
Chapter 6.  Chemical Equilibrium    

Summary

 the First and Second Laws are combined to predict conditions 

for spontaneous processes, including chemical reactions

 the Helmholtz energy A = U – TS provides AT,V <  0 for

spontaneous processes at constant temperature and volume

 the Gibbs energy G = U + pV – TS provides GT,p <  0 for

spontaneous processes at constant temperature and pressure

 the Gibbs energy is used to derive expressions for the equilibrium

constant of chemical reactions



Motivation for Chapter 6

Could do most of thermodynamics with p, V, T, q, w, U, S .

Ok. But sometimes the calculations are  very  inconvenient!

Example: Prove that freezing liquid water is spontaneous at 10 oC.

Take the 3-step reversible path (Why?  So S can be calculated.):

H2O(l) H2O(s) 0 oC

H2O(l) H2O(s) 10 oC

I     heat cool       III  

II   

freeze



H2O(l) H2O(s)  10 oC

H(10 oC)  =  HI + HII + HIII

=  Cpm(l)(273263)K  Hfus,m(273K) + Cpm(s)(263273)K

=   5618 J mol1

S(10 oC)  =  SI + SII + SIII (all steps reversible)
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=   19.20 J K1 mol1

Spontaneous ?
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S >  0 [isolated (system + surroundings)]  Spontaneous

Hm,freeze =  Hm,fusion

q/T = 21.36 J K 1  S !



What  to  do?

Legendre  Transformations  to  the  rescue !

Given the exact differential dYI

dYI =  C1dX1 +  C2dX2

the function YI(X1,X2) can be “transformed” into 

the new functions (maybe more convenient?):

YII =  YI  C1X1

YIII =  YI  C2X2

YIV =  YI  C1X1  C2X2



Legendre Transformations for Thermodynamics

dU =  dq +  dw (First Law)

For a reversible path (dq = TdS and dw =  pdV):

dU =  TdS  pdV

Legendre transforms of U(S,V) are: 

U  TS (A = Helmholtz function)

U +  pV (H = enthalpy)

U  TS +  pV (G = Gibbs function)



Section 6.1   Predicting Spontaneous Processes   

a) Using the Internal Energy  (dUS,V  0)

Where do these rules

come from? 

First Law:  dU =  dq +  dw

For a reversible path: dU =  TdS – pdV (I)
(dq =  TdS and  dw =  pdV )

For a spontaneous path: dU =  dq  pextdV (II)

Eq. I minus Eq. II:                     0  =  TdS  dq  (pext  p)dV

same as: dq =  TdS  (pext  p)dV

US,V <  0  spontaneous process

US,V =  0  reversible process



Irreversible Expansions p  pext >  0 dV >  0

Irreversible Compressions p  pext <  0 dV <  0

notice:   (p  pext)dV  0

from previous slide:   dq =  TdS  (pext  p)dV

Important Result:                            

Why important?  First Law:            dU =  dq + dw = dq  pextdV
(assuming only p-V work)

using  dq  TdS gives dU  TdS  pextdV

at constant S, V this means          dUS,V  0

(dS = 0, dV = 0) 

always  0

dq  TdS

dUS,V <  0        spontaneous

dUS,V =  0        reversible



b) Predicting Spontaneous Processes using the Enthalpy

H  U +  pV

dH =  d(U +  pV)

=  dU +  d(pV)

=  dU +  pdV +  Vdp

=  dq  pextdV +  pdV +  Vdp

At constant pressure (pext = p):

dHp =  dq  pextdV +  pdV +  Vdp =  dq  TdS

At constant S,p:                                        Still inconvenient.

How is S held constant?

HS,p <  0  spontaneous process

HS,p =  0  reversible process

US,V  0 is a useful result, but experimentally inconvenient. 

How do you keep the entropy constant? Try the enthalpy?

dHS,p  0



c) Predicting Spontaneity using the Helmholtz Energy A

A  U  TS

The Helmholtz energy, like the enthalpy, is an “auxiliary”  

thermodynamic state function. Useful property: 

dA =  d(U  TS)

=  dU  d(TS)

=  dU  TdS  SdT

=  dq +  dw  TdS  SdT

=  dq  pextdV  TdS  SdT

dA   pextdV  SdT (using dq  TdS  0)

At constant temperature and volume (can be arranged):

constant T,V conditions are

experimentally convenient

AT,V <  0  spontaneous process

AT,V =  0  reversible process

dAT,V  0



A = U – TS is sometimes called the Helmholtz Free Energy

Why? From the previous slide:

dA =  d(U  TS)

=  dU  d(TS)

=  dU  TdS  SdT

=  dq +  dw  TdS  SdT

Use   dq  TdS to get

dAT  dwT

 dwT   dAT

In an isothermal process,  the 

maximum work free to be done 

on the surroundings equals the  

decrease in the Helmholtz Energy.

 wT   AT



d) Predicting Spontaneity using the Gibbs Energy G

G  U  TS + pV

= H  TS

The Gibbs Energy is another “auxiliary” thermodynamic 

state function. Useful property: 

dG =  d(U  TS  + pV)

=  dU  d(TS)  +  d(pV)

=  dU  TdS  SdT +  pdV +  Vdp

=  dq +  dw  TdS  SdT +  pdV +  Vdp

At fixed T,p, assuming only p-V work:

dGT,p =  dq  pextdV  TdS  SdT +  pdV +  Vdp =  dq  TdS

constant T,p conditions are

experimentally convenient

GT,p <  0  spontaneous process

GT,p =  0  reversible process

dGT,p  0



G = U – TS + pV is sometimes called the Gibbs Free Energy

Why? From the previous slide:

dG =  d(U  TS  + pV)

=  dU  d(TS)  +  d(pV)

=  dU  TdS  SdT +  pdV +  Vdp

=  dq +  dw  TdS  SdT +  pdV +  Vdp

=  dq  pextdV +  dw  TdS  SdT +  pdV +  Vdp

w is work other than p-V work (such as electrical work)

At fixed T,p (dT = 0  and  pext =  p):

dGT,p =  dq +  dw  TdS

dGT,p  dw ( using  dq  TdS )

 dw   dGT,p

At fixed T,p the maximum non-p-V work 

free to be done on the surroundings equals

the decrease in the Gibbs Energy.

 w   GT,p



US,V  0  

HS,p  0

AT,V  0     

GT,p  0    

Summary of Criteria Used for the Prediction 

of Reversible and Spontaneous Processes

U is the Internal Energy

H = U + pV is the Enthalpy

A = U – TS is the Helmholtz Energy

G = U – TS + pV is the Gibbs Energy

=  0  reversible  

<  0  spontaneous



Section 6.2 and 6.3   Differential Forms of U, H, A and G

(the mathematical formulation of thermodynamics)

a) The Internal Energy

The First Law           U =  q +  w 

In differential form ( infinitesimally small changes in U ):

dU =  dq +  dw

The internal energy is a state function. Any path, reversible or 

ireversible, can be used to calculate dU.

For convenience, take a reversible path ( dq = TdS and dw = pdV ):

Applications?

dU =  TdS  pdV



Differentials of State Functions (from Chapter 2)  

Recall that the differential equation

for state function f(x,y) of variables x an y is equivalent to 

yyxhxyxgf d),(d),(d 

Comparing the two equations for df shows

Reversing the order of differentiation gives
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Differential of the Internal Energy   

The differential of U(T,V) 

is equivalent to 

pdVSTU  dd

which shows

( new ways of understanding the temperature and pressure )

Reversing the order of second differentiation gives
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Differential of the Enthalpy   

The differential of H(T,p) 

is equivalent to 

pVVpUpVUpVUH ddd)(dd)(dd 

which shows

Reversing the order of second differentiation gives
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Differential of the Helmholtz Energy   

The differential of A(T,V) 

is equivalent to 

TSSTUTSUTSUA ddd)(dd)(dd 

which shows

Reversing the order of second differentiation gives
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conveniently

in terms of
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Differential of the Gibbs Energy   

The differential of G(T,p) 

is equivalent to 
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which shows

Reversing the order of second differentiation gives
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Section 6.2  Summary   
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From the first derivatives of U, H, A, and G:

From the second derivatives of U, H, A, and G   (Maxwell relations) :

memorize ?



Example: Derive an expression for (U/V)T to calculate changes 

in the internal energy with volume at constant temperature.

Suggestion: start with the differential equation for dU

dU =  TdS  pdV then divide by dV at constant temperature.

But what is (S/V)T ?

Use the Maxwell relation for A.

TTT V

V
p

V

S
T

V

U







































VT T

p

V

S


























1

p
T

p
T

V

U

VT


























Significance:  This result gives (U/V)T

in terms of quantities conveniently 

measured in terms of p, V, and T.



Exercises:  

a) Show

b) Use the Maxwell relation for dG to show

c) The temperature of a substance increases when it is 

compressed adiabatically.  For a reversible adiabatic 

compression (constant S), use a Maxwell relation to show 
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Example: Derive an expression for the Gibbs energy of an ideal gas

as a function of pressure. (Why do this? A useful result 

for understanding equilibrium of reacting gases).
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But what is

(G/p)T ?

Independent variables T and p suggests looking at 

dG =  SdT +  Vdp which shows
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Gm = G/n is the Gibbs 

energy per mole of gas



Example: Derive an expression for the temperature dependence of 

G/T. (Why do this? The logarithm of the equilibrium 

constant for a chemical reaction is proportional to G/T.)
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 )/1(1)/( But what is

(G/T)p ?

Independent variables T and p suggests looking at 

dG =  SdT +  Vdp which shows   (G/T)p =  S. 

Find

( G = H  TS, so TS + G = H )
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Sections 6.4 and 6.5   Gibbs Energy of Gas Mixtures

 systems of fixed composition have been considered so far 

 chemical reactions consume reactants and form products,  

causing changes in compositions

 no problem – just include composition variables

 many chemical reactions occur at fixed temperature and pressure

 GT,p  0 is used to predict equilibrium under these conditions, 



Pure Substances or Systems of Fixed Composition

Gibbs energy is a function of temperature and pressure
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Mixtures of Variable Composition

Gibbs energy is a function T, p and the number of moles  

n1, n2, n3, … of each substance in the mixture
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defined as
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Application of Chemical Potentials

The Gibbs energy of a mixture of different substances is

G =  n11 + n22 =  n33 + …

p,n1,n2,n3,… T,n1,n2,n3,…

Chemical Potential  i of Substance i in a Mixture
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Significance of Chemical Potentials  (Huge !)

 positive electric charge flows to regions of lower electric potential

 “north” magnetic poles are drawn to “south” magnetic poles

 objects roll downhill to reach lower gravitational potential energy

Useful analogy:

chemical substances:

expand, compress, warm, cool, vaporize, condense, 

freeze, melt, sublime, diffuse, mix, crystallize, react, … 

to reach lower chemical potential and chemical equilibrium  



Example. A system is divided into region I and region II.            

dni moles of substance i are transferred from region I to II.

region I region II

i
I i

II

dGT,p =  i
Idni

I +  i
IIdni

II = i
I (dni)  +  i

II (+dni) 

i
II <  i

I dni >  0            transfer  I   II       dGT,p <  0

i
II >  i

I dni <  0            transfer  I   II       dGT,p <  0

i
II =  i

I dni >  0            transfer  I   II       dGT,p =  0

dni <  0               (reversible)          (equilibrium)

dni moles

transferred

dGT,p =  (i
II  i

I ) dni



Chemical Equilibrium

The chemical potential (Gibbs energy per mole) of each substance

is constant throughout the system.

Thermal Equilibrium

The temperature is constant throughout the system.

Mechanical Equilibrium

The pressure is constant throughout the system.



Section 6.6   Gibbs Energy of Mixing

Semipermeable Barrier

H2 (but not other gases) 

can pass through palladium 

metal  films.  (Why ?)

At equilibrium, the pressure

of pure H2 and the partial

pressure of H2 in the mixture

are equal. 

Important Conclusion:  the chemical potential (Gibbs energy per mole)

of H2, or any ideal gas, mixed or pure, is

(T, pi)   =   Gmi(T, pi)   =   Gmi
o(T, po)   +   RT ln(pi /p

o)

pH2 (left)   =   pH2 (right)



Gibbs Energy of Mixing of Ideal Gases

Example: Mix nH2 moles pure H2 and nAr moles pure Ar

at constant temperature and pressure.

Gmix =  Gf  Gi

=    nH2[GmH2
o(T,po) + RTln(pH2 /po)] + nAr[GmAr

o(T,po) + RTln(pAr /po)]

 nH2[GmH2
o(T,po) + RTln(p /po)] + nAr[GmAr

o(T,po) + RTln(p /po)]

=  nH2RT ln(pH2/p)  +  nArRT ln(pAr/p)

nH2 mol H2 +  nAr mol Ar

mixed at T, p

total pressure  p = pH2 + pAr

nAr mol

pure Ar

T, p

nH2 mol

pure H2

T, p



Gmix =  nH2RT lnxH2 +  nArRT lnxAr (constant T, p)



Gibbs Energy of Mixing

mix 

nA moles of pure gas A

+

nB moles pure gas B

p

p

nn

n
x A

BA

A
A 




Gmix =  nART lnxA +  nBRT lnxB

for one mole total gas

nA + nB = 1 mol

at fixed pressure p

and 298 K

Gmix <  0



Entropy of Mixing

mix 

nA moles of pure gas A

+

nB moles pure gas B

at fixed pressure p

one mole total gas:

nA +  nB =  1 mol

S
T

G

p














Smix =  nAR lnxA  nBR lnxB

Smix >  0

mix
mix S

T

G

p
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













Section 6.7    Standard Gibbs Energy Change GR
o

for Chemical Reactions

Example:  Calculate GR
o for the following reaction 

at 298.15 K  (25 oC).

2 NO2(g)   N2O4(g)

GR
o =  Gf

o(products)    Gf
o(reactants)

=  Gfm
o(N2O4, g)    2Gfm

o(NO2, g)

=  99.8 kJ mol 1  (2) (51.3 kJ mol 1)       (Table 4.1)

=  2.80  kJ mol 1

stoichiometric

coefficients: 

vNO2 =  2

vN2O4 = +1

)(o

fm

o

R iGvG
i

i 

for any reaction: Important: GR
o is the change in 

Gibbs energy for the conversion of 

pure reactants to pure products

at standard pressure (po = 1 bar)



Section 6.8    Equilibrium Constant K for Chemical  

Reactions in  Mixtures of Ideal Gases

Example:  2 NO2(g)   N2O4(g)

Actual  reactions occur for  mixed gases (not pure)  

 usually at non-standard pressures

Mystery at equilibrium and

a given temperature
constant

)( 2

NO2

N2O4 
p

p

 why is this ratio of partial pressures constant

for any initial conditions, from pure NO2 to pure N2O4? 

 why is the product pressure in the numerator?

 why is the reactant pressure in the denominator?

 why is the reactant pressure squared?  



Section 6.8    Equilibrium Constant K for the Reaction 

of  Mixtures of Ideal Gases

Example: Calculate GR for the following reaction at 298.15 K

for the mixed gases at partial pressures pNO2 and pN2O4. 

2 NO2(g)   N2O4(g)

Actual  reactions occur for    mixed (not pure) gases 

 usually at non-standard pressures 

GR =   Gf (products)    Gf (reactants)

=  Gfm(N2O4, g)    2Gfm(NO2, g)

=  Gfm
o(N2O4, g) + RT ln(pN2O4/p

o)   2[Gfm
o(NO2, g) + RT ln(pNO2/p

o)]

= Gfm
o(N2O4, g)  2Gfm

o(NO2, g) +  RT ln(pN2O4/p
o)   2RT ln(pNO2/p

o)

GR = GR
o +  RT ln[ (pN2O4/p

o)1 (pNO2/p
o)2 ] 



Non-Standard GR for the reaction:

2 NO2(g)   N2O4(g)











2o

NO2

o

N2O4o

RR
)/(

/
ln

pp

pp
RTGG

2o

NO2

o

N2O4

)/(

/

pp

pp
Q 

QRTGG lno

RR 

Simpler notation

using the reaction quotient Q

no “ o ”  superscript



2 NO2(g)   N2O4(g)

equil

2o

NO2

o

N2O4
equil

)/(

/
constant mequilibriu 










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pp

pp
QK

QRTGG lno

RR 

Case I: GR = 0 Equilibrium in the Reacting Gas Mixture

equil

o

R ln0 QRTG 

RTGQ /ln o

Requil 

RTG
K

/
o

Re






2 NO2(g)   N2O4(g)

QRTGG lno

RR 

Case II: GR < 0 Forward Reaction in the Gas Mixture

0lno

RR  QRTGG

KQ 

Case III: GR > 0 Reverse Reaction in the Gas Mixture

2 NO2(g)   N2O4(g)

0lno

RR  QRTGG

KQ 



Extent of Reaction

G
ib

b
s

 E
n

e
rg

y

0 1

    too
  much 
reactant

    too
  much 
product

equilibrium

    all 
reactants

    all 
product

→

↑

Spontaneous Chemical Reactions

GR > 0

Q > K

GR < 0

Q < K



Example NO2(g) and N2O4(g) are in a reaction vessel at 298 K 

and partial pressures 0.350 bar and 0.650 bar, respectively. 

Is this system at equilibrium?

Data: Go for the reaction   2 NO2(g)   N2O4(g) 

is  2.80 kJ mol1 at 298 K.

01.3eee 130.1)298)(314.8/()2800(/o

  RTGK

31.5
)350.0(

650.0

)/(

/
22o

NO2

o

N2O4 
pp

pp
Q

Q >   K The gas mixture is not at equilibrium. 

Too little NO2 reactant. Too much N2O4 product.

The reverse reaction 2 NO2(g)   N2O4(g) is spontaneous. 



Equilibrium Constants  K for Ideal-Gas Reactions

a A(g)   +   b B(g)  + …    c C(g) +  d D(g) + … 


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
D
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)/exp( o

R RTGK 

vA =  a        vB =  b                          vC =  +c        vD =  +d       

using  equilibrium partial pressures  pA,  pB,  pC,  pD,  …

Go =  cGfm
o(C, g) + dGfm

o(D, g) …  aGfm
o(C, g)  bGfm

o(D, g) …

)(o

fm

o

R iGvG
i

i  



Example NO2(g) and N2O4(g) are in a reaction vessel at 298 K and 

partial pressures 0.350 bar and 0.650 bar, respectively.

Calculate the gas partial pressures at equilibrium.

Data: at 298 K the equilibrium constant for the reaction

2NO2(g)  N2O4(g)   is   K = 3.01

Section 6.9    Calculating Equilibrium Partial Pressures   

for Mixtures of Reacting Gases

Notice that changes in the number of moles NO2 and N2O4

are linked by stoichiometry:  nNO2 =  2nN2O4

Also, in a reaction vessel at constant volume, the partial pressure  

of each gas is proportional to the number of moles of gas.

iii nn
V

RT
p  constant



Example (cont.) Let  x be the change in the N2O4 pressure.

01.3
)2350.0(

)650.0(

)/(

/
22o

NO2

o

N2O4 





x

x

pp

pp
K

2 NO2(g)   N2O4(g)

initial pressures: pNO2(init) pN2O4(init)

equilibrium pressures:     pNO2(init)   2x pN2O4(init) +  x

Solve for x =   0.0486.  At equilibrium:

pNO2 =  pNO2(init)  2x  =  0.350  2(0.0486)  =  0.447 bar 

pN2O4 =  pN2O4(init) +  x  =  0.650  +  (0.0486)  =  0.601 bar  

check: 0.601/(0.447)2 = 3.008 



Equilibrium Calculations

A systematic approach frequently works. Suggestions: 

1.  Write the balanced chemical reaction.

2. Write the equilibrium constant expression.

3. List the available information.

4. Assign a variable (e.g., x ) to one of the unknown concentrations

5. Use stoichiometry to relate x to the other unknown concentrations.

6. Use the equilibrium constant expression to calculate x.

7. Calculate the reactant and product concentrations.

8. Check by using the concentrations to calculate K.



Section 6.10   Temperature Dependence of 

Equilibrium Constants

Helpful result from Section 6.3: 2
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Why helpful?  For equilibrium constants  GR
o =  RTlnK and  

KR
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Temperature Dependence of  Equilibrium Constants

gives                                                         Significance?
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lnd

RT
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K 
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 exothermic reactions (HR
o <  0) are less favorable as T increases

 endothermic reactions (HR
o >  0) are more favorable as T increases

 given  K values at a single temperature (e.g., 298.15 K), H values 

from thermochemistry can be used to predict K at other temperatures

 chemical equilibrium constants measured at different temperatures

can be used to calculate HR
o without  thermochemistry  

Switched from a partial to

an ordinary derivative. Why?

(notice logarithmic relation)
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Better:  For a Linear Plot, Use 
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van’t Hoff Plot.   Almost Linear Slope Ho/R

van't Hoff plot

lnK against 1/T

slope = H
o
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van’t Hoff Calculations:  lnK as a Function of Temperature
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If HR
o is constant from T1 to T2 :

(a good approximation for small temperature intervals) 



Section 6.11   Chemical Reactions Involving Gases  

and Pure Solids or Pure Liquids

“Heterogenous” (Multiphase) Equilibria

Equilibrium-constant expressions contain the pressures 

of reacting gases, but not pressure terms for solids or liquids.

Example:  Decomposition of solid calcium carbonate.*

CaCO3(s)     CaO(s)    +    CO2(g)

K =  pCO2/p
o

Are CaCO3(s) and CaO(s) ignored?

*Why is this a “billion-dollar” reaction?



Effect of Pressure on the Gibbs Energy

From dG =  SdT +  Vdp, get

V
p

G

T





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


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(and  V/n = Vm per mole)

T
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G
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


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





 m

At 298 K and 1 bar, the molar volume of a gas is about 25 L, 

but typically less than 0.1 L for solids and liquids.

Useful result:

is negligibly small for solids and liquids

(but not for gases)



Only CO2? CaCO3 and CaO are ignored ? No!

at equilibrium: 

Gm(CaCO3, s)    =   Gm(CaO, s)   +   Gm(CO2, g)

Go
m(CaCO3, s)  =   Go

m(CaO, s)   +   Go
m(CO2, g) + RT ln(pCO2/p

o)

{Go
m(CaCO3, s) − Go

m(CaO, s) − Go
m(CO2, g)}/RT  = ln(pCO2/p

o)

GR
o/RT  = ln(pCO2/p

o)

K = exp(−GR
o/RT ) = (pCO2/p

o)

 CaCO3(s)  and  CaO(s)  are included in

the standard  GR
o value

K =  pCO2
/ po

CaCO3(s)     CaO(s)    +    CO2(g)

 independent of pressure



Heterogenous Equilibrium

Example Solid ammonium hydrogen sulfide is placed in an 
evacuated flask at 25 oC. What is the total gas 
pressure* at equilibrium? 

Data: K = 0.108  at  25 oC

NH4HS(s)      NH3(g)      +     H2S(g)

initial pressure:                                             0                          0

equilibrium pressure:                                  pNH3 pH2S

total equilibrium pressure p = pNH3 +  pH2S

from stoichiometry pNH3 =  pH2S =  p/2

Kp = (pNH3/p
o) (pH2S/po)  = (p/2po) (p/2po)  =  0.108 

Solve for p = (4  0.108)1/2 =  0.657 bar

*Why might it be important to know the decomposition pressure of NH4HS?



Equilibrium Constants  Kp for Ideal-Gas Reactions

a A(g)   +   b B(g)  + …    c C(g) +  d D(g) + … 
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vA =  a         vB =  b                          vC =  +c        vD =  +d       

using  equilibrium partial pressures  pA,  pB,  pC,  pD,  …

Section 6.12   Equilibrium Constants in Terms of 

Molarities or Mole Fractions

The terminology  Kp ( = K )  is often used for 

equilibrium constants defined this way.  



Equilibrium Constants  Kc for Ideal-Gas Reactions

a A(g)   +   b B(g)  + …    c C(g) +  d D(g) + … 
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Chemists frequently use equilibrium constants in terms of molarity concentrations, ci.



Equilibrium Constants  Kc for Ideal-Gas Reactions

a A(g)   +   b B(g)  + …    c C(g) +  d D(g) + … 
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Equilibrium Constants  Kx for Ideal-Gas Reactions

a A(g)   +   b B(g)  + …    c C(g) +  d D(g) + … 
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Can also use equilibrium constants Kx in of gas mole fractions xi.



Section 6.13   Temperature and Pressure 

Dependence of the Extent of Reaction

See Sections 6.8 to 6.11

Section 6.14   Ammonia Synthesis – a Case Study

Section 6.15   U, H, CV, Cp in Terms 

of Measurable Quantities

Section 6.16   G for Unfolding RNA Molecules

Optional reading assignment.

Optional reading assignment.

Done.



Section 6.17   The Role of Mixing

in Chemical Reaction Equilibrium

Step I.  Chemical Reaction (Only)

React 1 mol pure N2 and 2 mol pure O2 to form:

2(1 – ) mol pure NO2 +   mol pure N2O4

GI(React) =  2(1 – )Gfm
o(NO2, g)  +   Gfm

o(N2O4, g)

=  2Gfm
o(NO2, g) +  [2Gfm

o(NO2, g) + Gfm
o(N2O4, g)]

GI(React) =  2Gfm
o(NO2, g)  +   GR

o

 =  extent of reaction

0     1

2 NO2(g)   N2O4(g)

GI(React) =  2Gfm
o(NO2, g)  +   GR

o
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Step I.  Chemical Reaction  (Only)

2 NO2(g)   N2O4(g)

Data:

Gfm
o(NO2, g)  = 51.3 kJ mol1

Gfm
o(N2O4, g)  = 99.8 kJ mol1

GR
o = 99.8  2(51.3)

= 2.8 kJ mol1

2Gfm
o(NO2, g)

Gfm
o(N2O4, g) 

slope = GR
o = 2.8 kJ mol1

pure

NO2

pure

N2O4




No minimum?

Reaction 

goes to 100 %

completion

( = 1)?



Step II.  Mixing  (Only)

2 NO2(g)   N2O4(g)

Mix: 2(1 – ) mol pure NO2 +   mol pure N2O4

From Section 6.6:

GII(mix) =  nNO2RT lnxNO2 +   nN2O4RT lnxN2O4

The mole fractions are      
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Step II.  Mixing  (Only)

2 NO2(g)   N2O4(g)
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Overall:  React and Mix G = GI(react) + GII(mix)

2 NO2(g)  N2O4(g)

reaction only

reaction and

mixing

minimum G

at equilibrium

Significance

(often overlooked)

Physical mixing

of reactants and

products is required

for the equilibrium

of chemical reactions. 

pure

NO2

pure

N2O4



2 NO2(g)   N2O4(g)

Summary

React 1 mol pure N2 and 2 mol pure O2 to form

2(1 – ) mol NO2 mixed with   mol N2O4
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Exercise Show that the minimum in G as a function of  gives

the same equilibrium composition calculated using
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Practical Considerations

Thermodynamic equilibrium constants such as 

for the reaction 2 NO2(g)   N2O4(g) are dimensionless 

pure numbers (no units), by definition.

In practice, for convenience, po = 1 bar and co = 1 mol L1

are frequently omitted, to give 

No numerical errors are made, if po and co are unity.
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!!!  Warning  !!!

Equilibrium constant expressions such as 

2o

NO2

o

N2O4
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/

pp

pp
K p 

developed in this Chapter for ideal gases are accurate 

for real gases only in the limit p  0.

For real gases (the subject of the next Chapter), corrections

for nonideal behavior are made using “fugacity coefficients”, 

such as N2O4 and NO2.
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