Chapter 3.The Importance of State Functions.The Internal Energy and Enthalpy

<u>Summary</u>

- useful features of state functions are identified
- introduction to the mathematics of thermodynamic partial differential equations
- changes in the internal energy and enthalpy are related to easily measured changes in the state variables *T*, *V*, and *p*
- applications: ***** Joule-Thomson experiment
 - liquefaction of gases

Section 3.1 Mathematical Properties of State Functions: Partial Differential Equations

Partial Differential equations - the "language" of thermodynamics (and many other branches of science and technology)

- What are **differential equations**?
- What are **"partial"** differential equations?
- Why are differential equations important?
- How can they be used?
- What rules apply?

First ... "Ordinary" Differential Equations

only one independent variable

Example: independent variable x in the function $f(x) = 10x^3 - 3x$

derivative of f(x)
[slope of f(x) plotted against x]

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{\lim}{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

integral of f(x)
"add up" the df differentials
[gives the change in f(x)]

$$\Delta f = f(x_b) - f(x_a) = \int_{x_a}^{x_b} \frac{\mathrm{d}f(x)}{\mathrm{d}x} \,\mathrm{d}x = \int_{f(x_a)}^{f(x_b)} \frac{\mathrm{d}f(x)}{\mathrm{d}x} \,\mathrm{d}x = \int_{f(x_a)}^{f(x_b)} \frac{\mathrm{d}f(x_b)}{\mathrm{d}x} \,\mathrm{d}x = \int_{f(x_b)}^{f(x_b)} \frac{\mathrm{d}f(x_b)}{\mathrm{d}x} \,\mathrm{d}x + \int_{f(x_b)}^{f(x_b)} \frac{\mathrm{d}f(x_$$

But thermodynamic functions generally depend on *two or more* independent variables

Example

The pressure of n moles of ideal gas is a function of T and V.

$$p(T,V) = \frac{nRT}{V}$$

Ordinary derivatives $\frac{dp}{dT} ? \frac{dp}{dV} ?$

are ambiguous and do not apply.

Why? At each point p(T,V)an infinite number of different slopes dp/dT and dp/dV exist in an infinite number of different directions.

"Partial" Derivatives to the Rescue

For the derivatives of the function p(T,V), to avoid ambiguity, define the <u>partial derivatives</u>:

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \lim_{\Delta T \to 0} \frac{p(T + \Delta T, V) - p(T, V)}{\Delta T}$$

(Why "partial"? Only *T* and *p* are changing.)

$$\left(\frac{\partial p}{\partial V}\right)_T = \lim_{\Delta V \to 0} \frac{p(T, V + \Delta V) - p(T, V)}{\Delta V}$$

(Only *V* and *p* are changing.)

<u>Other</u> Partial Differential Equations

1. Wave Equation

Vibration of an elastic string in one dimension:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

u(x,t) is the displacement at time *t* and position *x* along the string. *c* is the speed of the vibration moving along the string.

Three-dimensional vibration of an elastic medium (such as sound waves, ultrasonic or seismic waves):

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} + c^2 \frac{\partial^2 u}{\partial y^2} + c^2 \frac{\partial^2 u}{\partial z^2} = c^2 \nabla^2 u$$

2. Heat Conduction Equation

Heat conduction in one dimension:

$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}$$

T(x,t) is the temperature at time *t* and position *x*. *k* is the thermal conductivity.

Three-dimensional heat conduction:

$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} + k \frac{\partial^2 T}{\partial y^2} + k \frac{\partial^2 T}{\partial z^2} = k \nabla^2 T$$

3. Diffusion Equation

Diffusion in one dimension:

$$\frac{\partial C_{\rm A}}{\partial t} = D \frac{\partial^2 C_{\rm A}}{\partial x^2}$$

 $C_A(x,t)$ is the concentration of chemical A at time *t* and position *x*. *D* is the diffusion coefficient.

Three-dimensional diffusion:

$$\frac{\partial C_{\rm A}}{\partial t} = D \frac{\partial^2 C_{\rm A}}{\partial x^2} + D \frac{\partial^2 C_{\rm A}}{\partial y^2} + D \frac{\partial^2 C_{\rm A}}{\partial z^2} = D \nabla^2 C_{\rm A}$$

4. Equation of Continuity for Fluid Flow

Fluid flow in one dimension:

$$\frac{\partial \rho}{\partial t} = -\frac{\partial (\rho \mathbf{v}_x)}{\partial x}$$

 $\rho(x,t)$ is the density of the fluid at time *t* and position *x*. v_x is the velocity of the fluid in the *x* direction.

Three-dimensional continuity equation:

$$\frac{\partial \rho}{\partial t} = -\frac{\partial (\rho \mathbf{v}_x)}{\partial x} - \frac{\partial (\rho \mathbf{v}_y)}{\partial y} - \frac{\partial (\rho \mathbf{v}_z)}{\partial z}$$

5. Transmission Line Equation

Flow of electric current I(x,t) along a wire:

$$\frac{\partial^2 I}{\partial x^2} = LC \frac{\partial^2 I}{\partial t^2} + (RC + GL) \frac{\partial I}{\partial t} + RGI$$

x is the position along the wire

R is the resistance

C is the capacitance

L is the induction

G is the loss

6. Lagrangian Equations of Motion

L = kinetic energy – potential energy for a mechanical system

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i}$$

 q_i is the generalized position of mass *i* (any coordinate system)

 \dot{q}_i is the generalized velocity of mass *i*

7. Schrodinger Quantum Mechanical Equation

$$-\frac{h^2}{8\pi^2 m} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + V\psi = E\psi$$

h = Planck constantm = particle massV = potential energy ψ = wave functionE = total energy

Solving the Schrodinger equation for an electron in the electric potential energy field of a proton gives the ψ_{1s} , ψ_{2s} , ψ_{2p} , ψ_{3s} , ... orbitals used by chemists

Example: Partial Derivatives of p(T,V) for an <u>Ideal Gas</u>

$$= -\frac{nRT}{V^2} = -\frac{p}{V}$$

"Exact" Differential of p(T,V)

Because *p* is a function of state variables *T* and *V*:

a) the infinitesimal change in p (the differential dp) produced by changes dT and dp is exactly defined (not path-dependent):

$$dp = \left(\frac{\partial p}{\partial T}\right)_{V} dT + \left(\frac{\partial p}{\partial V}\right)_{T} dV$$

b) the change in *p* obtained by integrating d*p* is **exactly defined** by the initial state $p_i(T_i, V_i)$ and the final state $p_f(T_f, V_f)$ (also not path-dependent)

$$\Delta p = \int_{T_i, V_i}^{T_f, V_f} dp = p_f(T_f, V_f) - p_i(T_i, V_i)$$

Useful Rules for Partial Derivatives

<u>Inverse Rule</u> $\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{1}{\left(\frac{\partial T}{\partial p}\right)_{U}}$

$$\frac{\text{Cyclic Rule}}{(why cyclic?)} \qquad \left(\frac{\partial p}{\partial T}\right)_V \left(\frac{\partial T}{\partial V}\right)_p \left(\frac{\partial V}{\partial p}\right)_T = -1$$

Using the inverse rule, the cyclic rule is also written as:

Buy two partial derivatives, get one free!

$$\left(\frac{\partial p}{\partial T}\right)_{V} = -\left(\frac{\partial p}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{p}$$

Where Does the Cyclic Rule Come From? $\mathrm{d}p = \left(\frac{\partial p}{\partial T}\right)_{U} \mathrm{d}T + \left(\frac{\partial p}{\partial V}\right)_{T} \mathrm{d}V$ divide by dT at constant p(dp = 0) $0 = \left(\frac{\partial p}{\partial T}\right)_{V} \frac{\mathrm{d}T}{\mathrm{d}T_{\mathrm{n}}} + \left(\frac{\partial p}{\partial V}\right)_{T} \frac{\mathrm{d}V}{\mathrm{d}T_{\mathrm{n}}}$ $0 = \left(\frac{\partial p}{\partial T}\right)_{V} (1) + \left(\frac{\partial p}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{T}$ Why the <u>minus sign</u> in the Cyclic Rule? $\left(\frac{\partial p}{\partial T}\right)_{V} = -\left(\frac{\partial p}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{T} \quad \text{Cyclic Rule}$ At constant *p*, the change in p caused by dTcancels the change in p caused by dV so that dp = 0.

notice: $\left(\frac{\partial p}{\partial T}\right)_V \neq \left(\frac{\partial p}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_p$

Why? dV at constant T does not equal dV at constant p.

Mixed Partial Derivatives: Order of Differentiation of a Function Doesn't Matter

Can be used as a test to show $dp = \left(\frac{\partial p}{\partial T}\right)_V dT + \left(\frac{\partial p}{\partial V}\right)_T dV$ is an exact differential.

Exercise For an ideal gas (p = nRT/V), verify:

$$\left[\frac{\partial}{\partial V}\left(\frac{\partial p}{\partial T}\right)_{V}\right]_{T} = -\frac{nR}{V^{2}} = \left[\frac{\partial}{\partial T}\left(\frac{\partial p}{\partial V}\right)_{T}\right]_{V}$$

Proof (*a bit tricky*)

$$\begin{split} & \left[\frac{\partial}{\partial T} \left(\frac{\partial p}{\partial V}\right)_{T}\right]_{V} = \left[\frac{\partial}{\partial T} \left(\lim_{\Delta V \to 0} \frac{p(T, V + \Delta V) - p(T, V)}{\Delta V}\right)\right]_{V} \\ & = \lim_{\Delta T \to 0} \left[\lim_{\Delta V \to 0} \frac{p(T + \Delta T, V + \Delta V) - p(T + \Delta T, V)}{\Delta V} - \frac{p(T, V + \Delta V) - p(T, V)}{\Delta V}\right] \\ & = \lim_{\Delta V \to 0} \left[\lim_{\Delta T \to 0} \frac{p(T + \Delta T, V + \Delta V) - p(T, V + \Delta V)}{\Delta T} - \frac{p(T + \Delta T, V) - p(T, V)}{\Delta T}\right] \\ & = \left[\frac{\partial}{\partial V} \left(\lim_{\Delta T \to 0} \frac{p(T + \Delta T, V) - p(T, V)}{\Delta T}\right)\right]_{T} \\ & = \left[\frac{\partial}{\partial V} \left(\frac{\lim_{\Delta T \to 0} p(T + \Delta T, V) - p(T, V)}{\Delta T}\right)\right]_{T} \\ & = \left[\frac{\partial}{\partial V} \left(\frac{\partial p}{\partial T}\right)_{V}\right]_{T} \end{split}$$

Important Application: *p*-*V*-*T* **Calculations**

Useful and convenient (*intensive*) experimental quantities:

Volumetric Thermal Expansion Coefficient β

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$$

gives the <u>fractional</u> change in volume per Kelvin

 β is usually (*but not always*) positive.

Isothermal Compressibility κ (also called κ_T)

$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

gives the negative <u>fractional</u> change in volume per Pa

 $(\partial V/\partial p)_T$ is <u>always negative</u>, so κ is always positive.

TABLE 3.1	Volumetric Thermal Expansion Coefficient for Solids and Liquids at 298 K			
Element	$10^6 eta/(\mathrm{K}^{-1})$	Element or Compound	$10^4 eta/(\mathrm{K}^{-1})$	
Ag(s)	57.6	$\mathrm{H}g(l)$	1.81	
Al(s)	69.3	$\text{CCl}_4(l)$	11.4	
Au(s)	42.6	$CH_3COCH_3(l)$	14.6	
Cu(s)	49.5	$CH_3OH(l)$	14.9	
Fe(s)	36.9	$C_2H_5OH(l)$	11.2	
Mg(s)	78.3	$C_6H_5CH_3(l)$	10.5	
Si(s)	7.5	$C_6H_6(l)$	11.4	
W(s)	13.8	$H_2O(l)$	2.04	
Zn(s)	90.6	$H_2O(s)$	1.66	

Sources: Benenson, W., Harris, J. W., Stocker, H., and Lutz, H. Handbook of Physics. New York: Springer, 2002; Lide, D. R., ed. Handbook of Chemistry and Physics. 83rd ed. Boca Raton, FL: CRC Press, 2002; Blachnik, R., ed. D'Ans Lax Taschenbuch für Chemiker und Physiker. 4th ed. Berlin: Springer, 1998.

Note: for H₂O(liquid) at 0 °C, $\beta = -5.47 \times 10^{-5} \text{ K}^{-1}$ (shrinks when heated!)

Application of thermal expansion ...

Liquid when heated expands more than the glass.

 $\beta_{\text{liquid}} > \beta_{\text{glass}}$

Related: Why can warm water sometimes be used to get a tight lid off a glass jar?

Liquid-in-Glass Thermometers

Hot Rivet Fasteners

Hot rivet shrinks as it cools, tightly fastening two metal pieces.

Bimetallic Strip

 $\beta_{\rm Brass} > \beta_{\rm Iron}$

Bimetallic Strip

thermostat switch to turn off the furnace

Volumetric Thermal Expansion Coefficient β

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$$

fractional change in volume per degree

Linear Thermal Expansion Coefficient β_{linear} $\beta_{\text{linear}} = \frac{1}{\ell} \left(\frac{\partial \ell}{\partial T} \right)_p = \frac{1}{3} \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = \frac{\beta}{3} \qquad \begin{array}{c} Can \ you \\ show \ this? \end{array}$

fractional change in <u>length</u> per degree

Example If the average temperature of the oceans increases by 1 °C, what is the increase in sea level?

Data: The average volumetric thermal expansion coefficient of seawater is $\beta = 0.00011$ K⁻¹. The average depth of the oceans is 3.7 km.

From
$$\beta_{\text{linear}} = \frac{1}{\ell} \left(\frac{\partial \ell}{\partial T} \right)_p$$
 get $\beta_{\text{linear}} dT = \frac{d\ell}{\ell} = \frac{\beta}{3} dT$
 $\beta_{\text{linear}} \int_{T}^{T+\Delta T} dT = \int_{\ell(T)}^{\ell(T+\Delta T)} \frac{d\ell}{\ell}$ $\beta_{\text{linear}} (\Delta T) = \ln \left(\frac{\ell(T+\Delta T)}{\ell(T)} \right)$
 $\frac{\ell(T+\Delta T)}{\ell(T)} = \exp[\beta_{\text{linear}} (\Delta T)] = \exp\left[\frac{0.00011 \, \text{K}^{-1}}{3} \, 1 \, \text{K} \right] = 1.000037$

 $0.0037 \text{ \% of } 3.7 \text{ km} = 0.000037 \times 3.7 \text{ km} = 0.00014 \text{ km} = 0.14 \text{ m}$

What's this? What does it have to do with thermal expansion?

Concorde Supersonic (Mach 2.0) Passenger Aircraft

At cruising speed, twice the speed of sound, air friction heated the skin to about 150 °C, increasing the length of the aircraft by about one foot, an important design consideration for maintaining structural integrity.

TABLE 3.2	Isothermal Compress	sibility at 298 K		
Substance	$10^6 \kappa/\mathrm{bar}^{-1}$	Substance	$10^6 \kappa/\mathrm{bar}^{-1}$	
Al(s)	1.33	$\operatorname{Br}_2(l)$	64	
$SiO_2(s)$	2.57	$C_2H_5OH(l)$	110	
Ni(s)	0.513	$C_6H_5OH(l)$	61	
$TiO_2(s)$	0.56	$C_6H_6(l)$	94	
Na(s)	13.4	$\text{CCl}_4(l)$	103	K
Cu(s)	0.702	$CH_3COCH_3(l)$	125	
C(graphite)	0.156	$CH_3OH(l)$	120	
Mn(s)	0.716	$CS_2(l)$	92.7	
Co(s)	0.525	$H_2O(l)$	45.9	
Au(s)	0.563	$\mathrm{H}g(l)$	3.91	
Pb(s)	2.37	$SiCl_4(l)$	165	
Fe(s)	0.56	$\operatorname{TiCl}_4(l)$	89	
Ge(s)	1.38			

 $-\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$

How are β and κ measured?

One way: measure the density $\rho(T,p)$ of a gas, liquid, or solid at different temperatures and pressures.

 $\rho(T,p) = \text{mass per unit volume at temperature } T$, pressure p

Then use:

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p$$
$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T$$

Can you derive the equations for β and κ in terms of the density?
Are β and κ intensive or extensive quantities?

Exercise: Evaluate the volumetric thermal expansion coefficient for an ideal gas (V = nRT/p) at 298 K

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$= \frac{1}{V} \left[\frac{\partial}{\partial T} \left(\frac{nRT}{p} \right) \right]_{p}$$

$$= \frac{1}{V} \left(\frac{nR}{p} \right) \left[\frac{\partial T}{\partial T} \right]_{p}$$

$$= \frac{nR}{pV} = \frac{nR}{nRT} = \frac{1}{T}$$

$$= \frac{1}{298 \text{ K}} = 0.00335 \text{ K}^{-1}$$

ideal	gas	
$\beta =$	$\frac{1}{T}$	

Exercise: Evaluate the isothermal compressibility for an ideal gas (V = nRT/p) at p = 1.00 bar

$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T}$$

$$= -\frac{1}{V} \left[\frac{\partial}{\partial p} \left(\frac{nRT}{p} \right) \right]_{T}$$

$$= -\frac{1}{V} \left(nRT \right) \left[\frac{\partial p^{-1}}{\partial p} \right]_{T}$$

$$= -\frac{nRT}{V} \left[\frac{-1}{p^{2}} \right] = \frac{nRT}{pV} \frac{1}{p} = \frac{1}{p}$$

$$= \frac{1}{1.00 \text{ bar}} = 1.00 \text{ bar}^{-1}$$

Exercise: For a <u>nonideal gas</u> with second virial coefficient B(T) and the equation of state

$$Z = \frac{pV}{nRT} = 1 + \frac{nB(T)}{V}$$

show that the isothermal compressibility is

$$\kappa = \frac{1}{p + \frac{n^2 RTB(T)}{V^2}} = \frac{1}{p + \frac{RTB(T)}{V_m^2}}$$

Isothermal Compressibility of a Nonideal Gas

with Second Virial Coefficient *B*(*T*)

$$\kappa = \frac{1}{p + \frac{n^2 RTB(T)}{V^2}} = \frac{1}{p + \frac{RTB(T)}{V_m^2}}$$

Significance:

ideal gas withB(T) = 0no molecular interactions $\kappa = 1/p$

nonideal gas with B(T) < 0 $\kappa > 1/p$ attractive interactions dominate gas is "more compressible"

nonideal gas with B(T) > 0 $\kappa < 1/p$

repulsive interactions dominate gas is "less compressible"

Comparisons:

For an **ideal gas** at 298 K and 1.00 bar:

 $\beta = 0.00335 \text{ K}^{-1}$ $\kappa = 1.00 \text{ bar}^{-1}$

For liquid water at 298 K and 1.00 bar:

 $\beta = 0.000204 \text{ K}^{-1}$ $\kappa = 0.0000459 \text{ bar}^{-1}$

For **solid iron** at 298 K and 1.00 bar:

 $\beta = 0.0000369 \text{ K}^{-1}$ $\kappa = 0.00000056 \text{ bar}^{-1}$

- the volumes of solids and liquids are much less sensitive to temperature changes than gases
- solids and liquids are "almost" incompressible (κ << 1 bar⁻¹) Why?

Exercise: 2.00 L of ideal gas at 298 K (25 °C) and 1.00 bar is heated at constant pressure to 323 K (50 °C). Calculate the final volume.

Easy! The equation of state pV = nRT is known. Use:

 $V_f / V_i = (nRT_f / p_f) / (nRT_i / p_i) = T_f / T_i = (323 \text{ K} / 298 \text{ K}) = 1.0839$ $V_f = 1.0839 \times 2.00 \text{ L}$ $V_f = 2.17 \text{ L}$

% volume change = $\frac{V_f - V_i}{V_i}$ 100% = $\frac{2.17 \text{ L} - 2.00 \text{ L}}{2.00 \text{ L}}$ 100% = 8.5 % volume increase **Exercise:** 2.00 L of **liquid** water at 298 K (25 °C) and 1.00 bar is heated at constant pressure to 323 K (50 °C). Calculate the final volume. **Data:** $\beta = 0.000204$ K⁻¹ (assumed constant).

Note: The equation of state of liquid water is not provided. *Can't use* pV = nRT (liquid H₂O is not an ideal gas). Instead:

 $\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{-}$

 $\int_{T}^{V_f} \frac{\mathrm{d}V}{V} = \int_{T}^{T_f} \beta \mathrm{d}T$

$$\boxed{\times \,\mathrm{d}T_p \implies} \qquad \frac{dV}{V} = \beta \mathrm{d}T$$

Integrate at constant pressure:

$$\ln\left(\frac{V_f}{V_i}\right) = \beta(T_f - T_i) = 0.000204 \text{ K}^{-1}(25 \text{ K}) = 0.0051$$

 $\frac{V_f}{V_i} = e^{0.0051} = 1.0051$ $V_f = 1.0051 \times V_i = 1.0051 \times 2.00 L$ $V_f = 2.01 L \text{ (only a 0.5 \% increase)}$

Exercise: 2.00 L of ideal gas at 298 K (25 °C) and 1.00 bar is isothermally compressed to a final pressure of 5.00 bar. Calculate the final volume.

Easy! The equation of state pV = nRT is known. Use:

 $V_f / V_i = (nRT_f / p_f) / (nRT_i / p_i) = p_i / p_f = (1.00 \text{ bar} / 5.00 \text{ bar}) = 0.200$ $V_f = 0.200 V_i = 0.200 \times 2.00 \text{ L}$ $V_f = 0.400 \text{ L}$ $V_c - V_i = 0.400 \text{ L} = 2.00 \text{ L}$

% volume change = $\frac{V_f - V_i}{V_i} 100\% = \frac{0.400 \text{ L} - 2.00 \text{ L}}{2.00 \text{ L}} 100\%$ = -80.0 % **Exercise:** 2.00 L of **liquid** water at 298 K (25 °C) and 1.00 bar is isothermally compressed to a final pressure of 5.00 bar. Calculate the final volume. **Data:** $\kappa = 0.0000459$ bar⁻¹ (assumed constant).

Note: The equation of state of liquid water is not provided. *Can't use* pV = nRT (liquid H₂O is not an ideal gas). Instead:

$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T} \qquad \boxed{\times dp_{T} \Rightarrow} \qquad \frac{dV}{V} = -\kappa dp$$

$$\int_{V_{i}}^{V_{f}} \frac{dV}{V} = -\int_{p_{i}}^{p_{f}} \kappa dp \qquad \text{integrate at constant temperature:}$$

$$\ln \left(\frac{V_{f}}{V_{i}} \right) = -\kappa (p_{f} - p_{i}) = -0.0000459 \text{ bar}^{-1} (4.00 \text{ bar}) = -0.000184$$

$$\frac{V_{f}}{V_{i}} = e^{-0.000184} = 0.99982 \qquad \boxed{V_{f} = 0.99982 \times V_{i} = 0.99982 \times 2.00 \text{ L}}$$

$$\frac{V_{f}}{V_{i}} = e^{-0.000184} = 0.99982 \qquad \boxed{V_{f} = 1.99963 \text{ L}} \quad (-0.0184 \ \% \text{ change})$$

$$\Rightarrow volume almost independent of p$$

!!! Warning !!!

Heating a solid or a liquid at constant volume can produce dangerously large pressure increases.

- Railroads are constructed with small gaps between lengths of steel rails to allow for thermal expansion
- Bridges have small gaps between structural beams
- Liquid-in-glass thermometers break if heated beyond their temperature range
- <u>Never</u> fill a container to the brim with a liquid and seal it!
- Useful application: "shrink fits" used by machinists

What does thermodynamics have to say about $\left(\frac{\partial p}{\partial T}\right)$?

Gap in rails

Thermal Expansion Gaps

No Thermal Expansion Gaps!

Change in Pressure with Temperature at Constant Volume

$$\begin{pmatrix} \frac{\partial p}{\partial T} \end{pmatrix}_{V} = -\left(\frac{\partial p}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{p} \\ = \frac{\left(\frac{\partial V}{\partial T}\right)_{p}}{-\left(\frac{\partial V}{\partial p}\right)_{T}} \\ = \frac{\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{p}}{-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{T}}$$

Cyclic Rule!

Inverse Rule!

Definition of β , κ

 $=\frac{\beta}{\kappa}$

ratio of the volumetric thermal expansion coefficient to the isothermal compressibility **Changes in Pressure with Temperature at Constant Volume**

For an **ideal gas** at 298 K and 1 bar:

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{\beta}{\kappa} = \frac{\frac{1}{T}}{\frac{1}{p}} = \frac{p}{T} = \frac{1.00 \text{ bar}}{298 \text{ K}} = 0.00335 \text{ bar } \text{K}^{-1}$$
(no problem)

Uh Oh!

For solid iron at 298 K and 1 bar:

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{\beta}{\kappa} = \frac{0.0000369 \text{ K}^{-1}}{0.0000056 \text{ bar}^{-1}} = 66 \text{ bar K}^{-1}$$

970 lb per square inch *per degree* !

Freezing liquid water in a confined space can split pipes, damage concrete, heave foundations, and crack porous rocks.

Why?

Exercise:Liquid water at 0 °C and 1.00 bar is frozen
at constant volume. Calculate the final pressure.

- **Data:** Ice is less dense than liquid water. (*Ice floats!*) Freezing liquid water produces a 9 % increase in volume.
 - isothermal compressibility of ice $\kappa = 51.0 \times 10^{-6} \text{ bar}^{-1}$
- Solution:Freezing water at 1.00 bar increases the volume by 9 %.To maintain constant volume, the pressure on the
ice must be increased to reduce the volume by 9 %.

$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T}$$

multiply by dp at constant T

 $\kappa \,\mathrm{d}p = -\frac{dV}{V}$ integrate from $p_i = 1.00$ bar to p_f

Exercise:Liquid water at 0 °C and 1.00 bar is frozen at
constant volume. Calculate the <u>final pressure</u>.

$$\int_{p_i}^{p_f} \kappa dp = \kappa \int_{p_i}^{p_f} dp = -\int_{V_i}^{V_f} \frac{dV}{V} \quad \text{assume } \kappa \text{ is constant} \quad (\text{no other information given})$$

$$\kappa(p_f - p_i) = -\ln\left(\frac{V_f}{V_i}\right)$$

$$p_f = p_i - \frac{1}{\kappa}\ln\left(\frac{V_f}{V_i}\right)$$

$$p_f = 1.00 \text{ bar } - \frac{1}{51.0 \times 10^{-6} \text{ bar}^{-1}} \ln\left(\frac{1}{1.09}\right)$$

$$p_f = 1.00 \text{ bar } + 1690 \text{ bar } \approx 1700 \text{ bar}$$

$$\text{Conclusion: Freezing liquid water at constant volume}$$

$$\text{generates a pressure of about 1700 \text{ bar}}$$

$$(\text{cont.})$$

Sections 3.2 and 3.3 Dependence of the Internal Energy U on Temperature and Volume

- widely used for scientific and engineering calculations
- provides valuable information about molecular energy levels and molecular interactions

Because the internal energy of a system is a state function U(T,V), the differential dU is exact. Mathematics provides:

$$\mathrm{d}U = \left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{d}T + \left(\frac{\partial U}{\partial V}\right)_{T} \mathrm{d}V$$

A useful <u>theoretical result</u>. But for <u>practical applications</u>:

How are $(\partial U/\partial T)_V$ and $(\partial U/\partial V)_T$ calculated?

from the First Law: dU = dq + dw

only *p*-*V* work possible: $dU = dq - p_{external}dV$

at constant volume: (dV = 0, no work)

$$\mathrm{d}U_V = \mathrm{d}q_V$$

heat capacity at constant volume

$$C_V = \frac{\mathrm{d}q_V}{\mathrm{d}T} = \left(\frac{\partial U}{\partial T}\right)_V$$

 C_V is an experimental quantity, measured using calorimetry.

from Chapters 1 and 2:

$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_V - p$$

<u>Plan A</u> If the equation of state of the system is <u>known</u>, then $(\partial p/\partial T)_V$ and therefore $(\partial U/\partial V)_T$ are easily calculated.

Plan B If the equation of state of the system is <u>unknown</u>, then $(\partial p/\partial T)_V$ and $(\partial U/\partial V)_T$ can be calculated using measurable volumetric thermal expansion coefficients (β) and isothermal compressibilities (κ) (see Section 3.1) using

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{\beta}{\kappa} \qquad \qquad \left(\frac{\partial U}{\partial V}\right)_{T} = T\frac{\beta}{\kappa} - p$$

Important result: Changes in the internal energy of any system can be calculated from measurable quantities.

"theoretical"
$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$

becomes "practical"

$$\mathrm{d}U = C_{V}\mathrm{d}T + \left(T\frac{\beta}{\kappa} - p\right)\mathrm{d}V$$

in terms of the measurable quantities:

$$C_V = \frac{\mathrm{d}q_V}{\mathrm{d}T}$$
 $\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p$ $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T$

Exercise: For ideal gases, prove $\left(\frac{\partial U}{\partial V}\right)_{T} = 0$

Hint: Recall that the volumetric expansion coefficient and isothermal compressibility of an ideal gas are $\alpha = 1/T$ and $\kappa = 1/p$

Exercise: Theory is fine, but can you suggest <u>an experiment</u> that could be used to show $(\partial U/\partial V)_T = 0$ for ideal gases?

One possibility:

Open a valve, allow gas at pressure p_i in flask A to expand into evacuated flask B.

If the gas is ideal, what is the change in temperature?

Why?

Sections 3.4 to 3.6 Dependence of the Enthalpy H = U + pVon Temperature and Pressure

- recall from Chapter 2: $q_p = \Delta H$
- as a result, enthalpy changes are important for calorimetry, combustion reactions and other chemical reactions
- also important for flow processes (next Section)

T and *p* are therefore "natural" variables for the enthalpy. *H* is a state function H(T,p), so the differential dH is exact and

$$dH = \left(\frac{\partial H}{\partial T}\right)_p dT + \left(\frac{\partial H}{\partial p}\right)_T dp$$

Another useful theoretical result. But for practical applications how are $(\partial H/\partial T)_p$ and $(\partial H/\partial p)_T$ calculated ?

- from the First Law: dU = dq + dw
- only *p*-*V* work possible: $dU = dq p_{external}dV$

at constant pressure:

$$dU_p = dq_p - pdV$$

$$dq_p = dU_p + pdV = d(U + pV)$$

$$= dH$$

heat capacity at constant pressure

$$C_{p} = \frac{\mathrm{d}q_{p}}{\mathrm{d}T} = \left(\frac{\partial H}{\partial T}\right)_{p}$$

 C_p is an experimental quantity measured using calorimeters operated at constant pressure

$$(\partial H/\partial p)_T$$
 ?

$$dH = d(U + pV)$$

= $dU + d(pV)$
= $dU + pdV + Vdp$
= $(\partial U/\partial T)_V dT + (\partial U/\partial V)_T dV + pdV + Vdp$
= $C_V dT + [T(\partial p/\partial T)_V - p]dV + pdV + Vdp$

$$dH_T = T(\beta/\kappa)dV_T + Vdp_T \quad (dT = 0 \text{ at constant } T, \text{ divide by } dp_T)$$
$$\left(\frac{\partial H}{\partial p}\right)_T = \frac{T\beta}{\kappa} \left(\frac{\partial V}{\partial p}\right)_T + V = \frac{T\beta}{\kappa} \left(-\kappa V\right) + V$$

$$\left(\frac{\partial H}{\partial p}\right)_T = V(1 - \beta T)$$

V, β , and T are all measurable quantities

Important result: Changes in the enthalpy of any system can be calculated from measurable quantities.

"theoretical"
$$dH = \left(\frac{\partial H}{\partial T}\right)_p dT + \left(\frac{\partial H}{\partial p}\right)_T dp$$

becomes "practical" $dH = C_p dT + V(1 - \beta T) dp$

in terms of the measurable quantities:

$$C_p = \frac{\mathrm{d}q_p}{\mathrm{d}T} \qquad \beta = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p$$

Example Problem 3.9

Calculate the change in enthalpy when 124 g of liquid methanol at 1.00 bar and 298 K is heated and compressed to 2.50 bar and 425 K.

Data: methanol molar mass density of liquid methanol heat capacity of liquid methanol $M = 32.04 \text{ g mol}^{-1}$ $\rho = 0.791 \text{ g cm}^{-3}$ $C_{pm} = 81.1 \text{ J K}^{-1} \text{ mol}^{-1}$

Solution:

Enthalpy is a state function, so ΔH can be calculated for any path between the initial and final states. We will heat first, then compress:

 $\begin{array}{c} \text{heat} & \text{compress} \\ \text{CH}_3\text{OH}(298 \text{ K}, 1 \text{ bar}) \longrightarrow \text{CH}_3\text{OH}(425 \text{ K}, 1 \text{ bar}) \longrightarrow \text{CH}_3\text{OH}(425 \text{ K}, 2.50 \text{ bar}) \\ \hline \text{Step 1} & \text{Step 2} \end{array}$

Example Problem 3.9 (cont.)

Step 1 Heat 124 g of liquid methanol from 289 K to 425 K at 1 bar.

$$\Delta H_p = \int_{T_i}^{T_f} C_p dT = n C_{pm} \int_{T_i}^{T_f} dT = n C_{pm} (T_f - T_i)$$

$$\Delta H_p = \frac{124 \text{ g}}{32.04 \text{ g mol}^{-1}} (81.1 \text{ J K}^{-1} \text{ mol}^{-1}) (425 \text{ K} - 298 \text{ K}) = 39,900 \text{ J}$$

Step 2 Compress 124 g of liquid methanol from 1.00 bar to 2.50 bar at a constant temperature of 425 K.

$$\Delta H_T = \int_{p_i}^{p_f} \left(\frac{\partial H}{\partial p}\right)_T dp \approx \int_{T_i}^{T_f} V dp \approx V \int_{T_i}^{T_f} dp = V(p_f - p_i)$$

 $\Delta H_T = (124 \text{ g}/0.791 \text{ g cm}^{-3})(10^{-6} \text{ m}^3 \text{ cm}^{-3})(2.50 - 1.00 \text{ bar})(10^5 \text{ Pa bar}^{-1}) = 39.9 \text{ J}$

Overall $\Delta H = \Delta H_p$ (step 1) + ΔH_T (step 2) = 39,900 J + 40 J \approx 39,900 J from step 1 For solids and liquids, changes in pressure usually cause small enthalpy changes

Section 3.7 The Joule-Thomson (JT) Experiment

- irreversible expansion of gas through a porous barrier or throttle valve under adiabatic conditions (no heat flow)
- ideal gases: no temperature change
- real gases: can **cool down** or **warm up** during JT expansion
- important applications

- refrigeration
- air conditioning
- heat pumps
- * gas liquefaction

Gas Liquefaction

For **industrial** applications:

(not university lab experiments!)

- continuous flow (more economical than batch processing)
- re-cycle gas that does not liquefy (no wastage)
- heat-exchange use cool gas that does not liquefy to pre-cool gas from compressor
- large-scale production (thousands of tons per day)
- use the expanding gas to **run a generator** (adiabatic cooling)

Applications of Liquefied Gases

- **liquid air** is distilled to produce liquid N_2 and liquid O_2
- N₂ is used to make **ammonia** for the production of nitric acid, fertilizers, explosives, and many other industrial chemicals
- cold liquefied natural gas (LNG) can be shipped economically over large distances in **cheap low-pressure tanks** (at ≈ 1 atm)
- liquid N₂ and liquid He are important cryogens
 (liquid He is used to operate superconducting nmr magnets)
- liquid propane allows barbecuing without charcoal
- many other important uses

Refrigeration and Air Conditioning

- expanding nonideal gases cool and absorb heat
- keeps perishable food products fresh, nutritious and safe to eat
- air conditioners provide cooling and humidity reduction, making large regions "habitable" for "modern" people

Ever tried working (or living) at 30 °C and 95 % humidity?

LNG Ship Carrying Liquefied Natural Gas (at about –260 °C)

Application of Liquefied Gases: Space Exploration

store liquid fuel and oxidizer in **light** thin-wall **low pressure** tanks

Saturn V Heavy-Lift Vehicle

("Apollo Moon Rocket")

- most powerful rocket ever built
- operational 1967 to 1973
- 7.6 million pounds thrust
- launched 130-ton payloads into earth orbit
- never failed, even when hit by lighting (Apollo 12 mission)
- kerosene / liquid oxygen first stage
- liquid hydrogen / liquid oxygen second and third stages
- mileage: about five inches per gallon

Joule Thomson (JT) Flow Experiment – *How does it work?*

- gas initially at p_1 , V_1 , T_1
- expands **adiabatically** through a porous plug or throttle valve
- gas downstream leaves at p_2 , V_2 , T_2

Thermodynamic Analysis of Joule-Thomson (JT) Expansions

$$p_{1}, V_{1}, T_{1} \rightarrow p_{2}, V_{2}, T_{2}$$
First Law: $\Delta U = q + w$

$$U_{2} - U_{1} = p_{1}V_{1} - p_{2}V_{2}$$

$$U_{2} + p_{2}V_{2} = U_{1} + p_{1}V_{1}$$

$$H_{2} = H_{1}$$

$$\Delta H = 0$$

Conclusion: Joule-Thomson expansions are "**isenthalpic**" (occur at constant enthalpy)

Joule-Thomson Coefficient of Performance

$$\mu_{\rm JT} = \left(\frac{\partial T}{\partial p}\right)_{H}$$

 $\mu_{\rm JT}$ gives the change in temperature per unit change in pressure of the expanding gas. But what is $\mu_{\rm JT}$?

Using the cyclic and inverse rules of partial derivatives:

$$\frac{V(1 - \beta T)}{\mu_{\rm JT}} = \left(\frac{\partial T}{\partial p}\right)_{H} = -\left(\frac{\partial T}{\partial H}\right)_{p} \left(\frac{\partial H}{\partial p}\right)_{T} = -\left(\frac{\partial H}{\partial p}\right)_{T} / \left(\frac{\partial H}{\partial T}\right)_{p}$$

$$\mu_{\rm JT} = -\frac{V(1-\beta T)}{C_p}$$

Gives temperature change of the expanding gas in terms of **measurable quantities**.

TABLE 3.3 Joule-ThomsonCoefficients for SelectedSubstances at 273 K and 1 atm	
Gas	$\mu_{J-T}~({ m K/MPa})$
Ar	3.66
C_6H_{14}	-0.39
CH ₄	4.38
CO ₂	10.9
H_2	-0.34
He	-0.62
N_2	2.15
Ne	-0.30
NH ₃	28.2
O ₂	2.69

$$\mu_{\rm JT} = \left(\frac{\partial T}{\partial p}\right)_{\!H}$$

 $\mu_{\rm JT} > 0$: expanding gas cools down $\Delta T < 0$ if $\Delta p < 0$

 $\mu_{\rm JT}$ < 0: expanding gas warms up $\Delta T > 0$ if $\Delta p < 0$

Which of the listed substances would make the best refrigerant? *Why*?

Conclusion: Warming or cooling during Joule-Thomson expansions occurs <u>only for nonideal gases</u> (molecular interactions).

Why Does Warming or Cooling Occur During JT Expansions?

For a nonideal gas obeying the van der Waals equation with attractive *a* and repulsive *b* coefficients

$$p = \frac{nRT}{V-nb} - \frac{n^2a}{V^2}$$

the Joule-Thomson coefficient is

$$\mu_{JT} = \frac{1}{C_{pm}} \left(\frac{2a}{RT} - b \right)$$

Joule-Thomson Coefficient of a Nonideal van der Waals Gas

$$\mu_{JT} = \left(\frac{\partial T}{\partial p}\right)_{H} = \frac{1}{C_{pm}}\left(\frac{2a}{RT} - b\right)$$

Low Temperatures: (2a/RT) - b > 0

Cooling on Expansion. Attractive forces dominate. "Sticky" molecules fly apart more slowly, with less kinetic energy.

 $\mu_{\rm IT} > 0$

<u>High Temperatures</u>: (2a/RT) - b < 0 $\mu_{JT} < 0$

Warming on Expansion. Repulsive forces dominate. Repelling molecules fly apart more quickly, with more kinetic energy.

<u>Max. Inversion temperature</u>: (2a/RT) - b = 0 $\mu_{JT} = 0$

No temperature change. Attractive and repulsive forces balanced at the Boyle (not Boil!) temperature $T_{Boyle} = 2a/Rb$.

Isenthalps: States of <u>Constant Enthalpy</u>

Joule-Thomson Inversion Temperatures for $N_{\rm 2}$ and $H_{\rm 2}$

Use liquid N_2 to cool liquid H_2 below its inversion temperature.

Then use liquid H_2 to cool and liquefy He.

Liquid helium is the ultimate cryogen.

Used for super-conducting magnets and low-temperature research (T < 4 K).

