connecting two states of a system

 work w and heat q are path-dependent (not state functions or 

functions)

 different values of q and w are obtained for different 

processes connecting two states of a system



Mathematical Test for a State Function

Given

the state function f(x,y) exists only if  
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Exercise:  For the function f(x,y) = 6x2y3, prove 

Left Side  (x first then y):
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Right Side  (y first then x):



Exercise:  Show that CV is constant for an isothermal (fixed T ) 

ideal gas.

reverse the order of

differentiation
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Exercise:  Show that the state function q(T,V) does not exist

for an ideal gas.

dU =  dq +  dw First Law

The internal energy of an ideal gas (dU =  CVdT) depends only on T.

CVdT =  dq +  dw =  dq  pdV

Rearranges to

But for an ideal gas, (CV/V)T = 0 (previous slide) and

Conclusion:  the state function q(T,V) does not exist for an ideal gas.  
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Test: q(T,V) exists if  (CV/V)T and  (p/T)V are identical.



Sections 2.7 to 2.11.  Expansion and Compression of Ideal Gases

Why studied?

 important for the design and operation of engines, turbines, 

compressors, rockets, …

 refrigeration and heat pumps

 meteorology (e.g., rising air cools, sinking air warms up) and   

fluid mechanics

 understanding sound waves, shock waves, ballistics, 

explosions, …

 useful application of thermodynamic calculations





Ideal Gas Internal Energy Calculations.        dU = CVdT

Integrated 

Constant CV

Integrated 

Constant Cp
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Enthalpy (H = U + pV ) Calculations.          dH = CpdT
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Constant or variable volume.

Reversible or irreversible

processes. Why?

Constant or variable pressure.

Reversible or irreversible

processes. Why?



Work Calculations.          dw = pexternaldV

Integrated 

Constant pexternal

Reversible process

(pexternal = p)

Reversible process

(constant T)

Reversible process

(constant p)
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Heat Calculations.   q

Calculate w and U, then use the First law to calculate 

q =  U  w

Add heat at constant volume (w = 0):

qV =  U

Add heat at constant pressure:

qp =  H

Adiabatic processes:    q =  0

____________________

Why are  q =  qf – qi and  w =  wf – wi never used ?



2.00 mol of ideal gas expands isothermally along three different paths:

1) A reversible expansion from pi = 25.0 bar and Vi = 4.50 L 

to pf = 4.50 bar.

2) A single-step irreversible expansion against a constant 

external pressure of 4.50 bar.

3) A two-step irreversible expansion against 

a constant external pressure of 11.0 bar to a gas pressure of 

11.0 bar followed by a second irreversible expansion against 

a constant external pressure of 4.50 bar until pf = 4.50 bar.

Example Problem 2.4  





Example Problem 2.4 (cont.)  

Work done by the isothermal expansion of 2.00 mol of ideal gas 

from 25.0 bar and 4.50 L to 4.50 bar and 25.0 L

____________________________________________________

Path                     work w             work done on surroundings w

____________________________________________________

1-step irrev. 9,200 J 9,200 J

2-step irrev. 12,900 J 12,900 J

-step rev. 19,300 J 19,300 J

____________________________________________________


 

Important result:  Reversible (quasi-static) expansion does 

maximum work on the surroundings

(pext = p = nRT/V)

(pext <  p)

(pext <  p)



Comparison of Reversible (-step) and Irreversible Processes

Expansions

(w < 0)

wrev <  wirrev

More work done on the 

surroundings for a 

reversible expansion.

Compressions

(w > 0)

wrev <  wirrev

Less work required for a 

reversible compression.



Adiabatic (q = 0) Expansions and Compressions

 no heat flow in to or out of a system

 applies to processes for insulated systems and to

“fast” processes (no time for heat conduction)

 important examples:  explosions, shock waves, sound waves, 

and power-generating steps in engine cycles

dU =  dq +  dw =  dw =  pexternaldV

For ideal gases (U depends only on T,  dU =  CVdT), get:

CVdT = pexternaldV
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Reversible Adiabatic Expansion or Compression of an Ideal Gas

Tricky to integrate!   CV, T, V are all changing! 

But if the heat capacity CV is constant, …
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reversible:   pexternal =  p
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Reversible Adiabatic Expansion or Compression of an Ideal Gas

Constant CV
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 constant CVm

 ideal gas

 valid for monatomic gases

and polyatomics over small

temperature ranges (then 

CVm is “almost” constant)



Exercise:  Air, initially at 25 oC, is compressed adiabatically by a 

factor of 9  ( = compression factor Vi /Vf ). 

Estimate the final temperature Tf.
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f

V
V

V
R

T

T
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N2 and O2 molecules have three translational modes and two 

rotational modes of kinetic energy, each contributing R/2 to CVm.

Data: CVm = 3(R/2)trans + 2(R/2)rot = 5(R/2)

Ti =  (25 + 273.15 ) K  = 298.15 K  

Vf /Vi =  1/9

Use:

9

1
ln

K15.298
ln

2

5
R

T
R

f


solve for:

Tf = 718 K  (445 oC)

!!! HHHot !!!

Application: Diesel engines (reliable and efficient) don’t need spark plugs. 

(assumes compression is reversible and CVm is constant)



No heat is added to adiabatically 

compressed systems, but they can

get very hot. 

No heat is lost from adiabatically 

expanded systems, but they can 

get very cold.

Make sure you know why!



Fire Piston

Fuel and air in a cylinder adiabatically

compressed by a piston get hot, reach

ignition temperature. 

Used for hundreds of years to start fires

for heat and cooking (without matches).

Inspired Rudolph Diesel to invent the

diesel engine in the 1890s. 

Slam-RodTM Fire Starter

No matches, no rubbing sticks together,

no flint, no electricity, and re-usable.

(USD 22.75 from Amazon, plus shipping and taxes)



What’s causing the white cloud? Is it smoke? A fire?



Sounds and music we hear are waves of adiabatic 

compression and expansion moving through air.

Why adiabatic?  Why not isothermal?



Fast (Adiabatic) Compressions and Expansions

sound waves, hearing, music, … but also:

 ultrasonic imaging without electromagnetic radiation

 sonar for sound echo location and mapping (bats do it too!)

 seismology studies of earthquakes the interior of the earth

 sonochemistry (chemical reactions produced by sound waves)

 hydrophones for long-range passive listening and detection 

 shock wave studies of matter under extreme conditions

 seismic mapping of petroleum and natural gas deposits

 SOSUS (ocean SOund SUrveillance System)



Reversible Adiabatic Expansion or Compression of an Ideal Gas

Constant CVm (another useful result)
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recall CVm + R =  Cpm
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 =  pfVf

 with       =  Cpm/CVmOften written as:



Isotherms (fixed T)  and  Adiabats (q = 0)  for an Ideal Gas

Isotherms:  pV = nRT = constant

slope = (p/V)T =  p/V

Adiabats:  pV  = constant

slope = (p/V)q=0 =   p/V

 = Cp/CV =  (CVm + R) / CVm >  1

adiabats are steeper than isotherms



Isotherm Slopes (Ideal Gas)

pV =  nRT =  constant

d(pV)  =  d(constant)  =  0

pdV +  Vdp =  0           dVT
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Adiabat Slopes (Ideal Gas,  constant)

pV =  constant

d(pV )  =  d(constant)  =  0

pdV  +  V  dp =  0          

pV 1 dV +  V  dp =  0           dVq=0
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Significance Isotherm 

slopes and adiabat slopes 

differ by a factor of . 
Will be useful later!


