Chapter 4. Thermochemistry

Summary

- thermochemistry: branch of thermodynamics dealing with energy changes of chemical reactions
- $q, w, \Delta U$, and ΔH are calculated for chemical reaction processes
- enthalpies of formation are introduced
- because enthalpy is a state function:
* enthalpies of formation for a few thousand compounds can be used for thermochemical calculations for millions of different chemical reactions
* thermochemistry can be investigated without actually carrying out reactions (important for slow or non-spontaneous reactions)

Sections 4.1 to 4.3 Internal Energy and Enthalpy Changes of Chemical Reactions

previous Chapters: physical processes, such as heating, cooling, expanding, or compressing a system

What about systems with chemical reactions?

Example: $\quad \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{T, p} 3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(l)$
One mole of solid $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and four moles of H_{2} gas converted to three moles of solid iron and four moles of liquid water at a specified temperature and pressure.

All compounds assumed to be pure.

Thermodynamics of Chemical Reactions

At Constant Pressure

$$
298 \text { K, } 1 \text { bar }
$$

$$
\begin{gathered}
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightarrow \quad 3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(l) \\
\Delta n_{g}=-4 \mathrm{~mol}
\end{gathered}
$$

The heat absorbed by the reacting system can be determined using a calorimeter. Measure

$$
q_{p}=-24,800 \mathrm{~J}
$$

The work done (at constant pressure) is $-p \Delta V$. Details:

$$
\begin{aligned}
w_{p} & =-\int_{V_{i}}^{V_{f}} p_{\text {external }} \mathrm{d} V=-p \int_{V_{i}}^{V_{f}} \mathrm{~d} V=-p\left(V_{f}-V_{i}\right) \\
& =-p\left[3 V_{\mathrm{m}}(\mathrm{Fe}, \mathrm{~s})+4 V_{\text {negligible }}\left(\mathrm{H}_{2} \mathrm{O}, l\right)-\widetilde{V_{\mathrm{m}}}\left(\mathrm{Fe}_{3} \mathrm{O}_{42}, \mathrm{~s}\right)-4 V_{\mathrm{m}}\left(\mathrm{H}_{2}, g\right)\right] \\
& =-p\left[-4 V_{\mathrm{m}}\left(\mathrm{H}_{2}, g\right)\right]=4 p V_{\mathrm{m}}\left(\mathrm{H}_{2}, g\right)=4 R T=-\Delta n_{g} R T \\
& =4\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})=9910 \mathrm{~J} \mathrm{~mol}^{-1}=w_{p}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathbf{s}) & +4 \mathbf{H}_{2}(\mathbf{g}) \quad \rightarrow \quad 3 \mathrm{Fe}(\mathbf{s})+4 \mathbf{H}_{2} \mathrm{O}(l) \\
\Delta H & =\Delta(U+p V)=\Delta U+p \Delta V \quad \text { (constant pressure) } \\
& =q_{p}+w_{p}+p \Delta V=q_{p}-p \Delta V+p \Delta V \\
\Delta H & =q_{p}=-24,800 \mathrm{~J}
\end{aligned}
$$

$$
\Delta U=q_{p}+w_{p}=-24,800 \mathrm{~J}+9,910 \mathrm{~J}=-14,890 \mathrm{~J}
$$

chemical reactions

 at constant pressure:$$
\begin{aligned}
\Delta H & =q_{p} \\
w_{p} & =-p \Delta V=-R T \Delta n_{g} \\
\Delta U & =\Delta H-R T \Delta n_{g}
\end{aligned}
$$

Chemical Reactions at Constant Volume

"Bomb" Calorimeter

In a strong steel container at constant volume:

$$
\begin{aligned}
w_{V} & =0 \\
\Delta U & =q_{V} \\
\Delta H & =\Delta(U+p V) \\
& =q_{V}+R T \Delta n_{g}
\end{aligned}
$$

$q_{V}=C \Delta T$ is calculated from the measured temperature change ΔT and the calorimeter heat capacity C determined by calibration.

Thermochemical "Algebra"

Reaction: $\quad \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(l)$

$$
\begin{aligned}
\Delta H & =H_{f}-H_{i} \\
& =H(\text { products })-H(\text { reactants }) \\
& =3 H_{\mathrm{m}}(\mathrm{Fe}, \mathrm{~s})+4 H_{\mathrm{m}}\left(\mathrm{H}_{2} \mathrm{O}, l\right)-H_{\mathrm{m}}\left(\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{~s}\right)-4 H_{\mathrm{m}}\left(\mathrm{H}_{2}, \mathrm{~g}\right)
\end{aligned}
$$

concise notation: $\Delta H=\sum_{i} v_{i} H_{\mathrm{m}}(i)$
$v_{i}=$ stoichiometry coefficient of compound i (positive for products, negative for reactants)

Example:

$$
\begin{array}{lll}
v_{\mathrm{Fe} 3 \mathrm{O} 4, \mathrm{~s}}=-1 \quad(\text { reactant }) & v_{\mathrm{H} 2, \mathrm{~g}}=-4 & (\text { reactant }) \\
v_{\mathrm{Fe}, \mathrm{~s}}=3 & (\text { product }) & v_{\mathrm{H} 2 \mathrm{O}, l}=4 \\
\text { (product })
\end{array}
$$

Thermochemical "Algebra"

similarly:

$$
\Delta U=\sum_{i} v_{i} U_{\mathrm{m}}(i)
$$

$$
\Delta V=\sum_{i} v_{i} V_{\mathrm{m}}(i)
$$

$$
\Delta C_{p}=\sum_{i} v_{i} C_{p \mathrm{~m}}(i)
$$

subscript m refers to molar quantities

$\underline{\text { Reactions as Standard Pressure }\left(p^{0}=1 \mathrm{bar}\right)}$

$$
\Delta H^{\mathrm{o}}=\sum_{i} v_{i} H_{\mathrm{m}}^{\mathrm{o}}(i)
$$

$$
\Delta U^{\mathrm{o}}=\sum_{i} v_{i} U_{\mathrm{m}}^{\mathrm{o}}(i)
$$

$$
\Delta V^{\mathrm{o}}=\sum_{i} v_{i} V_{\mathrm{m}}^{\mathrm{o}}(i)
$$

$$
\Delta C_{p}^{\mathrm{o}}=\sum_{i} v_{i} C_{p \mathrm{~m}}^{\mathrm{o}}(i)
$$

"standard" quantities denoted by superscript ${ }^{0}$

Enthalpy is a State Function

Important Consequence: ΔH for chemical reactions can be calculated without carrying out reactions!

Example. Calculate ΔH for the reaction

$$
25^{\circ} \mathrm{C}, 1 \text { bar }
$$

C(graphite)

C(diamond)

Big Problem: The reaction is immeasurably slow. (in fact, nonspontaneous at $25^{\circ} \mathrm{C}, 1 \mathrm{bar}$)

C (graphite) $\rightarrow \mathrm{C}$ (diamond) at $25^{\circ} \mathrm{C}$ and 1 bar (cont.)
Direct thermochemical measurement of ΔH impossible.
No problem. Enthalpy is a state function.
ΔH can be measured for any path connecting graphite and diamond.
A convenient two-step indirect path is:
C (graphite) $+\underset{\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\text { Step 1 }} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\text { diamond })}{\text { Step 2 }}+\mathrm{O}_{2}(\mathrm{~g})$
Why convenient? ΔH for Step 1 and Step 2 are easily measured:
$\Delta H_{\text {step } 1}=$ heat of combustion of graphite $=-393.50 \mathrm{~kJ}$
$\Delta H_{\text {step } 2}=-($ heat of combustion of diamond $)=395.39 \mathrm{~kJ}$
$\Delta H($ graphite \rightarrow diamond $)=-393.50+395.39=1.89 \mathrm{~kJ}$

Because enthalpy is a state function, another useful result:

Standard Enthalpies of Formation

ΔH for any chemical reaction is the enthalpy change for the formation of the products from the elements less the enthalpy change for the formation of the reactants from the elements

Example: standard enthalpy of formation of methane at $25^{\circ} \mathrm{C}$

$$
\mathbf{C}(\mathrm{s}, \text { graphite })+2 \mathbf{H}_{2}(\mathrm{~g}) \rightarrow \mathbf{C H}_{4}(\mathrm{~g}) \quad \Delta H_{\mathrm{f}}^{\mathrm{o}}=-74.81 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(use graphite, the most stable form of carbon at $25^{\circ} \mathrm{C}, 1$ bar)

Example: calculate ΔH° at $25^{\circ} \mathrm{C}$ for the reaction

$$
\begin{aligned}
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l) \\
& \Delta H=\Delta H_{\mathrm{f}}^{\mathrm{o}}(\text { products })-\Delta H_{\mathrm{f}}^{\mathrm{o}}(\text { reactants }) \\
&\left.=\Delta H_{\mathrm{ffm}^{\mathrm{o}}}{ }^{(} \mathrm{CO}_{2}, \mathrm{~g}\right)+2 \Delta H_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}, l\right)-\Delta H_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{CH}_{4}, \mathrm{~g}\right)-2 \Delta H_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{O}_{2}, \mathrm{~g}\right) \\
&=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}+2\left(-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-\left(-74.81 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-2(0) \\
&=-890.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Sections 4.4 Temperature Dependence of ΔH^{0}

Another useful result of enthalpy being a state function:
If ΔH° for a reaction is known at a given temperature (e.g., $25^{\circ} \mathrm{C}$), ΔH° can be calculated at other temperatures.

Temperature Dependence of ΔH^{0}

$$
\begin{aligned}
\Delta H^{\circ}\left(T_{2}\right)= & \Delta H^{\circ}\left(\text { cool reactants from } T_{2} \text { to } T_{1}\right) \\
& +\Delta H^{\circ}\left(T_{1}\right)\left(\text { carry out the reaction at } T_{1}\right) \\
& +\Delta H^{\circ}\left(\text { heat products from } T_{1} \text { back to } T_{2}\right)
\end{aligned}
$$

Heating or cooling at constant pressure $\left(p=p^{\circ}\right): \mathrm{d} H=C_{p} \mathrm{~d} T$

$$
\begin{array}{ll}
\Delta H^{\mathrm{o}}\left(T_{2}\right)=\int_{T_{2}}^{T_{1}} C_{p}^{\mathrm{o}}(\text { reactants }) \mathrm{d} T+\Delta H^{\mathrm{o}}\left(T_{1}\right) \quad+\int_{T_{1}}^{T_{2}} C_{p}^{\mathrm{o}}(\text { products }) \mathrm{d} T \\
\Delta H\left(T_{2}\right)=\Delta H^{\mathrm{o}}\left(T_{1}\right)+\int_{T_{1}}^{T_{2}}\left[C_{p}^{\mathrm{o}}(\text { products })-C_{p}^{\mathrm{o}}(\text { reactants }) \mathrm{d} T\right. \\
\Delta H^{\mathrm{o}}\left(T_{2}\right)=\Delta H^{\mathrm{o}}\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} \Delta C_{p}^{\mathrm{o}} \mathrm{~d} T & \Delta C_{p}^{\mathrm{o}}=\sum_{i} v_{i} C_{p \mathrm{~m}}^{\mathrm{o}}(i)
\end{array}
$$

Temperature Dependence of ΔH^{0}

$$
\Delta H^{\mathrm{o}}\left(T_{2}\right)=\Delta H^{\mathrm{o}}\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} \Delta C_{p}^{\mathrm{o}} \mathrm{~d} T
$$

So what?

Significance: If heat capacity data are available, ΔH° for chemical reactions measured by calorimetry at a single temperature can be used to calculate ΔH° over a range of temperatures, in some cases up to extremely high temperatures where calorimetry is difficult.

In practice, heat capacity measurements are easier than reaction ΔH measurements. Also, heat capacities can be calculated using molecular energy levels predicted by quantum mechanics (Chem 332).

Pressure Dependence of ΔH

ΔH° data for reactions at standard pressure ($p^{0}=1$ bar) are widely available. What about ΔH for reactions at other pressures?
$\Delta H(T, p)=\Delta H$ (de-pressurize reactants from p to $\left.p^{\circ}\right)$ $+\Delta H^{\mathrm{o}}\left(T, p^{o}\right)$ (carry out the reaction at $\left.p^{o}\right)$
$+\Delta H$ (pressurize products from p^{o} back to p)
$\Delta H(T, p)=\int_{p}^{p^{\mathrm{o}}}\left(\frac{\partial H}{\partial p}\right)_{T}($ reactants $) \mathrm{d} p+\Delta H^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+\int_{p^{\mathrm{o}}}^{p}\left(\frac{\partial H}{\partial p}\right)_{T}($ products $) \mathrm{d} p$
for pressure changes at constant temperature: $\mathrm{d} H=V \mathrm{~d} p$

$$
\Delta H(T, p)=\Delta H^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+\int_{p^{\mathrm{o}}}^{p} \Delta V \mathrm{~d} p
$$

$$
\Delta V=\sum_{i} v_{i} V_{\mathrm{m}}(i)
$$

Isothermal Reactions

Example:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \stackrel{25^{\circ} \mathrm{C}}{\rightarrow} \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

But how can the combustion of methane occur at $25^{\circ} \mathrm{C}$?

$$
q_{p}=\Delta H==-890.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Heat is lost to the surroundings (exothermic reaction).

Warning! Many chemical reactions are not isothermal:

- rapid reactions (no time for heat transfer)
- systems thermally insulated from the surroundings

Adiabatic Flame Temperature

For the reaction products to reach maximum temperature, no heat is allowed to escape (adiabatic reaction).

Products at T_{f}

feed heat back in

Reactants at T_{i}

Products at $\boldsymbol{T}_{\boldsymbol{i}}$

Adiabatic Flame Temperature

```
Step 1
react
```

Reactants at $T_{i} \quad \rightarrow \quad$ Products at T_{i}

$$
\begin{gathered}
q_{1}=\Delta H\left(T_{i}\right) \\
T_{f}
\end{gathered}
$$

Step 2 heat
\rightarrow

Products at \boldsymbol{T}_{f}

$$
-\Delta H^{\mathrm{o}}\left(T_{1}\right)=\int_{T_{i}}^{T_{f}} C_{p}^{\mathrm{o}}(\text { products }) \mathrm{d} T \approx \underset{p}{C_{p}^{\mathrm{o}}(\text { products })\left(T_{f}-T_{i}\right)}
$$

$$
\text { assuming constant } C_{p}{ }^{\circ} \text { (products) }
$$

hottest flames:

- large negative $\Delta H\left(T_{i}\right)$ (exothermic)
- small C_{p} (products) (e.g., diatomics)
- large T_{i} (pre-heat reactants)

Adiabatic Flame Temperature of Cyanogen ($\mathrm{N} \equiv \mathbf{C}-\mathbf{C} \equiv \mathbf{N}$)

$$
\mathrm{C}_{2} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

Data at $\boldsymbol{T}_{\boldsymbol{i}}=298 \mathrm{~K}: \quad \Delta H^{\circ}(298 \mathrm{~K})=-1096 \mathrm{~kJ} \mathrm{~mol}^{-1}$
CO and N_{2} heat capacities (assume no vibration):

$$
\left.C_{p \mathrm{~m}}=C_{V \mathrm{~m}}+R=C_{V \mathrm{~m}} \text { (trans. }\right)+C_{V \mathrm{~m}}(\text { rot. })+R
$$

$$
=(3 / 2) R+R+R=(7 / 2) R
$$

$$
T_{f} \approx T_{i}-\frac{\Delta H^{\circ}\left(T_{i}\right)}{C_{p}^{\circ}(\text { products })}
$$

Note:

Constant $C_{p}{ }^{\circ}$ (products) assumed. Not an accurate approximation for large $\Delta T(\approx 13,000 \mathrm{~K})$

$$
T_{f} \approx 298 \mathrm{~K}-\frac{1,096 \mathrm{~kJ} \mathrm{~mol}^{-1}}{3 \mathrm{~mol} \times \frac{7}{2} \times 8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}
$$

$$
T_{f} \approx 298 \mathrm{~K}+12,600 \mathrm{~K}=\mathbf{1 2 , 9 0 0} \mathrm{K} \quad \text { НННОТ !!! }
$$

Adiabatic Flame Temperatures

Molecules start vibrating when they get hot, increasing $C_{p \mathrm{~m}}$ For accurate flame temperature calculations, include vibrational heat capacities:

$\mathrm{C}_{2} \mathrm{~N}_{2}$	in O_{2}	4800 K
$\mathrm{C}_{4} \mathrm{~N}_{2} *$	in O_{2}	$5260 \mathrm{~K}^{* *}$
H_{2}	in O_{2}	$3470 \mathrm{~K}^{* * *}$
H_{2}	in air	$2480 \mathrm{~K}^{* * *}$
$\mathrm{C}_{2} \mathrm{H}_{2}$ (acetylene)	in O_{2}	3750 K
$\mathrm{C}_{2} \mathrm{H}_{2}$ (acetylene)	in air	2770 K
CH_{4}	in air	2220 K
$\mathrm{C}_{3} \mathrm{H}_{8}$ (propane)	in air	2250 K

*** Why are flame temperatures lower for burning fuel in air instead of oxygen?

* dicyanoacetylene ($\mathrm{N} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{C}$)
** almost as hot as the surface of the sun (5600 K)

Section 4.6 Differential Scanning Calorimetry (DSC)

- practical form of calorimetry
- important technique for characterizing materials
- relatively inexpensive
- measurements are rapid and convenient
- DSC units commercially available

How does Differential Scanning Calorimetry Work?

- a small sample ($<1 \mathrm{~g}$) and an inert reference material* are heated at a steady rate in an insulated enclosure
- a sensitive thermocouple thermometer monitors the temperature difference ΔT between the sample and reference

*such as solid alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$

How does Differential Scanning Calorimetry Work?

- The difference in the heat capacities of the sample and reference generates a steady temperature difference $\Delta T=T_{\text {sample }}-T_{\text {reference }}$
- an exothermic sample reaction (warming the sample) produces a positive peak
- an endothermic sample reaction (cooling the sample) produces a negative peak
- the peak area is proportional to ΔH

Exothermic DSC Peak

What's a "Thermocouple"

- junction between two different electronic conductors (usually metals)
- a temperature difference produces a voltage difference
- used to measure temperatures
- run in reverse, an applied voltage produces a temperature difference (solid-state refrigerator!)

voltage $\Delta \phi=$ constant $\times\left(T-T_{\text {ref }}\right)$

Another Application: Gas Shut-Off Valve

If the gas supply to the burner is temporarily interrupted and the pilot light goes out, the thermocouple cools, dropping the voltage to zero and closing a gas supply valve.

Chapter 5. Entropy and the Second Law of Thermodynamics

Summary

- the First Law of Thermodynamics describes energy changes for physical and chemical processes
- no exceptions to the First Law and the conservation of energy have been discovered

But many processes obeying the First Law never occur.
Why?

- the Second Law of Thermodynamics and the entropy are introduced to predict spontaneous processes
- combining the First and Second Laws unleashes the full power of thermodynamics

First Law of Thermodynamics

The change in internal energy of a system (ΔU) equals the heat absorbed from the surroundings (q) plus the work done on the system (w) by the surroundings.

$$
\Delta U=q+w
$$

The energy of an isolated system (no contact with the surroundings, ($q=w=0$) is constant.

$\Delta U=0$ (isolated system)

(conservation of energy)

Section 5.1 Spontaneous Processes

First Law calculations:

$$
\Delta U \quad q \quad w \quad \Delta H
$$

for physical and chemical processes.

But from everyday experience, many processes consistent with the First Law never occur. Others occur "spontaneously".

Why?

Mystery: Some heat flow processes obeying the First Law never occur, others occur spontaneously

$$
\text { isolated system }(\Delta U=0) \text { : }
$$

1 mol copper	1 mol copper
$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$

$\xrightarrow[\substack{\text { never } \\ \text { happens }}]{\substack{\text { happens } \\ \text { spontaneously }}}$

- the forward and reverse processes both obey the First Law
- the forward process occurs spontaneously ("by itself")
- the reverse process is never observed (for an isolated system)

Mystery: Some mechanical processes obeying the First Law never

 occur, others occur spontaneously$$
\text { isolated system }(\Delta U=0) \text { : }
$$

1 L air	1 L
2.0 bar	vacuum
300 K	$(0$ bar $)$

- the forward and reverse processes both obey the First Law
- the forward expansion process occurs spontaneously
- the reverse process is never observed for an isolated system

Mystery: Some mixing processes obeying the First Law never occur, others occur spontaneously

$$
\text { isolated system }(\Delta U=0) \text { : }
$$

- the forward and reverse processes both obey the First Law
- the forward mixing process occurs spontaneously
- the de-mixing process is never observed for an isolated system

Mystery: Some chemical reactions obeying the First Law never occur, others occur spontaneously

$$
\text { isolated system }(\Delta U=0) \text { : }
$$

$1 \mathrm{~mol} \mathrm{H} \mathbf{2} \mathbf{O}(\mathrm{g})$
$3200{ }^{\circ} \mathrm{C}$

- the forward and reverse processes both obey the First Law
- the forward reaction process occurs spontaneously
- the reverse reaction is never observed for an isolated system

Big Mysteries:

Many physical and chemical processes obey the First Law of Thermodynamics (conservation of energy) but never happen, others occur spontaneously.
Why?

Something important must be missing from thermodynamics based on the First First Law.

These concerns led to the discovery of entropy and the Second Law of Thermodynamics, one of the most important advances in the history of science.

Sections 5.2 Heat Engines and the Second Law

Analysis of the efficiency of heat engines (how much work can be done per ton of coal burned?) was used to develop the Second Law of thermodynamics, useful for predicting spontaneous processes.

"The steam engine has done more for science than science has ever done for the steam engine."

Heat Engine

Heat Source (Temperature $\boldsymbol{T}_{\mathbf{H}}$)
absorb heat $\downarrow \quad q_{H}$
work $|\boldsymbol{w}|$ done
Heat Engine on the surroundings
reject heat $\downarrow\left|q_{C}\right|$
Heat Sink \quad (Temperature T_{C})

$$
\begin{aligned}
& q_{\mathrm{H}}>0 \\
& q_{\mathrm{C}}<\mathbf{0} \\
& \boldsymbol{w}<\mathbf{0}
\end{aligned}
$$

```
First Law:
\(q_{\mathrm{H}}+q_{\mathrm{C}}+w=0\)
(conservation of energy)
```


Reversible Carnot Engine Cycle

Step I Isothermal Expansion at T_{H}

$$
V_{1} \rightarrow V_{2} \quad \text { absorb heat } q_{H}
$$

Step II Adiabatic Expansion

$$
V_{2} \rightarrow V_{3} \quad q=0
$$

Step III
Isothermal Compression at T_{C}

$$
V_{3} \rightarrow V_{4} \quad \text { reject heat }\left|q_{C}\right|
$$

Step IV Adiabatic Compression

$$
V_{4} \rightarrow V_{1} \quad q=0
$$

Reversible Carnot Cycle Steps I, II, III, IV

Reversible Carnot Engine Cycle - the details

system: n moles of ideal gas (the "working fluid" in the engine)

Step I Isothermal Expansion at T_{H}

$$
w_{\mathrm{I}}=-n R T_{\mathrm{H}} \ln \left(V_{2} / V_{1}\right) \quad \Delta U_{\mathrm{I}}=0
$$

$V_{1} \rightarrow V_{2}$
$q_{\mathrm{I}}=-w_{\mathrm{I}}$

Step II Adiabatic Expansion $T_{\mathrm{H}} \rightarrow T_{\mathrm{C}}$

$$
w_{\mathrm{II}}=C_{V}\left(T_{\mathrm{C}}-T_{\mathrm{H}}\right)=\Delta U_{\mathrm{II}}
$$

$V_{2} \rightarrow V_{3}$
$q_{\text {II }}=0$

Step III Isothermal Compression at T_{C}

$$
w_{\mathrm{III}}=-n R T_{\mathrm{H}} \ln \left(V_{4} / V_{3}\right) \quad \Delta U_{\mathrm{III}}=0 \quad q_{\mathrm{III}}=-w_{\mathrm{III}}
$$

Step IV Adiabatic Compression $T_{\mathrm{C}} \rightarrow T_{\mathrm{H}}$

$$
V_{4} \rightarrow V_{1}
$$

$$
w_{\mathrm{IV}}=C_{V}\left(T_{\mathrm{H}}-T_{\mathrm{C}}\right)=\Delta U_{\mathrm{IV}}
$$

$$
q_{\mathrm{IV}}=0
$$

Relation between volumes $V_{1}, V_{2}, V_{3}, V_{4}$ (will be useful later):
Steps II and IV [reversible ($p=p_{\text {external }}$) and adiabatic $(q=0)$]

$$
\begin{array}{rlrl}
\mathrm{d} U & =\mathrm{d} w+\mathrm{dq}_{\mathbf{l}} \\
C_{V} \mathrm{~d} T & =-p \mathrm{~d} V \\
C_{V} \mathrm{~d} T & =-\frac{n R T}{V} \mathrm{~d} V \\
C_{V} \frac{d T}{T} & =-n R \frac{d V}{V} \\
\int_{T_{\mathrm{C}}}^{T_{\mathrm{H}}} C_{V} \frac{\mathrm{~d} T}{T} & =-n R \int_{V_{4}}^{V_{4}} \frac{\mathrm{~d} V}{V}=-\int_{T_{\mathrm{H}}}^{T_{\mathrm{C}}} C_{V} \frac{\mathrm{~d} T}{T}=n R \int_{V_{2}}^{V_{\mathrm{L}}} \frac{\mathrm{~d} V}{V} \\
-\ln \frac{V_{1}}{V_{4}} & =\ln \frac{V_{3}}{V_{2}} & \boldsymbol{V}_{\mathbf{1}} / \boldsymbol{V}_{\mathbf{4}}=\boldsymbol{V}_{\mathbf{2}} / \boldsymbol{V}_{\mathbf{3}} \\
\boldsymbol{V}_{\mathbf{2}} / \boldsymbol{V}_{\mathbf{1}}=\boldsymbol{V}_{\mathbf{3}} / \boldsymbol{V}_{\mathbf{4}}
\end{array}
$$

Reversible Carnot Engine Cycle - First Law Analysis

Internal Energy Change for One Cycle (I \rightarrow II \rightarrow III \rightarrow IV \rightarrow I)

$$
\begin{aligned}
\oint_{1}^{1} \mathrm{~d} U & =\Delta U_{\mathrm{I}}+\Delta U_{\mathrm{II}}+\Delta U_{\mathrm{III}}+\Delta U_{\mathrm{IV}} \\
& =0+C_{V}\left(T_{\mathrm{C}}-T_{\mathrm{H}}\right)+0+C_{V}\left(T_{\mathrm{H}}-T_{\mathrm{C}}\right) \\
& =U_{\mathrm{I}}-U_{\mathrm{I}} \\
\Delta U_{\text {cycle }} & =0
\end{aligned}
$$

Reversible Carnot Engine Cycle - First Law Analysis

Work Done for One Cycle (I \rightarrow II \rightarrow III \rightarrow IV \rightarrow I)

$$
\begin{aligned}
& \oint_{1}^{1} \mathrm{~d} w=w_{\mathrm{I}}+w_{\mathrm{II}}+w_{\mathrm{III}}+w_{\mathrm{IV}} \\
&=-n R T_{\mathrm{H}} \ln \frac{V_{2}}{V_{1}}+C_{V}\left(T_{\mathrm{C}}-T_{\mathrm{H}}\right)-n R T_{\mathrm{C}} \ln \frac{V_{4}}{V_{3}}+C_{V}\left(T_{\mathrm{H}}-T_{\mathrm{C}}\right) \\
&=-n R T_{\mathrm{H}} \ln \frac{V_{2}}{V_{1}}+0+n R T_{\mathrm{H}} \ln \frac{V_{2}}{V_{1}}+0 \\
& \begin{array}{c}
\text { use } \\
V_{4} / V_{3}=V_{1} / V_{2}
\end{array}
\end{aligned}
$$

$$
w_{\mathrm{cycle}}=-n R\left(T_{\mathrm{H}}-T_{\mathrm{C}}\right) \ln \frac{V_{2}}{V_{1}}
$$

Reversible Carnot Engine Cycle - First Law Analysis

Heat Absorbed for One Cycle (I \rightarrow II \rightarrow III \rightarrow IV \rightarrow I)

$$
\begin{aligned}
\begin{aligned}
\oint_{1}^{1} \mathrm{~d} q & =q_{\mathrm{I}}+q_{\mathrm{II}}+q_{\mathrm{III}}+q_{\mathrm{IV}} \\
& =n R T_{\mathrm{H}} \ln \frac{V_{2}}{V_{1}}+0-n R T_{\mathrm{C}} \ln \frac{V_{3}}{V_{4}}+0 \\
q_{\mathrm{cycle}} & =n R\left(T_{\mathrm{H}}-T_{\mathrm{C}}\right) \ln \frac{V_{2}}{V_{1}}
\end{aligned} \begin{array}{l}
\text { use } \\
V_{3} / V_{4}=V_{2} / V_{1}
\end{array}
\end{aligned}
$$

Check: Can you verify that $q_{\text {cycle }}+w_{\text {cycle }}=0\left(=\Delta U_{\text {cycle }}\right)$?

Efficiency $\boldsymbol{\varepsilon}$ of a Reversible* Carnot Engine

$$
\varepsilon=\frac{\text { work done on the surroundings }}{\text { heat absorbed from the hot reservoir }}
$$

$$
\begin{aligned}
& =\frac{-w_{\text {cycle }}}{q_{\mathrm{H}}} \\
& =\frac{n R\left(T_{\mathrm{H}}-T_{\mathrm{C}}\right) \ln \left(V_{2} / V_{1}\right)}{n R T_{\mathrm{H}} \ln \left(V_{2} / V_{1}\right)}
\end{aligned}
$$

$$
\mathcal{E}=\frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{T_{\mathrm{H}}}=1-\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}}
$$

So What?

This result is a big deal! It places a fundamental limit on heat engine efficiency.
*reversible heat engine: infinitesimal temperature and pressure differences between the gas and the surroundings

Efficiency $\boldsymbol{\varepsilon}$ of a Reversible* Carnot Engine

Example: Calculate the efficiency of a reversible steam engine operating between $T_{\mathrm{H}}=373 \mathrm{~K}$ (the boiling point of water at 1 bar) and $\boldsymbol{T}_{\mathrm{C}}=293 \mathrm{~K}$. How much work is done if 10.0 MJ of heat is absorbed at 373 K ?

$$
\begin{gathered}
\varepsilon=1-\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}}=1-\frac{293 \mathrm{~K}}{373 \mathrm{~K}}=0.214=21.4 \% \\
\varepsilon=\frac{-w}{q_{\mathrm{H}}}=0.214=\frac{-w}{10.0 \mathrm{MJ}}
\end{gathered}
$$

$-w=0.214 \times 10.0 \mathrm{MJ}=2.14 \mathrm{MJ}$ work done on the surroundings*
*this is the maximum amount of work that can be done - real engines are less efficient than reversible engines

Section 5.3 Important Consequences of the Carnot Cycle

For one complete cycle, all steps reversible, it was noticed that:

$$
\begin{aligned}
\oint \frac{\mathrm{d} q_{\mathrm{rev}}}{T} & =\int_{1}^{2} \frac{\mathrm{~d} q}{T}+\int_{2}^{3} \frac{\mathrm{~d} q}{T}+\int_{3}^{4} \frac{\mathrm{~d} q}{T}+\int_{4}^{1} \frac{\mathrm{~d} q}{T} \\
& =\frac{q_{\mathrm{H}}}{T_{\mathrm{H}}}+0+\frac{q_{\mathrm{C}}}{T_{\mathrm{C}}}+0 \\
& =\frac{n R T_{\mathrm{H}} \ln \left(V_{2} / V_{1}\right)}{T_{\mathrm{H}}}+\frac{n R T_{\mathrm{C}} \ln \left(V_{4} / V_{3}\right)}{T_{\mathrm{C}}} \\
& =n R \ln \left(V_{2} / V_{1}\right)+n R \ln \left(V_{4} / V_{3}\right)=n R \ln \left(V_{2} / V_{1}\right)-n R \ln \left(V_{2} / V_{1}\right) \\
& =\mathbf{0} \quad \text { So what? }
\end{aligned}
$$

Important Consequences from the Carnot Cycle

A. The Entropy S (A New State Function!)

The result

$$
\oint \frac{\mathrm{d} q_{\mathrm{rev}}}{T}=0
$$

can be generalized to any reversible cycle for any system.

Volume

Important Consequences from the Carnot Cycle

A. The Entropy \boldsymbol{S} (A New State Function)

Conclusion:

The entropy S defined by

is a function of the state of the system (like the internal energy U and the enthalpy H state functions).

Important Consequences from the Carnot Cycle

B. Clausius Inequality - the breakthrough!

For a reversible Carnot cycle, from the First Law

$$
\begin{aligned}
\Delta U_{\mathrm{cycle}} & =q_{\mathrm{H}}+q_{\mathrm{C}}+w=0 \\
\text { so }-w & =q_{\mathrm{H}}+q_{\mathrm{C}} \\
\varepsilon & =\frac{-w}{q_{\mathrm{H}}}=\frac{q_{\mathrm{H}}+q_{\mathrm{C}}}{q_{\mathrm{H}}}=1-\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}} \quad \text { multiply by } T_{\mathrm{H}} q \\
T_{\mathrm{H}} q_{\mathrm{H}}+T_{\mathrm{H}} q_{\mathrm{C}} & =T_{\mathrm{H}} q_{\mathrm{H}}-T_{\mathrm{C}} q_{\mathrm{H}} \\
\left(\frac{q_{\mathrm{H}}}{T_{\mathrm{H}}}+\frac{q_{\mathrm{C}}}{T_{\mathrm{C}}}\right)_{\text {reversible }} & =0 \quad \text { divide by } T_{\mathrm{H}} T_{\mathrm{C}}
\end{aligned}
$$

