Chapter 6. Chemical Equilibrium

<u>Summary</u>

- the **First and Second Laws** are combined to predict conditions for spontaneous processes, including chemical reactions
- the **Helmholtz energy** A = U TS provides $\Delta A_{T,V} < 0$ for spontaneous processes at constant temperature and volume
- the **Gibbs energy** G = U + pV TS provides $\Delta G_{T,p} < 0$ for spontaneous processes at constant temperature and pressure
- the Gibbs energy is used to derive expressions for the equilibrium constant of chemical reactions

Motivation for Chapter 6

Could do most of thermodynamics with p, V, T, q, w, U, S.

Ok. But sometimes the calculations are *very inconvenient*!

Example: Prove that freezing liquid water is spontaneous at -10 °C.

Take the **<u>3-step reversible path</u>** (Why? So ΔS can be calculated.):

$$\Delta H(-10 \text{ °C}) = \Delta H_{\text{I}} + \Delta H_{\text{II}} + \Delta H_{\text{III}}$$

= $C_{pm}(l)(273-263)\text{K} - \Delta H_{\text{fus,m}}(273\text{K}) + C_{pm}(s)(263-273)\text{K}$
= -5618 J mol^{-1}

 $\Delta S(-10 \text{ °C}) = \Delta S_{\text{I}} + \Delta S_{\text{II}} + \Delta S_{\text{III}}$ (all steps reversible)

What to do?

Legendre Transformations *to the rescue* ! Given the exact differential dY_{I}

$$\mathrm{d}Y_{\mathrm{I}} = C_{1}\mathrm{d}X_{1} + C_{2}\mathrm{d}X_{2}$$

the function $Y_{I}(X_{1},X_{2})$ can be "transformed" into the new functions (*maybe more convenient?*):

$$Y_{\rm II} = Y_{\rm I} - C_1 X_1$$

$$Y_{\rm III} = Y_{\rm I} - C_2 X_2$$

$$Y_{\rm IV} = Y_{\rm I} - C_1 X_1 - C_2 X_2$$

Legendre Transformations for Thermodynamics

dU = dq + dw (First Law)

For a reversible path (dq = TdS and dw = -pdV):

$$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$$

Legendre transforms of *U*(*S*,*V*) **are:**

- U TS (*A* = Helmholtz function)
- U + pV (*H* = enthalpy)

U - TS + pV (*G* = Gibbs function)

Section 6.1 Predicting Spontaneous Processes

a) Using the Internal Energy $(dU_{S,V} \leq 0)$

 $\Delta U_{S,V} < 0$ spontaneous process $\Delta U_{S,V} = 0$ reversible process

Where do these rules come from?

First Law:
$$dU = dq + dw$$

For a reversible path: dU = TdS - pdV (I) (dq = TdS and dw = -pdV)

For a spontaneous path: $dU = dq - p_{ext}dV$ (II)

Eq. I minus Eq. II: same as: $0 = TdS - dq - (p_{ext} - p)dV$ $dq = TdS - (p_{ext} - p)dV$

 $\Delta U_{S,V} \leq 0$ is a useful result, but <u>experimentally inconvenient</u>. *How do you keep the entropy constant?* Try the enthalpy?

b) Predicting Spontaneous Processes using the Enthalpy

$$H \equiv U + pV$$

$$\Delta H_{S,p} < 0 \text{ spontaneous process}$$

$$\Delta H_{S,p} = 0 \text{ reversible process}$$

$$dH = d(U + pV)$$

$$= dU + d(pV)$$

= dU + pdV + Vdp
= dq - p_{ext}dV + pdV + Vdp

At constant pressure $(p_{ext} = p)$: $dH_p = dq - p_{ext}dV + pdV + Vdp = dq \leq TdS$

At constant *S*,*p*:

Still inconvenient. How is S held constant? c) Predicting Spontaneity using the <u>Helmholtz Energy A</u>

$$A \equiv U - TS$$
 $\Delta A_{T,V} < 0$ spontaneous process
 $\Delta A_{T,V} = 0$ reversible process

The Helmholtz energy, like the enthalpy, is an "auxiliary" thermodynamic state function. Useful property:

$$dA = d(U - TS)$$

= $dU - d(TS)$
= $dU - TdS - SdT$
= $dq + dw - TdS - SdT$
= $dq - p_{ext}dV - TdS - SdT$
 $dA \leq -p_{ext}dV - SdT$ (using $dq - TdS \leq 0$)

At constant temperature and volume (can be arranged):

constant T,V conditions are <u>experimentally convenient</u> A = U - TS is sometimes called the **Helmholtz** Free Energy

Why? From the previous slide:

$$dA = d(U - TS)$$

$$= dU - d(TS)$$

$$= dU - TdS - SdT$$

$$= dq + dw - TdS - SdT$$

Use
$$dq \leq TdS$$
 to get
 $dA_T \leq dw_T$
 $-dw_T \leq -dA_T$

$$-w_T \leq -\Delta A_T$$

In an isothermal process, the maximum work free to be done on the surroundings equals the decrease in the Helmholtz Energy. d) Predicting Spontaneity using the <u>Gibbs Energy G</u>

$$G \equiv U - TS + pV$$

= $H - TS$
$$\Delta G_{T,p} < 0$$
 spontaneous process
$$\Delta G_{T,p} = 0$$
 reversible process

The Gibbs Energy is another "auxiliary" thermodynamic state function. Useful property:

$$dG = d(U - TS + pV)$$

= $dU - d(TS) + d(pV)$
= $dU - TdS - SdT + pdV + Vdp$
= $dq + dw - TdS - SdT + pdV + Vdp$

At fixed *T*,*p*, assuming only *p*-*V* work:

$$dG_{T,p} = dq - p_{ext}dV - TdS - SdT + pdV + Vdp = dq - TdS$$

	constant T,p conditions are
$\mathrm{d}G_{T,p} \leq 0$	<u>experimentally convenient</u>

G = U - TS + pV is sometimes called the **Gibbs** <u>Free</u> Energy **Why?** From the previous slide: dG = d(U - TS + pV) = dU - d(TS) + d(pV)= dU - TdS - SdT + pdV + Vdp

$$= dU - TdS - SdT + pdV + Vdp$$

$$= dq + dw - TdS - SdT + pdV + Vdp$$

$$= dq - p_{ext}dV + dw' - TdS - SdT + pdV + Vdp$$

w' is work other than *p*-*V* work (such as electrical work) At fixed *T*, *p* $(dT = 0 \text{ and } p_{ext} = p)$:

$$dG_{T,p} = dq + dw' - TdS$$

$$dG_{T,p} \le dw' \qquad (using dq \le TdS)$$

 $-\mathrm{d}w' \leq -\mathrm{d}G_{T,p}$

At fixed T,p the maximum non-p-V work free to be done on the surroundings equals the decrease in the Gibbs Energy. **Summary of Criteria Used for the Prediction of Reversible and Spontaneous Processes**

$$\begin{array}{rcl} \Delta U_{S,V} &\leq & \mathbf{0} \\ \Delta H_{S,p} &\leq & \mathbf{0} \\ \Delta A_{T,V} &\leq & \mathbf{0} \\ \Delta G_{T,p} &\leq & \mathbf{0} \end{array}$$

U is the **Internal Energy** H = U + pV is the **Enthalpy** A = U - TS is the **Helmholtz Energy** G = U - TS + pV is the **Gibbs Energy** **Section 6.2 and 6.3 Differential Forms of** *U***,** *H***,** *A* **and** *G* (the mathematical formulation of thermodynamics)

a) The Internal Energy

The First Law $\Delta U = q + w$

In differential form (infinitesimally small changes in \boldsymbol{U}):

$$\mathrm{d}U = \mathrm{d}q + \mathrm{d}w$$

The internal energy is a state function. Any path, reversible or ireversible, can be used to calculate dU.

For convenience, take a reversible path (dq = TdS and dw = -pdV):

$$\mathbf{d}U = T\mathbf{d}S - p\mathbf{d}V$$

Applications?

Differentials of State Functions (from Chapter 2)

Recall that the differential equation

 $\mathrm{d}f = g(x, y)\mathrm{d}x + h(x, y)\mathrm{d}y$

for state function f(x,y) of variables x an y is equivalent to

$$\mathrm{d}f = \left(\frac{\partial f}{\partial x}\right)_{y} \mathrm{d}x + \left(\frac{\partial f}{\partial y}\right)_{x} \mathrm{d}y$$

Comparing the two equations for df shows

$$g(x, y) = \left(\frac{\partial f}{\partial x}\right)_{y} \qquad h(x, y) = \left(\frac{\partial f}{\partial y}\right)_{x}$$

Reversing the order of differentiation gives

$$\left[\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)_{y}\right]_{x} = \left(\frac{\partial g}{\partial y}\right)_{x} = \left[\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)_{x}\right]_{y} = \left(\frac{\partial h}{\partial x}\right)_{y}$$

 $(\partial x \text{ first then } \partial y)$

 $(\partial y \text{ first then } \partial x)$

Differential of the Internal Energy

The differential of U(T,V)

$$\mathrm{d}U = T\mathrm{d}S - pdV$$

is equivalent to

$$\mathrm{d}U = \left(\frac{\partial U}{\partial S}\right)_{V} \mathrm{d}S + \left(\frac{\partial U}{\partial V}\right)_{S} \mathrm{d}V$$

which shows

$$\left(\frac{\partial U}{\partial S}\right)_V = T$$
 and $\left(\frac{\partial U}{\partial V}\right)_S = -p$

(*new ways of understanding the temperature and pressure*) Reversing the order of second differentiation gives

$$\left[\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial S}\right)_{V}\right]_{T} = \left(\frac{\partial T}{\partial V}\right)_{S} = \left[\frac{\partial}{\partial S}\left(\frac{\partial U}{\partial V}\right)_{S}\right]_{V} = -\left(\frac{\partial p}{\partial S}\right)_{V}$$

 $(\partial S \text{ first then } \partial V)$

 $(\partial V \text{ first then } \partial S)$

Differential of the Enthalpy

The differential of H(T,p)

$$dH = d(U + pV) = dU + d(pV) = dU + pdV + Vdp$$

$$dH = TdS - pdV + pdV + Vdp$$

$$dH = TdS + Vdp$$

is equivalent to

$$\mathrm{d}H = \left(\frac{\partial H}{\partial S}\right)_p \mathrm{d}S + \left(\frac{\partial H}{\partial p}\right)_S \mathrm{d}p$$

which shows

$$\left(\frac{\partial H}{\partial S}\right)_p = T$$
 and $\left(\frac{\partial H}{\partial p}\right)_S = V$

Reversing the order of second differentiation gives

$$\left[\frac{\partial}{\partial p}\left(\frac{\partial H}{\partial S}\right)_p\right]_S = \left(\frac{\partial T}{\partial p}\right)_S = \left[\frac{\partial}{\partial S}\left(\frac{\partial H}{\partial p}\right)_S\right]_p = \left(\frac{\partial V}{\partial S}\right)_p$$

Differential of the Helmholtz Energy

The differential of A(T,V)

$$dA = d(U - TS) = dU - d(TS) = dU - TdS - SdT$$

$$dA = TdS - pdV - TdS - SdT$$

$$dA = -SdT - pdV$$

conveniently

in terms of

p, V, T

is equivalent to

$$\mathrm{d}A = \left(\frac{\partial A}{\partial T}\right)_V \mathrm{d}T + \left(\frac{\partial A}{\partial V}\right)_T \mathrm{d}V$$

which shows

$$\left(\frac{\partial A}{\partial T}\right)_V = -S$$
 and $\left(\frac{\partial A}{\partial V}\right)_T = -p$

Reversing the order of second differentiation gives

$$\left[\frac{\partial}{\partial V}\left(\frac{\partial A}{\partial T}\right)_{V}\right]_{T} = -\left(\frac{\partial S}{\partial V}\right)_{T} = \left[\frac{\partial}{\partial T}\left(\frac{\partial A}{\partial V}\right)_{T}\right]_{V} = -\left(\frac{\partial p}{\partial T}\right)_{V}$$

Differential of the Gibbs Energy

The differential of G(T,p)

$$dG = d(U - TS + pV) = dU - d(TS) + d(pV)$$

$$dG = TdS - pdV - TdS - SdT + pdV + Vdp$$

$$dG = -SdT + Vdp$$

is equivalent to

$$\mathrm{d}G = \left(\frac{\partial G}{\partial T}\right)_p \mathrm{d}T + \left(\frac{\partial G}{\partial p}\right)_T \mathrm{d}p$$

which shows

$$\left(\frac{\partial G}{\partial T}\right)_{p} = -S \quad \text{and} \quad \left(\frac{\partial G}{\partial p}\right)_{T} = V$$

Reversing the order of second differentiation gives

$$\left[\frac{\partial}{\partial p}\left(\frac{\partial G}{\partial T}\right)_{p}\right]_{T} = -\left(\frac{\partial S}{\partial p}\right)_{T} = \left[\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial p}\right)_{T}\right]_{p} = \left(\frac{\partial V}{\partial T}\right)_{p}$$

Section 6.2 Summary dU = TdS - pdVdA = -SdT - pdVdH = TdS + Vdp $\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p$ memorize ?

From the **first derivatives** of U, H, A, and G:

From the second derivatives of U, H, A, and G (Maxwell relations):

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V} \qquad \left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}$$

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{V} \qquad -\left(\frac{\partial S}{\partial p}\right)_{T} = \left(\frac{\partial V}{\partial T}\right)_{p}$$

Example: Derive an expression for $(\partial U/\partial V)_T$ to calculate changes in the internal energy with volume at constant temperature.

Suggestion: start with the differential equation for dU

dU = TdS - pdV then divide by dV at constant temperature. $\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial S}{\partial V}\right)_T - p \left(\frac{\partial V}{\partial V}\right)_T^{-1} \qquad \text{But what is } (\partial S/\partial V)_T ?$ $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{U}$ Use the Maxwell relation for A.

<u>Significance</u>: This result gives $(\partial U/\partial V)_T$ $\left| \left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial p}{\partial T} \right)_V - p \right|$ in terms of quantities conveniently measured in terms of p, V, and T.

Exercises:

a) Show

$$Cp = \left(\frac{\partial H}{\partial T}\right)_p = T\left(\frac{\partial S}{\partial T}\right)_p$$

b) Use the Maxwell relation for d*G* to show

$$\left(\frac{\partial H}{\partial p}\right)_T = -T\left(\frac{\partial V}{\partial T}\right)_T + V$$

c) The temperature of a substance increases when it is compressed adiabatically. For a reversible adiabatic compression (constant *S*), use a Maxwell relation to show

$$\left(\frac{\partial T}{\partial p}\right)_{S} = \frac{T}{C_{p}} \left(\frac{\partial V}{\partial T}\right)_{p}$$

Example: Derive an expression for the **Gibbs energy of an ideal gas** as a function of pressure. (*Why do this?* A useful result for understanding equilibrium of reacting gases).

$$G(T,p) = G^{\circ}(T,p^{\circ}) + \int_{p^{\circ}}^{p} \left(\frac{\partial G}{\partial p}\right)_{T} dp \qquad \qquad \text{But what is} \\ (\partial G/\partial p)_{T}?$$

Independent variables T and p suggests looking at

dG = -SdT + Vdp which shows $\left(\frac{\partial G}{\partial p}\right)_T = V = \frac{nRT}{p}$

Find

$$G(T,p) = G^{\circ}(T,p^{\circ}) + \int_{p^{\circ}}^{p} \frac{nRT}{p} dp = G^{\circ}(T,p^{\circ}) + nRT \int_{p^{\circ}}^{p} \frac{1}{p} dp$$

$$G(T,p) = G^{\circ}(T,p^{\circ}) + nRT \ln(p/p^{\circ})$$

$$G_{m}(T,p) = G^{\circ}_{m}(T,p^{\circ}) + RT \ln(p/p^{\circ})$$

$$G_{m} = G/n \text{ is the Gibbs energy per mole of gas}$$

Example: Derive an expression for the temperature dependence of G/T. (*Why do this?* The logarithm of the equilibrium constant for a chemical reaction is proportional to G/T.)

$$\left(\frac{\partial (G/T)}{\partial T}\right)_p = \frac{1}{T} \left(\frac{\partial G}{\partial T}\right)_p + G \left(\frac{\partial (1/T)}{\partial T}\right)_p \qquad \text{But what is} \\ (\partial G/\partial T)_p?$$

Independent variables T and p suggests looking at dG = -SdT + Vdp which shows $(\partial G/\partial T)_p = -S$.

Find

$$\left(\frac{\partial (G/T)}{\partial T}\right)_{p} = \frac{1}{T}(-S) + G\left(\frac{-1}{T^{2}}\right) = -\frac{S}{T} - \frac{G}{T^{2}} = -\frac{TS+G}{T^{2}}$$

$$\left[\left(\frac{\partial (G/T)}{\partial T}\right)_{p} = -\frac{H}{T^{2}}\right] \quad (G = H - TS, \text{ so } TS + G = H)$$

Sections 6.4 and 6.5 Gibbs Energy of Gas Mixtures

- systems of fixed composition have been considered so far
- chemical reactions consume reactants and form products, causing changes in compositions
- *no problem* just include composition variables
- many chemical reactions occur at fixed temperature and pressure
- $\Delta G_{T,p} \leq 0$ is used to predict equilibrium under these conditions,

Pure Substances or Systems of Fixed Composition

Gibbs energy is a function of temperature and pressure

$$\mathrm{d}G = \left(\frac{\partial G}{\partial T}\right)_p \mathrm{d}T + \left(\frac{\partial G}{\partial p}\right)_T \mathrm{d}p$$

Mixtures of Variable Composition

Gibbs energy is a function *T*, *p* and the number of moles n_1, n_2, n_3, \ldots of each substance in the mixture

$$\mathbf{d}G = \left(\frac{\partial G}{\partial T}\right)_{p,n_1,n_2,n_3,\dots} \mathbf{d}T + \left(\frac{\partial G}{\partial p}\right)_{T,n_1,n_2,n_3,\dots} \mathbf{d}p + \left(\frac{\partial G}{\partial n_1}\right)_{T,p,n_2,n_3,\dots} \mathbf{d}n_1 + \left(\frac{\partial G}{\partial n_2}\right)_{T,p,n_1,n_3,\dots} \mathbf{d}n_2 + \left(\frac{\partial G}{\partial n_3}\right)_{T,p,n_1,n_2,\dots} \mathbf{d}n_3 + \cdots$$

Chemical Potential μ_i of Substance *i* in a Mixture

defined as
$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T, p, n_{k \neq i}} = G_{m, i}$$

1

Gibbs energy per mole of substance *i*

gives
$$dG = \left(\frac{\partial G}{\partial T}\right)_{p,n_1,n_2,n_3,\dots} dT + \left(\frac{\partial G}{\partial p}\right)_{T,n_1,n_2,n_3,\dots} dp + \mu_1 dn_1 + \mu_2 dn_2 + \mu_3 dn_3 + \dots$$

Application of Chemical Potentials

The Gibbs energy of a mixture of different substances is

$$G = n_1 \mu_1 + n_2 \mu_2 = n_3 \mu_3 + \dots$$

Significance of Chemical Potentials (Huge !)

- positive electric charge flows to regions of lower electric potential
- "north" magnetic poles are drawn to "south" magnetic poles
- objects roll downhill to reach lower gravitational potential energy

Useful analogy:

chemical substances:

expand, compress, warm, cool, vaporize, condense, freeze, melt, sublime, diffuse, mix, crystallize, react, ...

to reach lower chemical potential and chemical equilibrium

Example. A system is divided into region I and region II.

 dn_i moles of substance *i* are transferred from region I to II.

Chemical Equilibrium

The chemical potential (Gibbs energy per mole) of each substance is constant throughout the system.

Thermal Equilibrium

The temperature is constant throughout the system.

Mechanical Equilibrium

The pressure is constant throughout the system.

Section 6.6 Gibbs Energy of Mixing

<u>Semipermeable Barrier</u>

H₂ (but not other gases) can pass through palladium metal films. (*Why* ?)

At equilibrium, the pressure of pure H_2 and the partial pressure of H_2 in the mixture are equal.

Important Conclusion: the **chemical potential** (Gibbs energy per mole) of H_2 , or **any ideal gas**, mixed or pure, is

 $\mu(T, p_i) = G_{mi}(T, p_i) = G_{mi}^{o}(T, p^{o}) + RT \ln(p_i/p^{o})$

Gibbs Energy of Mixing of Ideal Gases

Example: Mix n_{H2} moles pure H₂ and n_{Ar} moles pure Ar at constant temperature and pressure.

$$\Delta G_{\text{mix}} = G_f - G_i$$

= $n_{\text{H2}}[G_{\text{mH2}}^{\circ}(T,p^{\circ}) + RT\ln(p_{\text{H2}}/p^{\circ})] + n_{\text{Ar}}[G_{\text{mAr}}^{\circ}(T,p^{\circ}) + RT\ln(p_{\text{Ar}}/p^{\circ})]$
- $n_{\text{H2}}[G_{\text{mH2}}^{\circ}(T,p^{\circ}) + RT\ln(p/p^{\circ})] + n_{\text{Ar}}[G_{\text{mAr}}^{\circ}(T,p^{\circ}) + RT\ln(p/p^{\circ})]$
= $n_{\text{H2}}RT\ln(p_{\text{H2}}/p) + n_{\text{Ar}}RT\ln(p_{\text{Ar}}/p)$

 $\Delta G_{\text{mix}} = n_{\text{H2}}RT \ln x_{\text{H2}} + n_{\text{Ar}}RT \ln x_{\text{Ar}} \quad (\text{constant } T, p)$

Section 6.7Standard Gibbs Energy Change ΔG_{R^0} for Chemical Reactions

Example: Calculate ΔG_R° for the following reaction at 298.15 K (25 °C).

 $2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$

stoichiometric coefficients: $v_{NO2} = -2$ $v_{N2O4} = +1$

$$\Delta G_{\rm R}^{\rm o} = \Delta G_{\rm f}^{\rm o}(\text{products}) - \Delta G_{\rm f}^{\rm o}(\text{reactants})$$

$$= \Delta G_{\rm fm}^{\rm o}(N_2O_4, g) - 2\Delta G_{\rm fm}^{\rm o}(NO_2, g)$$

$$= 99.8 \text{ kJ mol}^{-1} - (2) (51.3 \text{ kJ mol}^{-1}) \quad \text{(Table 4.1)}$$

$$= -2.80 \text{ kJ mol}^{-1}$$

for any reaction:

$$\Delta G_{\rm R}^{\rm o} = \sum_{i} v_i \, \Delta G_{\rm fm}^{\rm o}(i)$$

Important: $\Delta G_{\mathbf{R}}^{\circ}$ is the change in Gibbs energy for the conversion of **pure reactants to pure products at standard pressure** ($p^{\circ} = 1$ bar)

Section 6.8Equilibrium Constant K for Chemical
Reactions in Mixtures of Ideal Gases

Actual reactions occur for
• <u>mixed gases</u> (not pure)
• usually at non-standard pressures

Example: $2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$

 $\frac{p_{\rm N2O4}}{\left(p_{\rm NO2}\right)^2} = \text{constant}$

at equilibrium and a given temperature

- *why* is *this ratio* of partial pressures constant *for any initial conditions*, from pure NO₂ to pure N₂O₄?
- *why* is the product pressure in the numerator?
- *why* is the reactant pressure in the denominator?
- *why* is the reactant pressure squared?

Section 6.8 Equilibrium Constant *K* for the Reaction of <u>Mixtures</u> of Ideal Gases

Actual reactions occur for • mixed (not pure) gases

• usually at non-standard pressures

Example: Calculate $\Delta G_{\rm R}$ for the following reaction at 298.15 K for the mixed gases at partial pressures $p_{\rm NO2}$ and $p_{\rm N2O4}$.

 $2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$

 $\Delta G_{\rm R} = \Delta G_{\rm f}({\rm products}) - \Delta G_{\rm f}({\rm reactants})$

$$= \Delta G_{\rm fm}(N_2O_4, g) - 2\Delta G_{\rm fm}(NO_2, g)$$

 $= \Delta G_{\rm fm}^{\rm o}({\rm N}_2{\rm O}_4,{\rm g}) + RT \ln(p_{\rm N2O4}/p^{\rm o}) - 2[\Delta G_{\rm fm}^{\rm o}({\rm NO}_2,{\rm g}) + RT \ln(p_{\rm NO2}/p^{\rm o})]$

 $= \Delta G_{\rm fm}^{\rm o}({\rm N}_2{\rm O}_4, {\rm g}) - 2\Delta G_{\rm fm}^{\rm o}({\rm NO}_2, {\rm g}) + RT \ln(p_{\rm N2O4}/p^{\rm o}) - 2RT \ln(p_{\rm NO2}/p^{\rm o})$

 $\Delta G_{\rm R} = \Delta G_{\rm R}^{\rm o} + RT \ln[(p_{\rm N2O4}/p^{\rm o})^{1} (p_{\rm NO2}/p^{\rm o})^{-2}]$

Non-Standard
$$\Delta G_{\rm R}$$
 for the reaction:
no " • " superscript
 $2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$
 $\Delta G_{\rm R} = \Delta G_{\rm R}^{\circ} + RT \ln \left[\frac{p_{\rm N204}/p^{\circ}}{(p_{\rm N02}/p^{\circ})^2} \right]$

Simpler notation

$$\Delta G_{\rm R} = \Delta G_{\rm R}^{\rm o} + RT \ln Q$$

using the reaction quotient Q

$$Q = \frac{p_{\rm N2O4} / p^{\rm o}}{(p_{\rm NO2} / p^{\rm o})^2}$$

$$\Delta G_{\rm R} = \Delta G_{\rm R}^{\rm o} + RT \ln Q$$

Case I: $\Delta G_{\rm R} = 0$ **Equilibrium** in the Reacting Gas Mixture

 $2 \operatorname{NO}_{2}(\mathbf{g}) \leftrightarrow \operatorname{N}_{2}\operatorname{O}_{4}(\mathbf{g})$ $0 = \Delta G_{\mathrm{R}}^{\mathrm{o}} + RT \ln Q_{\mathrm{equil}}$

$$\ln Q_{\rm equil} = -\Delta G_{\rm R}^{\rm o} / RT$$

equilibrium constant
$$K = Q_{equil} = \left(\frac{p_{N2O4} / p^{\circ}}{(p_{NO2} / p^{\circ})^2}\right)_{equil}$$

$$K = e^{-\Delta G_{\rm R}^{\rm o}/RT}$$

 $\Delta G_{\rm R} = \Delta G_{\rm R}^{\rm o} + RT \ln Q$

Case II: $\Delta G_{\rm R} < 0$ Forward Reaction in the Gas Mixture $2 \operatorname{NO}_2(\mathbf{g}) \rightarrow \operatorname{N}_2\operatorname{O}_4(\mathbf{g})$ $\Delta G_{\rm R} = \Delta G_{\rm R}^\circ + RT \ln Q < 0$ Q < K

Case III: $\Delta G_{\rm R} > 0$ <u>Reverse Reaction</u> in the Gas Mixture $2 \operatorname{NO}_2(g) \leftarrow \operatorname{N}_2\operatorname{O}_4(g)$ $\Delta G_{\rm R} = \Delta G_{\rm R}^\circ + RT \ln Q > 0$

Q > K

Spontaneous Chemical Reactions

Example NO₂(g) and N₂O₄(g) are in a reaction vessel at 298 K and partial pressures 0.350 bar and 0.650 bar, respectively.

Is this system at equilibrium?

Data: ΔG° for the reaction $2 \operatorname{NO}_{2}(g) \rightarrow \operatorname{N}_{2}\operatorname{O}_{4}(g)$ is $-2.80 \text{ kJ mol}^{-1}$ at 298 K.

$$K = e^{-\Delta G^{\circ}/RT} = e^{-(-2800)/(8.314)(298)} = e^{1.130} = 3.01$$
$$Q = \frac{p_{\text{N2O4}}/p^{\circ}}{(p_{\text{NO2}}/p^{\circ})^2} = \frac{0.650}{(0.350)^2} = 5.31$$

Q > K The gas mixture is not at equilibrium. Too little NO₂ reactant. Too much N₂O₄ product. The reverse reaction $2 \operatorname{NO}_2(g) \leftarrow \operatorname{N}_2O_4(g)$ is spontaneous.

Equilibrium Constants *K* for Ideal-Gas Reactions

$$a \operatorname{A}(\mathbf{g}) + b \operatorname{B}(\mathbf{g}) + \dots \longrightarrow c \operatorname{C}(\mathbf{g}) + d \operatorname{D}(\mathbf{g}) + \dots$$

$$v_{\mathrm{A}} = -a \qquad v_{\mathrm{B}} = -b \qquad v_{\mathrm{C}} = +c \qquad v_{\mathrm{D}} = +d$$

$$K = \frac{(p_{\mathrm{C}}/p^{\circ})^{c}(p_{\mathrm{D}}/p^{\circ})^{d} \cdots}{(p_{\mathrm{A}}/p^{\circ})^{a}(p_{\mathrm{B}}/p^{\circ})^{b} \cdots} = \left(\frac{p_{\mathrm{A}}}{p^{\circ}}\right)^{\nu \mathrm{A}} \left(\frac{p_{\mathrm{B}}}{p^{\circ}}\right)^{\nu \mathrm{B}} \left(\frac{p_{\mathrm{C}}}{p^{\circ}}\right)^{\nu \mathrm{C}} \left(\frac{p_{\mathrm{D}}}{p^{\circ}}\right)^{\nu \mathrm{D}} \cdots$$

$$\text{using equilibrium partial pressures $p_{\mathrm{A}}, p_{\mathrm{B}}, p_{\mathrm{C}}, p_{\mathrm{D}}, \cdots$$$

$$K = \exp(-\Delta G_{\rm R}^{\rm o} / RT)$$

 $\Delta G^{\circ} = c \Delta G_{\rm fm}^{\circ}(\mathbf{C}, \mathbf{g}) + d \Delta G_{\rm fm}^{\circ}(\mathbf{D}, \mathbf{g}) \dots - a \Delta G_{\rm fm}^{\circ}(\mathbf{C}, \mathbf{g}) - b \Delta G_{\rm fm}^{\circ}(\mathbf{D}, \mathbf{g}) \dots$

$$\Delta G_{\rm R}^{\rm o} = \sum_{i} v_i \, \Delta G_{\rm fm}^{\rm o}(i)$$

Section 6.9 Calculating Equilibrium Partial Pressures for Mixtures of Reacting Gases

Example $NO_2(g)$ and $N_2O_4(g)$ are in a reaction vessel at 298 K and partial pressures 0.350 bar and 0.650 bar, respectively. Calculate the gas partial pressures at equilibrium.

Data: at 298 K the equilibrium constant for the reaction $2NO_2(g) \rightarrow N_2O_4(g)$ is K = 3.01

Notice that changes in the number of moles NO₂ and N₂O₄ are linked by **stoichiometry**: $\Delta n_{NO2} = -2\Delta n_{N2O4}$

Also, in a reaction vessel at constant volume, **the partial pressure of each gas is proportional to the number of moles of gas**.

$$p_i = \frac{RT}{V}n_i = \text{constant} \times n_i$$

Example (*cont.*) Let x be the change in the N_2O_4 pressure.

$$\begin{array}{lll} & 2 \operatorname{NO}_2(g) & \rightarrow & \operatorname{N}_2\operatorname{O}_4(g) \\ \\ & \text{initial pressures:} & p_{\operatorname{NO2(init)}} & & p_{\operatorname{N2O4(init)}} \\ & \text{equilibrium pressures:} & p_{\operatorname{NO2(init)}} - 2x & & p_{\operatorname{N2O4(init)}} + x \end{array}$$

$$K = \frac{p_{\text{N2O4}} / p^{\circ}}{(p_{\text{NO2}} / p^{\circ})^2} = \frac{(0.650 + x)}{(0.350 - 2x)^2} = 3.01$$

Solve for x = -0.0486. At equilibrium:

 $p_{\text{NO2}} = p_{\text{NO2(init)}} - 2x = 0.350 - 2(-0.0486) = 0.447$ bar $p_{\text{N2O4}} = p_{\text{N2O4(init)}} + x = 0.650 + (-0.0486) = 0.601$ bar

check: $0.601/(0.447)^2 = 3.008$

Equilibrium Calculations

A systematic approach frequently works. Suggestions:

- **1.** Write the balanced chemical reaction.
- 2. Write the equilibrium constant expression.
- **3.** List the available information.
- **4.** Assign a variable (e.g., x) to one of the unknown concentrations
- 5. Use stoichiometry to relate x to the other unknown concentrations.
- **6.** Use the equilibrium constant expression to calculate *x*.
- 7. Calculate the reactant and product concentrations.
- 8. Check by using the concentrations to calculate *K*.

Section 6.10 Temperature Dependence of Equilibrium Constants

Helpful result from Section 6.3:

$$\left(\frac{\partial (G/T)}{\partial T}\right)_{p} = -\frac{H}{T^{2}}$$

gives

$$\left(\frac{\partial(\Delta G/T)}{\partial T}\right)_{p} = -\frac{\Delta H}{T^{2}}$$

 $\left(\frac{\partial (G_f/T)}{\partial T}\right) - \left(\frac{\partial (G_i/T)}{\partial T}\right)_n = -\frac{H_f}{T^2} - \left(-\frac{H_i}{T^2}\right)$

Why helpful? For equilibrium constants $\Delta G_{R^{\circ}} = -RT \ln K$ and

$$\frac{\Delta G_{\rm R}^{\rm o}}{T} = -R\ln K$$

Temperature Dependence of Equilibrium Constants

$$\left(\frac{\partial(\Delta G_{\rm R}^{\circ}/T)}{\partial T}\right)_{p} = \frac{d}{dT}\left(\frac{\Delta G_{\rm R}^{\circ}}{T}\right) = \frac{d}{dT}\left(-R\ln K\right) = -\frac{\Delta H_{\rm R}^{\circ}}{T^{2}}$$
Switched from a partial to
an ordinary derivative. *Why*?
$$\frac{d\ln K}{dT} = \frac{\Delta H_{\rm R}^{\circ}}{RT^{2}}$$
Significance?
(notice logarithmic relation)

• exothermic reactions ($\Delta H_{\rm R}^{\rm o} < 0$) are less favorable as T increases

- endothermic reactions ($\Delta H_{\rm R}^{\rm o} > 0$) are more favorable as T increases
- given *K* values at a single temperature (*e.g.*, 298.15 K), ΔH values from thermochemistry can be used to predict *K* at other temperatures
- chemical equilibrium constants measured at different temperatures can be used to calculate ΔH_R° without thermochemistry

InK Plotted Against the Temperature (curved)

temperature T/K

Better: For a Linear Plot, Use

to the van't Hoff equation

$$\frac{d \ln K}{d \frac{1}{T}} = -\frac{\Delta H_{\rm R}^{\rm o}}{R}$$

van't Hoff Plot. <u>Almost Linear</u> Slope $-\Delta H^{0}/R$

reciprocal temperature 1/T

van't Hoff Calculations: ln*K* as a Function of Temperature

$$d \ln K = -\frac{\Delta H_{R}^{o}}{R} d\left(\frac{1}{T}\right)$$

$$\int_{0}^{K(T_{2})} d \ln K = -\int_{0}^{1/T_{2}} \frac{\Delta H_{R}^{o}}{R} d\left(\frac{1}{T}\right)$$

$$\int_{\ln K(T_1)}^{\ln K(T_2)} d\ln K = -\int_{1/T_1}^{1/T_2} \frac{\Delta H_{\mathrm{R}}^{\mathrm{o}}}{R} d\left(\frac{1}{T}\right)$$

If $\Delta H_{\rm R}^{\rm o}$ is constant from T_1 to T_2 : (a good approximation for small temperature intervals)

$$\ln K(T_2) - \ln K(T_1) = -\frac{\Delta H_R^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Section 6.11 Chemical Reactions Involving Gases and Pure Solids or Pure Liquids

"Heterogenous" (Multiphase) Equilibria

Equilibrium-constant expressions contain the pressures of reacting gases, but not pressure terms for solids or liquids.

Example: Decomposition of solid calcium carbonate.* $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ $K = p_{CO2}/p^{\circ}$ Are CaCO₃(s) and CaO(s) ignored?

*Why is this a "billion-dollar" reaction?

Effect of Pressure on the Gibbs Energy

From
$$dG = -SdT + Vdp$$
, get
 $\left(\frac{\partial G}{\partial p}\right)_T = V$ (and $V/n = V_m$ per mole)

At 298 K and 1 bar, the molar volume of a gas is about 25 L, but typically less than 0.1 L for solids and liquids.

Useful result:

 $\left(\frac{\partial G_{\rm m}}{\partial n}\right)$ is negligibly small for solids and liquids (but not for gases)

$\begin{array}{rcl} \mathbf{CaCO_3(s)} & \rightarrow & \mathbf{CaO(s)} & + & \mathbf{CO_2(g)} \\ K = p_{\mathbf{CO_2}} / p^{\mathbf{0}} \end{array}$

Only CO₂? CaCO₃ and CaO are ignored ? *No!* at equilibrium:

$$G_{\rm m}({\rm CaCO}_3, {\rm s}) = G_{\rm m}({\rm CaO}, {\rm s}) + G_{\rm m}({\rm CO}_2, {\rm g})$$

 \approx independent of pressure

 $G^{o}_{m}(\text{CaCO}_{3}, \mathbf{s}) = G^{o}_{m}(\text{CaO}, \mathbf{s}) + G^{o}_{m}(\text{CO}_{2}, \mathbf{g}) + RT \ln(p_{\text{CO}2}/p^{o})$ $\{G^{o}_{m}(\text{CaCO}_{3}, \mathbf{s}) - G^{o}_{m}(\text{CaO}, \mathbf{s}) - G^{o}_{m}(\text{CO}_{2}, \mathbf{g})\}/RT = \ln(p_{\text{CO}2}/p^{o})$ $-\Delta G_{R}^{o}/RT = \ln(p_{\text{CO}2}/p^{o})$

 $K = \exp(-\Delta G_{\rm R}^{\rm o}/RT) = (p_{\rm CO2}/p^{\rm o})$

 \Rightarrow CaCO₃(s) and CaO(s) are included in the standard ΔG_{R^0} value

Heterogenous Equilibrium

Example

Solid ammonium hydrogen sulfide is placed in an evacuated flask at 25 °C. What is the total gas pressure* at equilibrium?

Data: K = 0.108 at 25 °C

NH ₄ HS(s)	\rightarrow	NH ₃ (g)	+	$H_2S(g)$
initial pressure:		0		0
equilibrium pressure:		$p_{ m NH3}$		$p_{ m H2S}$

total equilibrium pressure $p = p_{\rm NH3} + p_{\rm H2S}$ from stoichiometry $p_{\rm NH3} = p_{\rm H2S} = p/2$

$$K_{\rm p} = (p_{\rm NH3}/p^{\rm o}) \ (p_{\rm H2S}/p^{\rm o}) = (p/2p^{\rm o}) \ (p/2p^{\rm o}) = 0.108$$

Solve for $p = (4 \times 0.108)^{1/2} = 0.657$ bar

*Why might it be important to know the decomposition pressure of NH₄HS?

Section 6.12 Equilibrium Constants in Terms of Molarities or Mole Fractions

Equilibrium Constants K_p for Ideal-Gas Reactions

 $a \mathbf{A}(\mathbf{g}) + b \mathbf{B}(\mathbf{g}) + \dots \rightarrow c \mathbf{C}(\mathbf{g}) + d \mathbf{D}(\mathbf{g}) + \dots$ $v_{\mathbf{A}} = -a \qquad v_{\mathbf{B}} = -b \qquad \qquad v_{\mathbf{C}} = +c \qquad v_{\mathbf{D}} = +d$

$$K = \frac{(p_{\rm C} / p^{\rm o})^{c} (p_{\rm D} / p^{\rm o})^{d} \cdots}{(p_{\rm A} / p^{\rm o})^{a} (p_{\rm B} / p^{\rm o})^{b} \cdots} = \left(\frac{p_{\rm A}}{p^{\rm o}}\right)^{v{\rm A}} \left(\frac{p_{\rm B}}{p^{\rm o}}\right)^{v{\rm B}} \left(\frac{p_{\rm C}}{p^{\rm o}}\right)^{v{\rm C}} \left(\frac{p_{\rm D}}{p^{\rm o}}\right)^{v{\rm D}} \cdots$$

using equilibrium partial pressures $p_{\rm A}$, $p_{\rm B}$, $p_{\rm C}$, $p_{\rm D}$, ...

The terminology K_p (= K) is often used for equilibrium constants defined this way.

Equilibrium Constants K_c for Ideal-Gas Reactions

$a \mathbf{A}(\mathbf{g}) + b \mathbf{B}(\mathbf{g}) + \dots \rightarrow c \mathbf{C}(\mathbf{g}) + d \mathbf{D}(\mathbf{g}) + \dots$

Chemists frequently use equilibrium constants in terms of molarity concentrations, c_i .

$$\begin{split} K_{p} &= \left(\frac{p_{A}}{p^{\circ}}\right)^{\nu A} \left(\frac{p_{B}}{p^{\circ}}\right)^{\nu B} \left(\frac{p_{C}}{p^{\circ}}\right)^{\nu C} \left(\frac{p_{D}}{p^{\circ}}\right)^{\nu D} \cdots \\ &= \left(\frac{n_{A}RT}{p^{\circ}V}\right)^{\nu A} \left(\frac{n_{B}RT}{p^{\circ}V}\right)^{\nu B} \left(\frac{n_{C}RT}{p^{\circ}V}\right)^{\nu C} \left(\frac{n_{D}RT}{p^{\circ}V}\right)^{\nu D} \cdots \\ &= \left(\frac{n_{A}}{Vc^{\circ}} \frac{c^{\circ}RT}{p^{\circ}}\right)^{\nu A} \left(\frac{n_{B}}{Vc^{\circ}} \frac{c^{\circ}RT}{p^{\circ}}\right)^{\nu B} \left(\frac{n_{C}}{Vc^{\circ}} \frac{c^{\circ}RT}{p^{\circ}}\right)^{\nu C} \left(\frac{n_{D}}{Vc^{\circ}} \frac{c^{\circ}RT}{p^{\circ}}\right)^{\nu D} \cdots \\ &= \left(\frac{c_{A}}{c^{\circ}}\right)^{\nu A} \left(\frac{c_{B}}{c^{\circ}}\right)^{\nu B} \left(\frac{c_{C}}{c^{\circ}}\right)^{\nu C} \left(\frac{c_{D}}{c^{\circ}}\right)^{\nu D} \cdots \left(\frac{c^{\circ}RT}{p^{\circ}}\right)^{\nu A + \nu B + \nu C + \nu D + \cdots} \\ &= K_{c} \left(\frac{c^{\circ}RT}{p^{\circ}}\right)^{\nu A + \nu B + \nu C + \nu D + \cdots} \end{split}$$

Equilibrium Constants K_c for Ideal-Gas Reactions

 $a \mathbf{A}(\mathbf{g}) + b \mathbf{B}(\mathbf{g}) + \dots \rightarrow c \mathbf{C}(\mathbf{g}) + d \mathbf{D}(\mathbf{g}) + \dots$

$$K_p = K_c \left(\frac{c^{\circ}RT}{p^{\circ}}\right)^{\Delta n_g}$$

$$K_c = K_p \left(\frac{c^{\circ}RT}{p^{\circ}}\right)^{-\Delta n_g}$$

_1

$$\Delta n_g = v_A + v_B + v_C + v_D + \cdots$$

<u>Example</u> $2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$

$$K_c = K_p \left(\frac{c^{\circ}RT}{p^{\circ}}\right)^{+1} = K_p \frac{c^{\circ}RT}{p^{\circ}} \qquad \Delta n_g =$$

Equilibrium Constants K_x for Ideal-Gas Reactions

$a \mathbf{A}(\mathbf{g}) + b \mathbf{B}(\mathbf{g}) + \dots \rightarrow c \mathbf{C}(\mathbf{g}) + d \mathbf{D}(\mathbf{g}) + \dots$

Can also use equilibrium constants K_x in of gas mole fractions x_i .

$$\begin{split} K_{p} &= \left(\frac{p_{A}}{p^{\circ}}\right)^{\nu A} \left(\frac{p_{B}}{p^{\circ}}\right)^{\nu B} \left(\frac{p_{C}}{p^{\circ}}\right)^{\nu C} \left(\frac{p_{D}}{p^{\circ}}\right)^{\nu D} \cdots \\ &= \left(\frac{p_{A}}{p} \frac{p}{p^{\circ}}\right)^{\nu A} \left(\frac{p_{B}}{p^{\circ}} \frac{p}{p^{\circ}}\right)^{\nu B} \left(\frac{p_{C}}{p^{\circ}} \frac{p}{p^{\circ}}\right)^{\nu C} \left(\frac{p_{D}}{p^{\circ}} \frac{p}{p^{\circ}}\right)^{\nu D} \cdots \\ &= \left(\frac{p_{A}}{p}\right)^{\nu A} \left(\frac{p_{B}}{p^{\circ}}\right)^{\nu B} \left(\frac{p_{C}}{p^{\circ}}\right)^{\nu C} \left(\frac{p_{D}}{p^{\circ}}\right)^{\nu D} \cdots \left(\frac{p}{p^{\circ}}\right)^{\nu A + \nu B + \nu C + \nu D + \cdots} \\ &= x_{A}^{\nu A} x_{B}^{\nu B} x_{C}^{\nu C} x_{D}^{\nu D} \cdots \left(\frac{p}{p^{\circ}}\right)^{\nu A + \nu B + \nu C + \nu D + \cdots} \\ &= K_{x} \left(\frac{p}{p^{\circ}}\right)^{\nu A + \nu B + \nu C + \nu D + \cdots} \end{split}$$

Section 6.13Temperature and Pressure
Dependence of the Extent of ReactionSee Sections 6.8 to 6.11

Section 6.14 Ammonia Synthesis – a Case Study

Optional reading assignment.

Section 6.15 U, H, C_V, C_p in Terms of Measurable Quantities

Done.

Section 6.16 ΔG for Unfolding RNA Molecules

Optional reading assignment.

Section 6.17 The Role of <u>Mixing</u> in Chemical Reaction Equilibrium

$$2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$$

Step I. Chemical Reaction (Only)

<u>React</u> 1 mol pure N₂ and 2 mol pure O₂ to form: $2(1 - \varepsilon)$ mol pure NO₂ + ε mol pure N₂O₄

$$\Delta G_{\text{I(React)}} = 2(1 - \varepsilon) \Delta G_{\text{fm}}^{\text{o}}(\text{NO}_2, \text{g}) + \varepsilon \Delta G_{\text{fm}}^{\text{o}}(\text{N}_2\text{O}_4, \text{g})$$
$$= 2\Delta G_{\text{fm}}^{\text{o}}(\text{NO}_2, \text{g}) + \varepsilon \left[-2\Delta G_{\text{fm}}^{\text{o}}(\text{NO}_2, \text{g}) + \Delta G_{\text{fm}}^{\text{o}}(\text{N}_2\text{O}_4, \text{g})\right]$$

 ε = extent of reaction

 $0 \leq \varepsilon \leq 1$

$$\Delta G_{\rm I(React)} = 2\Delta G_{\rm fm}^{\rm o}(\rm NO_2, g) + \varepsilon \Delta G_{\rm R}^{\rm o}$$
$$\Delta G_{\rm I(React)} = 2\Delta G_{\rm fm}^{\rm o}(\rm NO_2, g) + \varepsilon \Delta G_{\rm R}^{\rm o}$$

 $2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$ **Step II. Mixing (Only) <u>Mix</u>**: $2(1 - \varepsilon)$ mol pure NO₂ + ε mol pure N₂O₄ From Section 6.6: $\Delta G_{\text{II(mix)}} = n_{\text{NO2}} RT \ln x_{\text{NO2}} + n_{\text{N2O4}} RT \ln x_{\text{N2O4}}$ The mole fractions are $x_{\text{NO2}} = \frac{n_{\text{NO2}}}{n_{\text{NO2}} + n_{\text{N2O4}}} = \frac{2(1-\varepsilon)}{2(1-\varepsilon)+\varepsilon} = \frac{2(1-\varepsilon)}{2-\varepsilon}$ $x_{\rm N2O4} = \frac{n_{\rm N2O4}}{n_{\rm NO2} + n_{\rm N2O4}} = \frac{\varepsilon}{2(1-\varepsilon)+\varepsilon} = \frac{\varepsilon}{2-\varepsilon}$

$$\Delta G_{\text{II(mix)}} = 2(1-\varepsilon)RT \ln\left(\frac{2-2\varepsilon}{2-\varepsilon}\right) + \varepsilon RT \ln\left(\frac{\varepsilon}{2-\varepsilon}\right)$$

 $2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$

Overall: React and Mix $\Delta G = \Delta G_{I(react)} + \Delta G_{II(mix)}$

$2 NO_{2}(g)$ N₂U Summary React 1 mol pure N_2 and 2 mol pure O_2 to form $2(1 - \varepsilon) \mod NO_2 \mod \omega$ with $\varepsilon \mod N_2O_4$ $\Delta G = \Delta G_{\text{I(react)}} + \Delta G_{\text{II(mix)}}$ $= 2\Delta G_{\text{fm}}^{\text{o}}(\text{NO}_2) + \varepsilon \Delta G_{\text{R}}^{\text{o}}$ + $2(1-\varepsilon)RT\ln\left(\frac{2-2\varepsilon}{2-\varepsilon}\right)$ + $\varepsilon RT\ln\left(\frac{\varepsilon}{2-\varepsilon}\right)$

Exercise Show that the minimum in ΔG as a function of ε gives the same equilibrium composition calculated using

$$K = \frac{p_{\rm N2O4} / p^{\rm o}}{(p_{\rm NO2} / p^{\rm o})^2}$$

Practical Considerations

Thermodynamic equilibrium constants such as

$$K_{p} = \frac{p_{\text{N2O4}} / p^{\circ}}{(p_{\text{NO2}} / p^{\circ})^{2}} \qquad K_{c} = \frac{c_{\text{N2O4}} / c^{\circ}}{(c_{\text{NO2}} / c^{\circ})^{2}}$$

for the reaction $2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$ are dimensionless pure numbers (no units), by definition.

In practice, for convenience, $p^{o} = 1$ bar and $c^{o} = 1 \text{ mol } L^{-1}$ are frequently omitted, to give

$$K_{p} = \frac{p_{N204}}{(p_{N02})^{2}}$$
 $K_{c} = \frac{c_{N204}}{(c_{N02})^{2}}$

No numerical errors are made, if p^{o} and c^{o} are unity.

!!! Warning !!!

Equilibrium constant expressions such as

$$K_p = \frac{p_{\rm N2O4} / p^{\rm o}}{(p_{\rm NO2} / p^{\rm o})^2}$$

developed in this Chapter for ideal gases are accurate for real gases only in the limit $p \rightarrow 0$.

For **real gases** (the subject of the next Chapter), corrections for nonideal behavior are made using "**fugacity coefficients**", such as γ_{N2O4} and γ_{NO2} .

$$K_{p} = \frac{\gamma_{N204} p_{N204} / p^{\circ}}{(\gamma_{N02} p_{N02} / p^{\circ})^{2}}$$