Chapter 3. The Importance of State Functions. The Internal Energy and Enthalpy

Summary

- useful features of state functions are identified
- introduction to the mathematics of thermodynamic partial differential equations
- changes in the internal energy and enthalpy are related to easily measured changes in the state variables T, V, and p
- applications: * Joule-Thomson experiment
* liquefaction of gases

Section 3.1 Mathematical Properties of State Functions: Partial Differential Equations

Partial Differential equations - the "language" of thermodynamics
(and many other branches of science and technology)

- What are differential equations?
- What are "partial" differential equations?
- Why are differential equations important?
- How can they be used?
- What rules apply?

First ... "Ordinary" Differential Equations

only one independent variable

Example: independent variable x in the function $f(x)=10 x^{3}-3 x$

derivative of $f(x)$

[slope of $f(x)$ plotted against x]

$$
\frac{\mathrm{d} f(x)}{\mathrm{d} x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

integral of $f(x)$
"add up" the $\mathrm{d} f$ differentials [gives the change in $f(x)$]

$$
\Delta f=f\left(x_{b}\right)-f\left(x_{a}\right)=\int_{x_{a}}^{x_{a}} \frac{\mathrm{~d} f(x)}{\mathrm{d} x} \mathrm{~d} x=\int_{f\left(x_{a}\right)}^{f\left(x_{x}\right)} \mathrm{d} f
$$

But thermodynamic functions generally depend on two or more independent variables

Example

The pressure of n moles of ideal gas is a function of T and V.

$$
p(T, V)=\frac{n R T}{V}
$$

$p(T, V)$ surface
Ordinary derivatives

$$
\frac{\mathrm{d} p}{\mathrm{~d} T} ? \quad \frac{\mathrm{~d} p}{\mathrm{~d} V} ?
$$

are ambiguous and do not apply.
Why? At each point $p(T, V)$ an infinite number of different slopes $\mathrm{d} p / \mathrm{d} T$ and $\mathrm{d} p / \mathrm{d} V$ exist in an
 infinite number of different directions.

"Partial" Derivatives to the Rescue

For the derivatives of the function $p(T, V)$, to avoid ambiguity, define the partial derivatives:

$$
\left(\frac{\partial p}{\partial T}\right)_{V}=\lim _{\Delta T \rightarrow 0} \frac{p(T+\Delta T, V)-p(T, V)}{\Delta T}
$$

slope of p against T parallel to the T axis (V fixed)
(Why "partial"? Only T and p are changing.)

$$
\left(\frac{\partial p}{\partial V}\right)_{T}=\lim _{\Delta V \rightarrow 0} \frac{p(T, V+\Delta V)-p(T, V)}{\Delta V}
$$

slope of p against V parallel to the V axis (T fixed)
(Only V and p are changing.)

Other Partial Differential Equations

1. Wave Equation

Vibration of an elastic string in one dimension:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

$u(x, t)$ is the displacement at time t and position x along the string. c is the speed of the vibration moving along the string.

Three-dimensional vibration of an elastic medium (such as sound waves, ultrasonic or seismic waves):

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}+c^{2} \frac{\partial^{2} u}{\partial y^{2}}+c^{2} \frac{\partial^{2} u}{\partial z^{2}}=c^{2} \nabla^{2} u
$$

2. Heat Conduction Equation

Heat conduction in one dimension:

$$
\frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}
$$

$T(x, t)$ is the temperature at time t and position x. k is the thermal conductivity.

Three-dimensional heat conduction:

$$
\frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}+k \frac{\partial^{2} T}{\partial y^{2}}+k \frac{\partial^{2} T}{\partial z^{2}}=k \nabla^{2} T
$$

3. Diffusion Equation

Diffusion in one dimension:

$$
\frac{\partial C_{\mathrm{A}}}{\partial t}=D \frac{\partial^{2} C_{\mathrm{A}}}{\partial x^{2}}
$$

$C_{\mathrm{A}}(x, t)$ is the concentration of chemical A at time t and position x. D is the diffusion coefficient.

Three-dimensional diffusion:

$$
\frac{\partial C_{\mathrm{A}}}{\partial t}=D \frac{\partial^{2} C_{\mathrm{A}}}{\partial x^{2}}+D \frac{\partial^{2} C_{\mathrm{A}}}{\partial y^{2}}+D \frac{\partial^{2} C_{\mathrm{A}}}{\partial z^{2}}=D \nabla^{2} C_{\mathrm{A}}
$$

4. Equation of Continuity for Fluid Flow

Fluid flow in one dimension:

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial\left(\rho \mathrm{v}_{x}\right)}{\partial x}
$$

$\rho(x, t)$ is the density of the fluid at time t and position x. v_{x} is the velocity of the fluid in the x direction.

Three-dimensional continuity equation:

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial\left(\rho \mathrm{v}_{x}\right)}{\partial x}-\frac{\partial\left(\rho \mathrm{v}_{y}\right)}{\partial y}-\frac{\partial\left(\rho \mathrm{v}_{z}\right)}{\partial z}
$$

5. Transmission Line Equation

Flow of electric current $I(x, t)$ along a wire:

$$
\frac{\partial^{2} I}{\partial x^{2}}=L C \frac{\partial^{2} I}{\partial t^{2}}+(R C+G L) \frac{\partial I}{\partial t}+R G I
$$

x is the position along the wire
R is the resistance
C is the capacitance
L is the induction
G is the loss

6. Lagrangian Equations of Motion

$L=$ kinetic energy - potential energy for a mechanical system

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=\frac{\partial L}{\partial q_{i}}
$$

q_{i} is the generalized position of mass i (any coordinate system)
\dot{q}_{i} is the generalized velocity of mass i

7. Schrodinger Quantum Mechanical Equation

$$
-\frac{h^{2}}{8 \pi^{2} m}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)+V \psi=E \psi
$$

$h=$ Planck constant

$$
m=\text { particle mass }
$$

$V=$ potential energy
$\psi=$ wave function
$E=$ total energy

Solving the Schrodinger equation for an electron in the electric potential energy field of a proton gives the $\psi_{1 s}, \psi_{2 s}, \psi_{2 p}, \psi_{3 s}, \ldots$ orbitals used by chemists

Example: Partial Derivatives of $p(T, V)$ for an Ideal Gas

partial T derivative:

partial V derivative:
$\left(\frac{\partial p}{\partial V}\right)_{T}=\left(\frac{\partial[n R T / V]}{\partial V}\right)_{T}^{L}=n R T\left(\frac{\partial \frac{1}{V}}{\partial V}\right)_{T}^{n, R, T}=n R T\left(\frac{-1}{V^{2}}\right)$
$=-\frac{n R T}{V^{2}}=-\frac{p}{V}$

"Exact" Differential of $p(T, V)$

Because p is a function of state variables T and V :
a) the infinitesimal change in p (the differential $\mathrm{d} p$) produced by changes $\mathrm{d} T$ and $\mathrm{d} p$ is exactly defined (not path-dependent):

$$
\mathrm{d} p=\left(\frac{\partial p}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial p}{\partial V}\right)_{T} \mathrm{~d} V
$$

b) the change in p obtained by integrating $\mathrm{d} p$ is exactly defined by the initial state $p_{i}\left(T_{i}, V_{i}\right)$ and the final state $p_{f}\left(T_{f}, V_{f}\right)$
(also not path-dependent)

$$
\Delta p=\int_{T_{i}, V_{i}}^{T_{f}, V_{f}} \mathrm{~d} p=p_{f}\left(T_{f}, V_{f}\right)-p_{i}\left(T_{i}, V_{i}\right)
$$

Useful Rules for Partial Derivatives

Cyclic Rule
(why cyclic?)

$$
\left(\frac{\partial p}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{p}\left(\frac{\partial V}{\partial p}\right)_{T}=-1
$$

Using the inverse rule, the cyclic rule is also written as:

Buy two partial derivatives, get one free!

$$
\left(\frac{\partial p}{\partial T}\right)_{V}=-\left(\frac{\partial p}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p}
$$

Where Does the Cyclic Rule Come From?

$$
\begin{array}{rlr}
\mathrm{d} p & =\left(\frac{\partial p}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial p}{\partial V}\right)_{T} \mathrm{~d} V & \begin{array}{c}
\text { divide by } \mathrm{d} T \text { at constant } p \\
(\mathrm{~d} p=0)
\end{array} \\
0 & =\left(\frac{\partial p}{\partial T}\right)_{V} \frac{\mathrm{~d} T}{\mathrm{~d} T_{p}}+\left(\frac{\partial p}{\partial V}\right)_{T} \frac{\mathrm{~d} V}{\mathrm{~d} T_{p}} & \\
0 & =\left(\frac{\partial p}{\partial T}\right)_{V}(1)+\left(\frac{\partial p}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p} \quad \begin{array}{l}
\begin{array}{l}
\text { Why the minus sign } \\
\text { in the Cyclic Rule? }
\end{array} \\
\left(\frac{\partial p}{\partial T}\right)_{V}
\end{array} & =-\left(\frac{\partial p}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p} \quad \text { Cyclic Rule } \begin{array}{l}
\text { At constant } p \text { the } \\
\text { change in } p \text { caused by } \mathrm{d} T \\
\text { cancels the change in } p \\
\text { caused by } \mathrm{d} V \text { so that } \mathrm{d} p=0 .
\end{array}
\end{array}
$$

notice: $\quad\left(\frac{\partial p}{\partial T}\right)_{V} \neq\left(\frac{\partial p}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p}$
Why? d V at constant T does not equal $\mathrm{d} V$ at constant p.

Mixed Partial Derivatives: Order of Differentiation of a Function Doesn't Matter

∂T first, then ∂V

Example:

$$
\left[\frac{\partial}{\partial V}\left(\frac{\partial p}{\partial T}\right)_{V}\right]_{T}=\left[\frac{\partial}{\partial T}\left(\frac{\partial p}{\partial V}\right)_{T}\right]_{V}
$$

$$
\partial V \text { first, then } \partial T
$$

Can be used as a test to show $\mathrm{d} p=\left(\frac{\partial p}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial p}{\partial V}\right)_{T} \mathrm{~d} V$
is an exact differential.

Exercise For an ideal gas ($p=n R T / V$), verify:

$$
\left[\frac{\partial}{\partial V}\left(\frac{\partial p}{\partial T}\right)_{V}\right]_{T}=-\frac{n R}{V^{2}}=\left[\frac{\partial}{\partial T}\left(\frac{\partial p}{\partial V}\right)_{T}\right]_{V}
$$

Proof (a bit tricky)

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial T}\left(\frac{\partial p}{\partial V}\right)_{T}\right]_{V}=\left[\frac{\partial}{\partial T}\left(\lim _{\Delta V \rightarrow 0} \frac{p(T, V+\Delta V)-p(T, V)}{\Delta V}\right)\right]_{V}} \\
& =\lim _{\Delta T \rightarrow 0}\left(\lim _{\Delta V \rightarrow 0} \frac{\frac{p(T+\Delta T, V+\Delta V)-p(T+\Delta T, V)}{\Delta V}-\frac{p(T, V+\Delta V)-p(T, V)}{\Delta V}}{0}\right) \\
& =\lim _{\Delta V \rightarrow 0}\left(\lim _{\Delta T} \frac{\frac{p(T+\Delta T, V+\Delta V)-p(T, V+\Delta V)}{\Delta T}-\frac{p(T+\Delta T, V)-p(T, V)}{\Delta T}}{0}\right) \\
& =\left[\frac{\partial}{\partial V}(\Delta T \rightarrow 0\right. \\
& =\left[\frac{\partial}{\partial V}\left(\frac{\partial p}{\partial T}\right)_{V}\right]_{T}
\end{aligned}
$$

Important Application: p - $V-T$ Calculations

Useful and convenient (intensive) experimental quantities:

Volumetric Thermal Expansion Coefficient $\boldsymbol{\beta}$

$$
\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}
$$

gives the fractional change in volume per Kelvin

β is usually (but not always) positive.

Isothermal Compressibility $\mathcal{K} \quad$ (also called κ_{T})

$$
\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}
$$

gives the negative fractional change in volume per Pa
$(\partial V / \partial p)_{T}$ is always negative, so κ is always positive.

TABLE 3.1	Volumetric Thermal Expansion Coefficient for Solids and Liquids at 298 K		
Element	$10^{6} \beta /\left(\mathrm{K}^{-1}\right)$	Element or Compound	$10^{4} \beta /\left(\mathrm{K}^{-1}\right)$
$\mathrm{Ag}(s)$	57.6	$\mathrm{Hg}(l)$	1.81
$\mathrm{Al}(s)$	69.3	$\mathrm{CCl}_{4}(l)$	11.4
$\mathrm{Au}(s)$	42.6	$\mathrm{CH}_{3} \mathrm{COCH}_{3}(l)$	14.6
$\mathrm{Cu}(s)$	49.5	$\mathrm{CH}_{3} \mathrm{OH}(l)$	14.9
$\mathrm{Fe}(s)$	36.9	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	11.2
$\mathrm{Mg}(s)$	78.3	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(l)$	10.5
$\mathrm{Si}(s)$	7.5	$\mathrm{C}_{6} \mathrm{H}_{6}(l)$	11.4
$\mathrm{~W}(s)$	13.8	$\mathrm{H}_{2} \mathrm{O}(l)$	2.04
$\mathrm{Zn}(s)$	90.6	$\mathrm{H}_{2} \mathrm{O}(s)$	1.66

Sources: Benenson, W., Harris, J. W., Stocker, H., and Lutz, H. Handbook of Physics. New York: Springer, 2002; Lide, D. R., ed. Handbook of Chemistry and Physics. 83rd ed. Boca Raton, FL: CRC Press, 2002; Blachnik, R., ed. D'Ans Lax Taschenbuch für Chemiker und Physiker. 4th ed. Berlin: Springer, 1998.

Note: for $\mathrm{H}_{2} \mathrm{O}$ (liquid) at $0^{\circ} \mathrm{C}, \boldsymbol{\beta}=-\mathbf{5 . 4 7} \times \mathbf{1 0}^{-5} \mathbf{K}^{\mathbf{- 1}}$ (shrinks when heated!)

Application of thermal expansion ...

Liquid-in-Glass Thermometers

Liquid when heated expands more than the glass.
$\beta_{\text {liquid }}>\beta_{\text {glass }}$

Related: Why can warm water sometimes be used to get a tight lid off a glass jar?

Hot Rivet Fasteners

Hot rivet shrinks as it cools, tightly fastening two metal pieces.

Bimetallic Strip

$\beta_{\text {Brass }}>\beta_{\text {Iron }}$

Bimetallic Strip

thermostat switch to turn off the furnace

Volumetric Thermal Expansion Coefficient β

$\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}$
fractional change in volume per degree

Linear Thermal Expansion Coefficient $\beta_{\text {linear }}$

$$
\beta_{\text {linear }}=\frac{1}{\ell}\left(\frac{\partial \ell}{\partial T}\right)_{p}=\frac{1}{3} \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}=\frac{\beta}{3} \quad \begin{aligned}
& \text { Can you } \\
& \text { show this? }
\end{aligned}
$$

fractional change in length per degree

If the average temperature of the oceans increases by $1^{\circ} \mathrm{C}$, what is the increase in sea level?

Data: The average volumetric thermal expansion coefficient of seawater is $\beta=0.00011 \mathrm{~K}^{-1}$. The average depth of the oceans is 3.7 km .

$$
\begin{aligned}
& \text { From } \quad \beta_{\text {linear }}=\frac{1}{\ell}\left(\frac{\partial \ell}{\partial T}\right)_{p} \quad \text { get } \quad \beta_{\text {linear }} \mathrm{d} T=\frac{\mathrm{d} \ell}{\ell}=\frac{\beta}{3} \mathrm{~d} T \\
& \beta_{\text {linear }} \int_{T}^{T+\Delta T} \mathrm{~d} T=\int_{\ell(T)}^{\ell(T+\Delta T)} \frac{\mathrm{d} \ell}{\ell} \quad \beta_{\text {linear }}(\Delta T)=\ln \left(\frac{\ell(T+\Delta T)}{\ell(T)}\right) \\
& \frac{\ell(T+\Delta T)}{\ell(T)}=\exp \left[\beta_{\text {linear }}(\Delta T)\right]=\exp \left[\frac{0.00011 \mathrm{~K}^{-1}}{3} 1 \mathrm{~K}\right]=1.000037
\end{aligned}
$$

What's this? What does it have to do with thermal expansion?

Concorde Supersonic (Mach 2.0) Passenger Aircraft

At cruising speed, twice the speed of sound, air friction heated the skin to about $150^{\circ} \mathrm{C}$, increasing the length of the aircraft by about one foot, an important design consideration for maintaining structural integrity.

TABLE 3.2 Isothermal Compressibility at 298 K

Substance	$10^{6} \kappa / \mathrm{bar}^{-1}$	Substance	$10^{6} \kappa / \mathrm{bar}^{-1}$	
$\mathrm{Al}(\mathrm{s})$	1.33	$\mathrm{Br}_{2}(l)$	64	
$\mathrm{SiO}_{2}(s)$	2.57	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	110	
$\mathrm{Ni}(s)$	0.513	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(l)$	61	
$\mathrm{TiO}_{2}(s)$	0.56	$\mathrm{C}_{6} \mathrm{H}_{6}(l)$	94	$1(\partial V)$
$\mathrm{Na}(\mathrm{s})$	13.4	$\mathrm{CCl}_{4}(\mathrm{l})$	103	$\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right.$
$\mathrm{Cu}(\mathrm{s})$	0.702	$\mathrm{CH}_{3} \mathrm{COCH}_{3}(l)$	125	$V(\partial p)_{T}$
C(graphite)	0.156	$\mathrm{CH}_{3} \mathrm{OH}(l)$	120	
$\mathrm{Mn}(\mathrm{s})$	0.716	$\mathrm{CS}_{2}(l)$	92.7	
$\mathrm{Co}(\mathrm{s})$	0.525	$\mathrm{H}_{2} \mathrm{O}(l)$	45.9	
$\mathrm{Au}(\mathrm{s})$	0.563	$\mathrm{Hg}(\mathrm{l})$	3.91	
$\mathrm{Pb}(\mathrm{s})$	2.37	$\mathrm{SiCl}_{4}(l)$	165	
$\mathrm{Fe}(s)$	0.56	$\mathrm{TiCl}_{4}(l)$	89	
$\mathrm{Ge}(s)$	1.38			

How are β and $\mathcal{\kappa}$ measured?

One way: measure the density $\rho(T, p)$ of a gas, liquid, or solid at different temperatures and pressures.
$\rho(T, p)=$ mass per unit volume at temperature T, pressure p

Then use:

$$
\begin{aligned}
& \beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}=-\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{p} \\
& \kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}=\frac{1}{\rho}\left(\frac{\partial \rho}{\partial p}\right)_{T}
\end{aligned}
$$

- Can you derive the equations for β and κ in terms of the density?
- Are β and κ intensive or extensive quantities?

Exercise: Evaluate the volumetric thermal expansion coefficient

 for an ideal gas ($V=n R T / p$) at 298 K$$
\begin{aligned}
\beta & =\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} \\
& =\frac{1}{V}\left[\frac{\partial}{\partial T}\left(\frac{n R T}{p}\right)\right]_{p} \\
& =\frac{1}{V}\left(\frac{n R}{p}\right)\left[\frac{\partial T}{\partial T}\right]_{p} \\
& =\frac{n R}{p V}=\frac{n R}{n R T}=\frac{1}{T} \\
& =\frac{1}{298 \mathrm{~K}}=0.00335 \mathrm{~K}^{-1}
\end{aligned}
$$

ideal gas
$\beta=\frac{1}{T}$

Exercise: Evaluate the isothermal compressibility

 for an ideal gas $(V=n R T / p)$ at $p=1.00$ bar$$
\begin{array}{rlr}
\kappa & =-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} \\
& =-\frac{1}{V}\left[\frac{\partial}{\partial p}\left(\frac{n R T}{p}\right)\right]_{T} & \begin{array}{l}
\text { ideal gas } \\
\kappa=\frac{1}{p}
\end{array} \\
& =-\frac{1}{V}(n R T)\left[\frac{\partial p^{-1}}{\partial p}\right]_{T} \\
& =-\frac{n R T}{V}\left[\frac{-1}{p^{2}}\right]=\frac{n R T}{p V} \frac{1}{p}=\frac{1}{p} \\
& =\frac{1}{1.00 \mathrm{bar}}=1.00 \mathrm{bar}^{-1} &
\end{array}
$$

Exercise: For a nonideal gas with second virial coefficient $B(T)$ and the equation of state

$$
Z=\frac{p V}{n R T}=1+\frac{n B(T)}{V}
$$

show that the isothermal compressibility is

$$
\kappa=\frac{1}{p+\frac{n^{2} R T B(T)}{V^{2}}}=\frac{1}{p+\frac{R T B(T)}{V_{\mathrm{m}}^{2}}}
$$

Isothermal Compressibility of a Nonideal Gas

with Second Virial Coefficient $B(T)$

$$
\kappa=\frac{1}{p+\frac{n^{2} R T B(T)}{V^{2}}}=\frac{1}{p+\frac{R T B(T)}{V_{\mathrm{m}}^{2}}}
$$

Significance:
ideal gas with $\quad \boldsymbol{B}(\boldsymbol{T})=\mathbf{0} \quad$ no molecular interactions

$$
\kappa=1 / p
$$

nonideal gas with $B(T)<0$ $\kappa>1 / p$
nonideal gas with $B(T)>0$ $\kappa<1 / p$
attractive interactions dominate gas is "more compressible"
repulsive interactions dominate gas is "less compressible"

Comparisons:

For an ideal gas at 298 K and 1.00 bar:

$$
\beta=0.00335 \mathrm{~K}^{-1} \quad \kappa=1.00 \mathrm{bar}^{-1}
$$

For liquid water at 298 K and 1.00 bar:

$$
\beta=0.000204 \mathrm{~K}^{-1} \quad \kappa=0.0000459 \mathrm{bar}^{-1}
$$

For solid iron at 298 K and 1.00 bar:

$$
\beta=0.0000369 \mathrm{~K}^{-1} \quad \kappa=0.00000056 \mathrm{bar}^{-1}
$$

- the volumes of solids and liquids are much less sensitive to temperature changes than gases
- solids and liquids are "almost" incompressible ($\kappa \ll 1$ bar $^{-1}$)
Why?

Exercise: 2.00 L of ideal gas at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ and 1.00 bar is heated at constant pressure to $323 \mathrm{~K}\left(50^{\circ} \mathrm{C}\right)$. Calculate the final volume.

Easy! The equation of state $p V=n R T$ is known. Use:
$V_{f} / V_{i}=\left(n R T_{f} / p_{f}\right) /\left(n R T_{i} / p_{i}\right)=T_{f} / T_{i}=(323 \mathrm{~K} / 298 \mathrm{~K})=1.0839$
$V_{f}=1.0839 \times 2.00 \mathrm{~L}$
$V_{f}=2.17 \mathrm{~L}$
$\%$ volume change $=\frac{V_{f}-V_{i}}{V_{i}} 100 \%=\frac{2.17 \mathrm{~L}-2.00 \mathrm{~L}}{2.00 \mathrm{~L}} 100 \%$
$=8.5 \%$ volumeincrease

Exercise: 2.00 L of liquid water at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ and 1.00 bar is heated at constant pressure to $323 \mathrm{~K}\left(50^{\circ} \mathrm{C}\right)$. Calculate the final volume. Data: $\beta=0.000204 \mathrm{~K}^{-1}$ (assumed constant).

Note: The equation of state of liquid water is not provided. Can't use $p V=n R T$ (liquid $\mathrm{H}_{2} \mathrm{O}$ is not an ideal gas). Instead:

$$
\begin{array}{rlrl}
\beta & =\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} & \times \mathrm{d} T_{p} \Rightarrow & \frac{d V}{V}=\beta \mathrm{d} T \\
\int_{V_{i}}^{V_{f}} \frac{\mathrm{~d} V}{V} & =\int_{T_{i}}^{T_{f}} \beta \mathrm{~d} T & & \text { Integrate at constant pressure: } \\
\ln \left(\frac{V_{f}}{V_{i}}\right) & =\beta\left(T_{f}-T_{i}\right)=0.000204 \mathrm{~K}^{-1}(25 \mathrm{~K})=0.0051 \\
\frac{V_{f}}{V_{i}} & =\mathrm{e}^{0.0051}=1.0051 & \begin{array}{r}
V_{f}=1.0051 \times V_{i}=1.0051 \times 2.00 \mathrm{~L} \\
V_{f}=2.01 \mathrm{~L} \text { (only a } 0.5 \% \text { increase) }
\end{array}
\end{array}
$$

Exercise: 2.00 L of ideal gas at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ and 1.00 bar is isothermally compressed to a final pressure of 5.00 bar. Calculate the final volume.

Easy! The equation of state $p V=n R T$ is known. Use:
$V_{f} / V_{i}=\left(n R T_{f} / p_{f}\right) /\left(n R T_{i} / p_{i}\right)=p_{i} / p_{f}=(1.00 \mathrm{bar} / 5.00 \mathrm{bar})=0.200$
$V_{f}=0.200 V_{i}=0.200 \times 2.00 \mathrm{~L}$
$V_{f}=0.400 \mathrm{~L}$
$\%$ volume change $=\frac{V_{f}-V_{i}}{V_{i}} 100 \%=\frac{0.400 \mathrm{~L}-2.00 \mathrm{~L}}{2.00 \mathrm{~L}} 100 \%$
$=-80.0 \%$

Exercise: 2.00 L of liquid water at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ and 1.00 bar is isothermally compressed to a final pressure of 5.00 bar. Calculate the final volume. Data: $\kappa=0.0000459$ bar $^{-1}$ (assumed constant).

Note: The equation of state of liquid water is not provided. Can't use $p V=n R T$ (liquid $\mathrm{H}_{2} \mathrm{O}$ is not an ideal gas). Instead:

$$
\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} \quad \times \mathrm{d} p_{T} \Rightarrow \quad \frac{d V}{V}=-\kappa \mathrm{d} p
$$

$$
\int_{V_{i}}^{V_{f}} \frac{\mathrm{~d} V}{V}=-\int_{p_{i}}^{p_{f}} \kappa \mathrm{~d} p
$$

integrate at constant temperature:
$\ln \left(\frac{V_{f}}{V_{i}}\right)=-\kappa\left(p_{f}-p_{i}\right)=-0.0000459 \operatorname{bar}^{-1}(4.00 \mathrm{bar})=-0.000184$
$V_{f}=0.99982 \times V_{i}=0.99982 \times 2.00 \mathrm{~L}$
$\frac{V_{f}}{V_{i}}=\mathrm{e}^{-0.000184}=0.99982$
$V_{f}=1.99963 \mathrm{~L}(-0.0184 \%$ change $)$
\Rightarrow volume almost independent of p

!!! Warning !!!

Heating a solid or a liquid at constant volume can produce dangerously large pressure increases.

- Railroads are constructed with small gaps between lengths of steel rails to allow for thermal expansion
- Bridges have small gaps between structural beams
- Liquid-in-glass thermometers break if heated beyond their temperature range
- Never fill a container to the brim with a liquid and seal it!
- Useful application: "shrink fits" used by machinists

What does thermodynamics have to say about $\left(\frac{\partial p}{\partial T}\right)_{V}$?

Thermal Expansion Gaps

No Thermal Expansion Gaps!

Change in Pressure with Temperature at Constant Volume

$$
\begin{array}{rlrl}
\left(\frac{\partial p}{\partial T}\right)_{V} & =-\left(\frac{\partial p}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p} & & \text { Cyclic Rule! } \\
& =\frac{\left(\frac{\partial V}{\partial T}\right)_{p}}{-\left(\frac{\partial V}{\partial p}\right)_{T}} & & \text { Inverse Rule! } \\
& =\frac{\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}}{-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}} & \text { Definition of } \beta, \kappa
\end{array}
$$

$$
=\frac{\beta}{\kappa}
$$

ratio of the volumetric thermal expansion
coefficient to the isothermal compressibility

Changes in Pressure with Temperature at Constant Volume

For an ideal gas at 298 K and 1 bar:
$\left(\frac{\partial p}{\partial T}\right)_{V}=\frac{\beta}{\kappa}=\frac{\frac{1}{T}}{\frac{1}{p}}=\frac{p}{T}=\frac{1.00 \mathrm{bar}}{298 \mathrm{~K}}=\underset{\text { (no problem) }}{0.00335 \mathrm{bar} \mathrm{K}^{-1}}$

For solid iron at 298 K and 1 bar:
$\left(\frac{\partial p}{\partial T}\right)_{V}=\frac{\beta}{\kappa}=\frac{0.0000369 \mathrm{~K}^{-1}}{0.00000056 \mathrm{bar}^{-1}}=66 \mathrm{bar} \mathrm{K}^{-1}$

970 lb per square inch per degree !

Freezing liquid water in a confined space can split pipes, damage concrete, heave foundations, and crack porous rocks.

Why?

Exercise: Liquid water at $0^{\circ} \mathrm{C}$ and 1.00 bar is frozen at constant volume. Calculate the final pressure.

Data: - Ice is less dense than liquid water. (Ice floats!) Freezing liquid water produces a 9% increase in volume.

- isothermal compressibility of ice $\kappa=51.0 \times 10^{-6} \mathrm{bar}^{-1}$

Solution: Freezing water at 1.00 bar increases the volume by 9%. To maintain constant volume, the pressure on the ice must be increased to reduce the volume by 9%.

$$
\begin{aligned}
\kappa & =-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} \\
\kappa \mathrm{~d} p & =-\frac{d V}{V}
\end{aligned}
$$

$$
\text { multiply by } \mathrm{d} p \text { at constant } T
$$

$$
\text { integrate from } p_{i}=1.00 \text { bar to } p_{f}
$$

Exercise: Liquid water at $0^{\circ} \mathrm{C}$ and 1.00 bar is frozen at constant volume. Calculate the final pressure.

$$
\begin{aligned}
\int_{p_{i}}^{p_{f}} \kappa \mathrm{~d} p & =\kappa \int_{p_{i}}^{p_{f}} \mathrm{~d} p=-\int_{V_{i}}^{V_{f}} \frac{d V}{V} \quad \begin{array}{c}
\text { assume } \kappa \text { is constant } \\
\text { (no other information given) }
\end{array} \\
\kappa\left(p_{f}-p_{i}\right) & =-\ln \left(\frac{V_{f}}{V_{i}}\right) \\
p_{f} & =p_{i}-\frac{1}{\kappa} \ln \left(\frac{V_{f}}{V_{i}}\right) \\
p_{f} & =1.00 \mathrm{bar}-\frac{1}{51.0 \times 10^{-6} \mathrm{bar}^{-1}} \ln \left(\frac{1}{1.09}\right) \\
p_{f} & =1.00 \mathrm{bar}+1690 \mathrm{bar} \approx 1700 \mathrm{bar}
\end{aligned}
$$

Conclusion: Freezing liquid water at constant volume generates a pressure of about $\mathbf{1 7 0 0}$ bar ($\approx 25,000 \mathrm{lb}$ per square inch! Uh Oh!)

Sections 3.2 and 3.3 Dependence of the Internal Energy \boldsymbol{U}

 on Temperature and Volume- widely used for scientific and engineering calculations
- provides valuable information about molecular energy levels and molecular interactions

Because the internal energy of a system is a state function $U(T, V)$, the differential $\mathrm{d} U$ is exact. Mathematics provides:

$$
\mathrm{d} U=\left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial U}{\partial V}\right)_{T} \mathrm{~d} V
$$

A useful theoretical result. But for practical applications:
How are $(\partial U / \partial T)_{V}$ and $(\partial U / \partial V)_{T}$ calculated?

$(\partial U / \partial T)_{V} \quad$???

from the First Law:

$$
\mathrm{d} U=\mathrm{d} q+\mathrm{d} w
$$

only p - V work possible:

$$
\mathrm{d} U=\mathrm{d} q-p_{\text {external }} \mathrm{d} V
$$

at constant volume:

$$
\mathrm{d} U_{V}=\mathrm{d} q_{V}
$$

($\mathrm{d} V=0$, no work)
heat capacity at constant volume

$$
C_{V}=\frac{\mathrm{d} q_{V}}{\mathrm{~d} T}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

C_{V} is an experimental quantity, measured using calorimetry.

$(\partial U / \partial V)_{T}$???

from Chapters 1 and 2:

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{V}-p
$$

Plan A If the equation of state of the system is known, then $(\partial p / \partial T)_{V}$ and therefore $(\partial U / \partial V)_{T}$ are easily calculated.

Plan B If the equation of state of the system is unknown, then $(\partial p / \partial T)_{V}$ and $(\partial U / \partial V)_{T}$ can be calculated using measurable volumetric thermal expansion coefficients (β) and isothermal compressibilities (κ) (see Section 3.1) using

$$
\left(\frac{\partial p}{\partial T}\right)_{V}=\frac{\beta}{\kappa} \quad\left(\frac{\partial U}{\partial V}\right)_{T}=T \frac{\beta}{\kappa}-p
$$

So What

Important result: Changes in the internal energy of any system can be calculated from measurable quantities.
"theoretical"

$$
\mathrm{d} U=\left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial U}{\partial V}\right)_{T} \mathrm{~d} V
$$

becomes "practical"

$$
\mathrm{d} U=C_{V} \mathrm{~d} T+\left(T \frac{\beta}{\kappa}-p\right) \mathrm{d} V
$$

in terms of the measurable quantities:

$$
C_{V}=\frac{\mathrm{d} q_{V}}{\mathrm{~d} T} \quad \beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} \quad \kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}
$$

Exercise: For ideal gases, prove $\left(\frac{\partial U}{\partial V}\right)_{T}=0$
Hint: Recall that the volumetric expansion coefficient and isothermal compressibility of an ideal gas are $\alpha=\mathbf{1 / T}$ and $\kappa=\mathbf{1} / \boldsymbol{p}$

Exercise: Theory is fine, but can you suggest an experiment that could be used to show $(\partial U / \partial V)_{T}=0$ for ideal gases?

One possibility:

Open a valve, allow gas at pressure p_{i} in flask A to expand into evacuated flask B.

If the gas is ideal, what is the change in temperature?
Why?

Sections 3.4 to 3.6 Dependence of the Enthalpy $\boldsymbol{H}=\boldsymbol{U}+\boldsymbol{p} V$ on Temperature and Pressure

- recall from Chapter 2: $q_{p}=\Delta H$
- as a result, enthalpy changes are important for calorimetry, combustion reactions and other chemical reactions
- also important for flow processes (next Section)
T and p are therefore "natural" variables for the enthalpy.
\boldsymbol{H} is a state function $H(T, p)$, so the differential $\mathrm{d} \boldsymbol{H}$ is exact and

$$
\mathrm{d} H=\left(\frac{\partial H}{\partial T}\right)_{p} \mathrm{~d} T+\left(\frac{\partial H}{\partial p}\right)_{T} \mathrm{~d} p
$$

Another useful theoretical result. But for practical applications how are $(\partial H / \partial T)_{p}$ and $(\partial H / \partial p)_{T}$ calculated?

$(\partial H / \partial T)_{p} \quad$?

from the First Law:

$$
\mathrm{d} U=\mathrm{d} q+\mathrm{d} w
$$

only p - V work possible:

$$
\mathrm{d} U=\mathrm{d} q-p_{\text {external }} \mathrm{d} V
$$

at constant pressure:

$$
\begin{aligned}
\mathrm{d} U_{p} & =\mathrm{d} q_{p}-p \mathrm{~d} V \\
\mathrm{~d} q_{p} & =\mathrm{d} U_{p}+p \mathrm{~d} V=\mathrm{d}(U+p V) \\
& =\mathrm{d} H
\end{aligned}
$$

heat capacity at constant pressure

$$
C_{p}=\frac{\mathrm{d} q_{p}}{\mathrm{~d} T}=\left(\frac{\partial H}{\partial T}\right)_{p}
$$

C_{p} is an experimental quantity measured using calorimeters operated at constant pressure

$(\partial H / \partial p)_{T} \quad$?

$$
\begin{aligned}
\mathrm{d} H & =\mathrm{d}(U+p V) \\
& =\mathrm{d} U+\mathrm{d}(p V) \\
& =\mathrm{d} U+p \mathrm{~d} V+V \mathrm{~d} p \\
& =(\partial U / \partial T)_{V} \mathrm{~d} T+(\partial U / \partial V)_{T} \mathrm{~d} V+p \mathrm{~d} V+V \mathrm{~d} p \\
& =C_{V} \mathrm{~d} T+\left[T(\partial p / \partial T)_{V}-\curvearrowright \curvearrowright\right] \mathrm{d} V+\underline{\beta / \kappa} \mathrm{d} V+V \mathrm{~d} p
\end{aligned}
$$

$\mathrm{d} H_{T}=T(\beta / \kappa) \mathrm{d} V_{T}+V \mathrm{~d} p_{T} \quad\left(\mathrm{~d} T=0\right.$ at constant T, divide by $\left.\mathrm{d} p_{T}\right)$

$$
\left(\frac{\partial H}{\partial p}\right)_{T}=\frac{T \beta}{\kappa}\left(\frac{\partial V}{\partial p}\right)_{T}+V=\frac{T \beta}{\kappa}(-\kappa V)+V
$$

$$
\left(\frac{\partial H}{\partial p}\right)_{T}=V(1-\beta T)
$$

V, β, and T are all measurable quantities

So What

Important result: Changes in the enthalpy of any system can be calculated from measurable quantities.
"theoretical"

$$
\mathrm{d} H=\left(\frac{\partial H}{\partial T}\right)_{p} \mathrm{~d} T+\left(\frac{\partial H}{\partial p}\right)_{T} \mathrm{~d} p
$$

becomes "practical"

$$
\mathrm{d} H=C_{p} \mathrm{~d} T+V(1-\beta T) \mathrm{d} p
$$

in terms of the measurable quantities:

$$
C_{p}=\frac{\mathrm{d} q_{p}}{\mathrm{~d} T} \quad \beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}
$$

Exercise:
For ideal gases, show

$$
\left(\frac{\partial H}{\partial p}\right)_{T}=0
$$

As a result, the enthalpy of an ideal gas depends only on temperature and
$\mathrm{d} H=C_{p} \mathrm{~d} T$
(even if p is changing!)

Exercise:

For liquids and solids, show

$$
\left(\frac{\partial H}{\partial p}\right)_{T} \approx V
$$

As a result

$$
\mathrm{d} H \approx C_{p} \mathrm{~d} T+V \mathrm{~d} p
$$

(liquids and solids)

Example Problem 3.9

Calculate the change in enthalpy when 124 g of liquid methanol at 1.00 bar and 298 K is heated and compressed to 2.50 bar and 425 K .

Data: methanol molar mass density of liquid methanol heat capacity of liquid methanol

$$
\begin{aligned}
& M=32.04 \mathrm{~g} \mathrm{~mol}^{-1} \\
& \rho=0.791 \mathrm{~g} \mathrm{~cm}^{-3} \\
& C_{p \mathrm{~m}}=81.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Solution:

Enthalpy is a state function, so ΔH can be calculated for any path between the initial and final states. We will heat first, then compress:
heat
$\mathrm{CH}_{3} \mathrm{OH}(298 \mathrm{~K}, 1$ bar $) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(425 \mathrm{~K}, 1$ bar $) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(425 \mathrm{~K}, 2.50$ bar $)$
compress

Step 2

Example Problem 3.9 (cont.)

Step 1 Heat 124 g of liquid methanol from 289 K to 425 K at 1 bar.

$$
\Delta H_{p}=\int_{T_{i}}^{T_{f}} C_{p} \mathrm{~d} T=n C_{p \mathrm{~m}}^{T_{T_{i}}} \mathrm{~d} T=n C_{p \mathrm{~m}}\left(T_{f}-T_{i}\right)
$$

$$
\Delta H_{p}=\frac{124 \mathrm{~g}}{32.04 \mathrm{~g} \mathrm{~mol}^{-1}}\left(81.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(425 \mathrm{~K}-298 \mathrm{~K})=39,900 \mathrm{~J}
$$

Step 2 Compress 124 g of liquid methanol from 1.00 bar to 2.50 bar at a constant temperature of 425 K .

$$
\Delta H_{T}=\int_{p_{i}}^{p_{f}}\left(\frac{\partial H}{\partial p}\right)_{T} \mathrm{~d} p \approx \int_{T_{i}}^{T_{f}} V \mathrm{~d} p \approx V \int_{T_{i}}^{T_{f}} \mathrm{~d} p=V\left(p_{f}-p_{i}\right)
$$

$$
\Delta H_{T}=\left(124 \mathrm{~g} / 0.791 \mathrm{~g} \mathrm{~cm}^{-3}\right)\left(10^{-6} \mathrm{~m}^{3} \mathrm{~cm}^{-3}\right)(2.50-1.00 \mathrm{bar})\left(10^{5} \mathrm{~Pa} \mathrm{bar}^{-1}\right)=39.9 \mathrm{~J}
$$

$$
\text { Overall } \begin{aligned}
\Delta H & =\Delta H_{p}(\text { step } 1)+\Delta H_{T}(\text { step } 2) \\
& =39,900 \mathrm{~J}+40 \mathrm{~J} \\
& \approx 39,900 \mathrm{~J} \text { from step } 1
\end{aligned}
$$

For solids and liquids, changes in pressure usually cause small enthalpy changes

Section 3.7 The Joule-Thomson (JT) Experiment

- irreversible expansion of gas through a porous barrier or throttle valve under adiabatic conditions (no heat flow)
- ideal gases: no temperature change
- real gases: can cool down or warm up during JT expansion
- important applications
* refrigeration
* air conditioning
* heat pumps
* gas liquefaction

Gas Liquefaction

For industrial applications:

(not university lab experiments!)

- continuous flow (more economical than batch processing)
- re-cycle gas that does not liquefy (no wastage)
- heat-exchange - use cool gas that does not liquefy to pre-cool gas from compressor
- large-scale production (thousands of tons per day)
- use the expanding gas to run a generator (adiabatic cooling)

Applications of Liquefied Gases

- liquid air is distilled to produce liquid N_{2} and liquid O_{2}
- N_{2} is used to make ammonia for the production of nitric acid, fertilizers, explosives, and many other industrial chemicals
- cold liquefied natural gas (LNG) can be shipped economically over large distances in cheap low-pressure tanks (at $\approx 1 \mathrm{~atm}$)
- liquid N_{2} and liquid He are important cryogens (liquid He is used to operate superconducting nmr magnets)
- liquid propane allows barbecuing without charcoal
- many other important uses

Refrigeration and Air Conditioning

- expanding nonideal gases cool and absorb heat
- keeps perishable food products fresh, nutritious and safe to eat
- air conditioners provide cooling and humidity reduction, making large regions "habitable" for "modern" people

Ever tried working (or living) at $30{ }^{\circ} \mathrm{C}$ and 95% humidity?

LNG Ship Carrying Liquefied Natural Gas (at about $-260^{\circ} \mathrm{C}$)

Application of Liquefied Gases: Space Exploration

store liquid fuel and oxidizer in light thin-wall low pressure tanks

Saturn V Heavy-Lift Vehicle

("Apollo Moon Rocket")

- most powerful rocket ever built
- operational 1967 to 1973
- 7.6 million pounds thrust
- launched 130-ton payloads into earth orbit
- never failed, even when hit by lighting (Apollo 12 mission)
- kerosene / liquid oxygen first stage
- liquid hydrogen / liquid oxygen second and third stages
- mileage: about five inches per gallon

Joule Thomson (JT) Flow Experiment - How does it work?

- gas initially at p_{1}, V_{1}, T_{1}
- expands adiabatically through a porous plug or throttle valve
- gas downstream leaves at p_{2}, V_{2}, T_{2}

> work $p_{1} V_{1}$ done on the gas to force it through the plug

work $p_{2} V_{2}$ done on the surroundings by the expanding gas

Thermodynamic Analysis of Joule-Thomson (JT) Expansions

$$
p_{1}, V_{1}, T_{1} \quad \rightarrow \quad p_{2}, V_{2}, T_{2}
$$

First Law: $\quad \Delta U=A^{00}+w$

$$
\begin{aligned}
U_{2}-U_{1} & =p_{1} V_{1}-p_{2} V_{2} \\
U_{2}+p_{2} V_{2} & =U_{1}+p_{1} V_{1} \\
H_{2} & =H_{1}
\end{aligned}
$$

$$
\Delta H=0
$$

Conclusion: Joule-Thomson expansions are "isenthalpic" (occur at constant enthalpy)

Joule-Thomson Coefficient of Performance

$$
\mu_{\mathrm{JT}}=\left(\frac{\partial T}{\partial p}\right)_{H}
$$

μ_{JT} gives the change in temperature per unit change in pressure of the expanding gas. But what is μ_{JT} ?
Using the cyclic and inverse rules of partial derivatives:

$$
\mu_{\mathrm{JT}}=\left(\frac{\partial T}{\partial p}\right)_{H}=-\left(\frac{\partial T}{\partial H}\right)_{p}\left(\frac{\partial H}{\partial p}\right)_{T}=-\left(\frac{\partial H}{\partial p}\right)_{T} /\left(\frac{\partial H}{\partial T}\right)_{p}
$$

$$
\mu_{\mathrm{TT}}=-\frac{V(1-\beta T)}{C_{p}}
$$

Gives temperature change of the expanding gas in terms of measurable quantities.

Exercise:
Evaluate the Joule-Thomson coefficient $\mu_{\text {JT }}$ for an ideal gases.

$$
\mu_{\mathrm{JT}}=-\frac{V(1-\beta T)}{C_{p}}
$$

For an ideal gas $(p V=n R T)$, recall $\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}=\frac{1}{T}$
which gives $\mu_{\mathrm{JT}}=-\frac{V\left(1-\frac{1}{T} T\right)}{C_{p}}=0 \quad$ (ideal gas)

Conclusion: Warming or cooling during Joule-Thomson expansions occurs only for nonideal gases (molecular interactions).

Why Does Warming or Cooling Occur During JT Expansions?

For a nonideal gas obeying the van der Waals equation with attractive a and repulsive b coefficients

$$
p=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

the Joule-Thomson coefficient is

$$
\mu_{J T}=\frac{1}{C_{p \mathrm{~m}}}\left(\frac{2 a}{R T}-b\right)
$$

Joule-Thomson Coefficient of a Nonideal van der Waals Gas

$$
\mu_{J T}=\left(\frac{\partial T}{\partial p}\right)_{H}=\frac{1}{C_{p \mathrm{~m}}}\left(\frac{2 a}{R T}-b\right)
$$

Low Temperatures:

$(2 a / R T)-b>0$
Cooling on Expansion. Attractive forces dominate.
"Sticky" molecules fly apart more slowly, with less kinetic energy.

High Temperatures:

$$
(2 a / R T)-b<0
$$

Warming on Expansion. Repulsive forces dominate.
Repelling molecules fly apart more quickly, with more kinetic energy.

Max. Inversion temperature: $\quad(2 a / R T)-b=0 \quad \mu_{\mathrm{JT}}=0$
No temperature change. Attractive and repulsive forces balanced at the Boyle (not Boil!) temperature $\boldsymbol{T}_{\text {Boyle }}=2 \boldsymbol{a} / \boldsymbol{R} \boldsymbol{b}$.

Isenthalps: States of Constant Enthalpy

Joule-Thomson Inversion Temperatures for $\mathbf{N}_{\mathbf{2}}$ and $\mathbf{H}_{\mathbf{2}}$

Use liquid N_{2} to cool liquid H_{2} below its inversion temperature.

Then use liquid H_{2} to cool and liquefy He .

Liquid helium is the ultimate cryogen.

Used for super-conducting magnets and low-temperature research ($T<4 \mathrm{~K}$).

