
Chapter 3. The Importance of State Functions.  

The Internal Energy and Enthalpy

Summary

 useful features of state functions are identified

 introduction to the mathematics of thermodynamic partial

differential equations   

 changes in the internal energy and enthalpy are related to easily

measured changes in the state variables T, V, and p

 applications:   Joule-Thomson experiment 

 liquefaction of gases



Partial Differential equations - the “language” of thermodynamics

(and many other branches of science and technology)

 What are differential equations?

 What are “partial” differential equations?

 Why are differential equations important?

 How can they be used?

 What rules apply?

Section 3.1  Mathematical Properties of State Functions:

Partial Differential Equations



First …        “Ordinary” Differential Equations

only one independent variable

Example: independent variable x in the function f(x) = 10x3 – 3x

derivative of f(x) 

[ slope of f(x) plotted against x ]

integral of f(x)

“add up” the df differentials

[ gives the change in f(x) ]
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But thermodynamic functions generally depend on 

two or more independent variables

Example

The pressure of n moles of ideal gas is a function of T and V.

Ordinary derivatives

are ambiguous and do not apply. 

Why?  At each point p(T,V)  

an infinite number of different 

slopes dp/dT and dp/dV exist in an

infinite number of different directions.
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“Partial” Derivatives  to  the  Rescue

For the derivatives of the function p(T,V), to avoid ambiguity, 

define the partial derivatives:
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slope of p against T

parallel to the T axis

( V fixed )

slope of p against V

parallel to the V axis

( T fixed )

(Why “partial”?  Only T and p are changing.)

(Only V and p are changing.)



Other Partial Differential Equations

1.  Wave Equation

Vibration of an elastic string in one dimension:

u(x,t) is the displacement at time t and position x along the string.

c is the speed of the vibration moving along the string. 

Three-dimensional vibration of an elastic medium (such as

sound waves, ultrasonic or seismic waves):  
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2.  Heat Conduction Equation

Heat conduction in one dimension:

T(x,t) is the temperature at time t and position x.

k is the thermal conductivity. 

Three-dimensional heat conduction:  
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3.  Diffusion Equation

Diffusion in one dimension:

CA(x,t) is the concentration of chemical A at time t and position x.

D is the diffusion coefficient. 

Three-dimensional diffusion:  
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4.  Equation of Continuity for Fluid Flow

Fluid flow in one dimension:

(x,t) is the density of the fluid at time t and position x.

vx is the velocity of the fluid in the x direction. 

Three-dimensional continuity equation:  
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5.  Transmission Line Equation

Flow of electric current I(x,t) along a wire:

x is the position along the wire

R is the resistance 

C is the capacitance

L is the induction

G is the loss
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6.  Lagrangian Equations of Motion

L = kinetic energy – potential energy for a mechanical system

qi is the generalized position of mass i (any coordinate system) 

is the generalized velocity of mass i
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7.  Schrodinger Quantum Mechanical Equation

h  = Planck constant m  = particle mass

V = potential energy  = wave function

E = total energy

Solving the Schrodinger equation for an electron in the electric 

potential energy field of a proton gives the 1s, 2s, 2p, 3s, …

orbitals used by chemists 
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partial T derivative:

partial V derivative:
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Example:  Partial Derivatives of  p(T,V)  for an Ideal Gas



“Exact” Differential of  p(T,V)

Because p is a function of state variables T and V:

a) the infinitesimal change in p (the differential dp) produced by 

changes dT and dp is exactly defined (not path-dependent):

b) the change in p obtained by integrating dp is exactly defined

by the initial state pi(Ti, Vi) and the final state pf(Tf, Vf) 

(also not path-dependent) 
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Inverse Rule

Cyclic Rule

(why cyclic?)

Using the inverse rule, the cyclic rule is also written as:
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Useful Rules for Partial Derivatives



Where Does the Cyclic Rule Come From?
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Why the minus sign

in the Cyclic Rule?

At constant p, the 

change in p caused by dT

cancels the change in p

caused by dV so that dp = 0.

Why? dV at constant T does 

not equal dV at constant p.



Mixed Partial Derivatives: Order of Differentiation of a Function 

Doesn’t Matter

Example:

Can be used as a test to show 

is an exact differential.

Exercise For an ideal gas (p = nRT/V), verify:
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Proof  (a bit tricky)
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Useful and convenient (intensive) experimental quantities:

Volumetric Thermal Expansion Coefficient  

Isothermal Compressibility   ( also called T  )
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Important Application:   p-V-T Calculations



Note:  for H2O(liquid) at 0 oC,  = 5.47  105 K1 (shrinks when heated!)



Application of thermal expansion …

Liquid-in-Glass Thermometers

Liquid when heated

expands more than 

the glass. 

Related: Why can warm water 

sometimes be used to get a 

tight lid off a glass jar?

liquid >  glass



Hot  Rivet  Fasteners

Hot rivet shrinks as it cools, tightly fastening two metal pieces.



Bimetallic  Strip

Brass >  Iron



Bimetallic  Strip

thermostat  switch to turn off the furnace



fractional change in length per degree

Volumetric Thermal Expansion Coefficient 

Linear  Thermal Expansion Coefficient linear
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Example If the average temperature of the oceans increases by

1 oC, what is the increase in sea level?

Data: The average volumetric thermal expansion coefficient of seawater 

is  = 0.00011 K1. The average depth of the oceans is 3.7 km. 
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What’s this?  What does it have to do with thermal expansion?



Concorde Supersonic (Mach 2.0) Passenger Aircraft

At cruising speed, twice the speed of sound, air friction heated the skin

to about 150 oC, increasing the length of the aircraft by about one foot, an 

important design consideration for maintaining structural integrity.
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How are  and  measured?

One way:  measure the density (T,p) of a gas, liquid, or solid 

at different temperatures and pressures. 

(T,p)  =  mass per unit volume at temperature T, pressure p

Then use:
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 Can you derive the equations for  and  in terms of the density?

 Are  and  intensive or extensive quantities?



Exercise:  Evaluate the volumetric thermal expansion coefficient  

for an ideal gas (V = nRT/p) at 298 K
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Exercise:  Evaluate the isothermal compressibility

for an ideal gas (V = nRT/p) at p = 1.00 bar
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Exercise:    For a nonideal gas with second virial coefficient B(T)

and the equation of state

show that the isothermal compressibility is
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Isothermal Compressibility of a Nonideal Gas

with Second Virial Coefficient B(T)
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Significance:

ideal gas with         B(T)  =  0 no molecular interactions 

________________________________________________________________________________________________________________________________________________________________

nonideal gas with  B(T)  <  0 attractive interactions dominate

gas is “more compressible”
_________________________________________________________________________________________________________________________________________________________________

nonideal gas with  B(T)  >  0       repulsive interactions dominate

gas is “less compressible”

 =  1/p

 >  1/p

 <  1/p



Comparisons:  

For an ideal gas at 298 K and 1.00 bar:

 = 0.00335  K1  = 1.00  bar1

For liquid water at 298 K and 1.00 bar:

 = 0.000204  K1  = 0.0000459  bar1

For solid iron at 298 K and 1.00 bar:

 =  0.0000369  K1  = 0.00000056  bar1

____________________________________________________________

 the volumes of solids and liquids are much less sensitive 

to temperature changes than gases

 solids and liquids are “almost” incompressible ( << 1 bar1)

Why?



Exercise:  2.00 L of ideal gas at 298 K (25 oC) and 1.00 bar is 

heated at constant pressure to 323 K (50 oC). Calculate the 

final volume.

Easy! The equation of state pV = nRT is known. Use:

Vf / Vi =  (nRTf /pf) / (nRTi /pi)  =  Tf / Ti =  (323 K / 298 K) = 1.0839

Vf =  1.0839  2.00 L  

Vf = 2.17 L

increase volume%5.8
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%100change  volume%
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Exercise:  2.00 L of liquid water at 298 K (25 oC) and 1.00 bar is 

heated at constant pressure to 323 K (50 oC). Calculate the 

final volume.  Data:  = 0.000204 K1 (assumed constant).

Note: The equation of state of liquid water is not provided.

Can’t use pV = nRT (liquid H2O is not an ideal gas). Instead:
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i

f

V

V Vf =  1.0051  Vi = 1.0051  2.00 L

Vf =  2.01 L  (only a 0.5 % increase)

Integrate at constant pressure:



Exercise:  2.00 L of ideal gas at 298 K (25 oC) and 1.00 bar is 

isothermally compressed to a final pressure of 5.00 bar. 

Calculate the final volume.

Easy! The equation of state pV = nRT is known. Use:

Vf / Vi =  (nRTf /pf) / (nRTi /pi)  =  pi  / pf =  (1.00 bar / 5.00 bar) = 0.200

Vf =  0.200Vi =  0.200  2.00 L  

Vf = 0.400 L
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Exercise: 2.00 L of liquid water at 298 K (25 oC) and 1.00 bar is 

isothermally compressed to a final pressure of 5.00 bar. Calculate 

the final volume.  Data:  = 0.0000459 bar1 (assumed constant).

Note: The equation of state of liquid water is not provided.

Can’t use pV = nRT (liquid H2O is not an ideal gas). Instead:
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Vf =  0.99982  Vi = 0.99982  2.00 L

Vf =  1.99963 L (0.0184 % change)

 volume almost independent of p               

integrate at constant temperature:
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 Railroads are constructed with small gaps between lengths of

steel rails to allow for thermal expansion

 Bridges have small gaps between structural beams

 Liquid-in-glass thermometers break if heated beyond their

temperature range

 Never fill a container to the brim with a liquid and seal it!

 Useful application:  “shrink fits” used by machinists

What does thermodynamics have to say about                   ?

!!! Warning !!!
Heating a solid or a liquid at constant volume can 

produce dangerously large pressure increases.



Thermal Expansion Gaps



No Thermal Expansion Gaps!



Change in Pressure with Temperature at Constant Volume
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ratio of the volumetric thermal expansion 

coefficient to the isothermal compressibility

Cyclic  Rule!

Inverse  Rule!

Definition of  ,



Changes in Pressure with Temperature at Constant Volume
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For an ideal gas at 298 K and 1 bar:

For solid iron at 298 K and 1 bar:
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970 lb per square inch per degree ! Uh Oh!

(no problem)



Freezing liquid water in a confined space can split pipes, 

damage concrete, heave foundations, and crack porous rocks.              

Why ?



Exercise: Liquid water at 0 oC and 1.00 bar is frozen 

at constant volume. Calculate the final pressure.

Data:  Ice is less dense than liquid water.  (Ice  floats!) Freezing 

liquid water produces a 9 % increase in volume.

 isothermal compressibility of ice   =  51.0  106 bar1

Solution: Freezing water at 1.00 bar increases the volume by 9 %. 

To maintain constant volume, the pressure on the 

ice must be increased to reduce the volume by 9 %.
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multiply by dp at constant T

integrate from pi = 1.00 bar to pf



Exercise: Liquid water at 0 oC and 1.00 bar is frozen at 

constant volume. Calculate the final pressure.
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(cont.)
assume  is constant

(no other information given)
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Conclusion: Freezing liquid water at constant volume 

generates a pressure of about 1700 bar

( 25,000 lb per square inch! Uh Oh!)



Sections 3.2 and 3.3 Dependence of the Internal Energy U

on Temperature and Volume

 widely used for scientific and engineering calculations

 provides valuable information about molecular energy levels

and molecular interactions

Because the internal energy of a system is a state function U(T,V), 

the differential dU is exact. Mathematics provides:
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A useful theoretical result. But for practical applications:  

How are (U/T)V and (U/V)T calculated ? 



(U/T)V

from the First Law:   dU =  dq +  dw

only p-V work possible:  dU =  dq  pexternaldV

at constant volume: dUV =  dqV

(dV = 0, no work)
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???

heat capacity at 

constant volume

CV is an experimental quantity, measured using calorimetry.



(U/V)T

from Chapters 1 and 2:

??? 

Plan A If the equation of state of the system is known, then 

(p/T)V and therefore (U/V)T are easily calculated.

Plan B If the equation of state of the system is unknown, then 

(p/T)V and (U/V)T can be calculated using measurable

volumetric thermal expansion coefficients () and isothermal

compressibilities () (see Section 3.1) using
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So What

Important result:  Changes in the internal energy of any system

can be calculated from measurable quantities.

??? 
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Exercise: For ideal gases, prove 0



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U

Hint:  Recall that the volumetric expansion coefficient and isothermal

compressibility of an ideal gas are   =  1/T and   =  1/p
_________________________________________________________

Exercise: Theory is fine, but can you suggest  an  experiment that

could be used to show (U/V)T = 0 for ideal gases?

One possibility:

Open a valve, allow gas at

pressure pi in flask A to expand

into evacuated flask B.

If the gas is ideal, what is the 

change in temperature? 

Why? 



Sections 3.4 to 3.6 Dependence of the Enthalpy H =  U +  pV

on Temperature and Pressure

 recall from Chapter 2:   qp =  H

 as a result, enthalpy changes are important for calorimetry, 

combustion reactions and other chemical reactions

 also important for flow processes (next Section)

T and p are therefore “natural” variables for the enthalpy.  

H is a state function H(T,p), so the differential dH is exact and
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Another useful theoretical result. But for practical applications

how are   (H/T)p and  (H/p)T calculated ?



(H/T)p

from the First Law:   dU =  dq +  dw

only p-V work possible:  dU =  dq  pexternaldV

at constant pressure: dUp =  dqp  pdV

dqp =  dUp + pdV =  d(U + pV)

=  dH
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heat capacity at 

constant pressure

Cp is an experimental quantity measured using calorimeters

operated at constant pressure



(H/p)T ? 
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dH =  d(U +  pV)

=  dU +  d(pV)

=  dU +  pdV +  Vdp

= (U/T)V dT + (U/V)T dV +  pdV +  Vdp

=  CVdT +  [T(p/T)V – p]dV +  pdV +  Vdp

dHT =  T(/)dVT +  VdpT ( dT = 0 at constant T, divide by dpT )
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So What

Important result:  Changes in the enthalpy of any system

can be calculated from measurable quantities.

??? 
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Exercise: For ideal gases, show

As a result, the enthalpy of an ideal gas depends

only on temperature and

dH =  CpdT (even if p is changing!)

0












T
p

H

Exercise: For liquids and solids, show

As a result

dH  CpdT +  Vdp (liquids and solids)
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Example Problem 3.9

Calculate the change in enthalpy when 124 g of liquid methanol at 

1.00 bar and 298 K is heated and compressed to 2.50 bar and 425 K .

Data: methanol molar mass M = 32.04 g mol1

density of liquid methanol  =  0.791 g cm3

heat capacity of liquid methanol Cpm = 81.1 J K1 mol1

Solution:

Enthalpy is a state function, so H can be calculated for any path

between the initial and final states. We will heat first, then compress:

CH3OH(298 K, 1 bar)   CH3OH(425 K, 1 bar)  CH3OH(425 K, 2.50 bar)

compressheat

Step 1 Step 2



Example Problem 3.9  (cont.)

Step 1 Heat 124 g of liquid methanol from 289 K to 425 K at 1 bar.

Step 2 Compress 124 g of liquid methanol from 1.00 bar to 2.50 bar

at a constant temperature of 425 K.
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Overall H = Hp (step 1) + HT (step 2)  

=  39,900  J  +  40 J  

 39,900 J  from step 1

For solids and liquids,

changes in pressure 

usually cause small

enthalpy changes



Section 3.7   The Joule-Thomson (JT) Experiment

 irreversible expansion of gas through a porous barrier or 

throttle valve under adiabatic conditions (no heat flow)

 ideal gases:  no temperature change

 real gases:  can cool down or warm up during JT expansion

 important applications  refrigeration

 air conditioning

 heat pumps

 gas liquefaction



Gas Liquefaction  

For industrial applications:

(not university lab experiments!)

 continuous flow (more 

economical than batch 

processing)

 re-cycle gas that does

not liquefy (no wastage)

 heat-exchange – use cool gas 

that does not liquefy to pre-cool

gas from compressor

 large-scale production

(thousands of tons per day)

 use the expanding gas to run a  

generator (adiabatic cooling) 



Applications of Liquefied Gases   

 liquid air is distilled to produce liquid N2 and liquid O2

 N2 is used to make ammonia for the production of nitric acid,

fertilizers, explosives, and many other industrial chemicals

 cold liquefied natural gas (LNG) can be shipped economically

over large distances in cheap low-pressure tanks (at  1 atm)

 liquid N2 and liquid He are important cryogens 

(liquid He is used to operate superconducting nmr magnets)

 liquid propane allows barbecuing without charcoal

 many other important uses



Refrigeration  and  Air  Conditioning

 expanding nonideal gases cool and absorb heat

 keeps perishable food products fresh, nutritious and safe to eat

Ever tried working (or living)

at 30 oC and 95 % humidity?

 air conditioners provide cooling and humidity reduction, making

large regions “habitable” for “modern” people 



LNG Ship Carrying Liquefied Natural Gas (at about 260 oC)



 most powerful rocket ever built 

 operational 1967 to 1973

 7.6 million pounds thrust

 launched 130-ton payloads into earth orbit

 never failed, even when hit by lighting (Apollo 12 mission)

 kerosene / liquid oxygen first stage

 liquid hydrogen / liquid oxygen second and third stages

 mileage:  about five inches per gallon 

Application of Liquefied Gases:

Space Exploration

store liquid fuel and oxidizer in 

light thin-wall low pressure tanks

Saturn V Heavy-Lift Vehicle

(“Apollo Moon Rocket”)



Joule Thomson (JT) Flow Experiment – How does it work?

 gas initially at p1, V1, T1

 expands adiabatically through a porous plug or throttle valve

 gas downstream leaves at p2, V2, T2

work p1V1 done

on the gas to force 

it through the plug 

work p2V2 done 

on the surroundings 

by the expanding gas 



Thermodynamic Analysis of Joule-Thomson (JT) Expansions

p1, V1, T1  p2, V2, T2

First Law:    U =   q +  w

U2  U1 =   p1V1  p2V2

U2 + p2V2 =    U1 +  p1V1

H2 =  H1

H =  0

Conclusion:  Joule-Thomson expansions are “isenthalpic”  

(occur at constant enthalpy)

0



Joule-Thomson Coefficient of Performance

JT gives the change in temperature per unit change in pressure 

of the expanding gas.  But what is JT ? 

Using the cyclic and inverse rules of partial derivatives:
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Gives temperature change of the expanding 

gas in terms of measurable quantities.
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JT >  0:  expanding gas cools down

T < 0   if   p <  0

JT <  0:  expanding gas warms up

T > 0   if   p <  0

Which of the listed substances would 

make the best refrigerant? Why?



For an ideal gas (pV =  nRT), recall

which gives                                                        (ideal gas)
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Conclusion: Warming or cooling during Joule-Thomson expansions

occurs  only for nonideal gases (molecular interactions).

Exercise: Evaluate the Joule-Thomson coefficient JT for

an ideal gases.



Why Does Warming or Cooling Occur During JT Expansions?

For a nonideal gas obeying the van der Waals equation

with attractive a and repulsive b coefficients
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the Joule-Thomson coefficient is
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Joule-Thomson Coefficient of a Nonideal van der Waals Gas






















 b

RT

a

Cp

T

pH

JT

21

m



Low Temperatures: (2a/RT)  – b >  0                 JT > 0  

Cooling on Expansion.  Attractive forces dominate. 

“Sticky” molecules fly apart more slowly, with less kinetic energy.

High Temperatures:                  (2a/RT) – b <  0                 JT < 0  

Warming on Expansion. Repulsive forces dominate.

Repelling molecules fly apart more quickly, with more kinetic energy.

Max. Inversion temperature:   (2a/RT) – b =  0   JT = 0  

No temperature change.  Attractive and repulsive forces balanced at

the Boyle (not Boil!) temperature  TBoyle =  2a/Rb.



Isenthalps:  States of Constant Enthalpy

JT



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







H
p

T

Boyle temperature  

(max. inversion temp.) 

isenthalp slope:

(JT coefficient)

cooling

warming on

expansion

JT > 0

JT < 0

JT = 0

Graphical interpretation

of the Joule-Thomson

coefficient:



Joule-Thomson Inversion Temperatures for N2 and H2

cooling

warming
Use liquid N2 to

cool liquid H2

below its inversion

temperature.

Then use liquid H2

to cool and liquefy He.

Liquid helium is the 

ultimate cryogen. 

Used for super-conducting

magnets and low-temperature

research (T <  4 K).


