Chapter 6. Chemical Equilibrium

Summary

the First and Second Laws are combined to predict conditions
for spontaneous processes, including chemical reactions

the Helmholtz energy A = U — TS provides AA;,, < 0 for
spontaneous processes at constant temperature and volume

the Gibbs energy G = U + pV — TS provides AGy, < 0 for
spontaneous processes at constant temperature and pressure

the Gibbs energy Is used to derive expressions for the equilibrium
constant of chemical reactions



Motivation for Chapter 6

Could do most of thermodynamics withp, V, T, g, w, U, S..
Ok. But sometimes the calculations are very inconvenient!

Example: Prove that freezing liquid water is spontaneous at —10 °C.

Take the 3-step reversible path (Why? So AS can be calculated.):

H,0O(l) ——>  H,00) 0°C
A

| | heat cool 11
\ 4

H,0O(l) H,O(s) ~10°C




Spontaneous ?

s

m,freeze — m,fusion

H,O() H,0(s) -10°C

AH(-10°C) = AH, + AH,, + AH,;,
= Cpm(l)(273—263)K — AHgs n(273K) + Cpm(s)(263—273)K
= — 5618 J mol-1

AS(-10°C) = AS, + AS,, + AS,;, (all steps reversible)

:j273KCpm(|) — —AH¢ o s IZGBKCpm(S) o
263K T 273 K 23K T

_ “1 mal-1
= — 19.20 JK* mol QT = 21.36 JK-1 % AS |

e
AS + AS = -19.20J) + 0618J = +215JK™
263 K

system surroundings

AS > 0 [isolated (system + surroundings)] .. Spontaneous




What to do?

Legendre Transformations to the rescue !

Given the exact differential dY,

the function Y,(X,,X,) can be “transformed” into
the new functions (maybe more convenient?):

Y =Y = Gk
Y = Y, = GX,
Yiv = Y, = CX; = CX,



Legendre Transformations for Thermodynamics

dU = dg + dw (First Law)
For a reversible path (dg = TdS and dw = —pdV):
dUu = TdS — pdV

_egendre transforms of U(S,V) are:
U - TS (A = Helmholtz function)
U + pV (H = enthalpy)

U - TS + pV (G = Gibbs function)



Section 6.1 Predicting Spontaneous Processes

a) Using the Internal Energy (dUg, < 0)

AUg,, < 0 spontaneous process | Where do these rules

AU, = reversible process come from?
First Law: dU = dq + dw
For a reversible path: dU = TdS — pdV (1)

(dg = TdS and dw = —pdV)

For a spontaneous path: dU = dq — p.dV (1)

TdsS - dq - (pext - p)dV
same as: dg = TdS — (P — P)AV

o
1

Eqg. | minus Eq. II:



Irreversible Expansions P — P > 0 dV >0

Irreversible Compressions P — Py < 0 dV <0
notice: (p — Pe)dV = 0

always >0

from previous slide: dq

TdS - (pext _ p)dV

Important Result: [dq < TdS

Why important? First Law: dU = dqg+ dw =dq — p,dV
(assuming only p-V work)

using dg < TdS gives dU < TdS - p,.dV

at constant S, V this means dUsy < 0
(dS =0, dV = 0)

dUgy < 0 spontaneous
dUgy

0 reversible




AUg,, < 01sa useful result, but experimentally inconvenient.
How do you keep the entropy constant? Try the enthalpy?

b) Predicting Spontaneous Processes using the Enthalpy

H=U-+pV AHg, < 0 spontaneous process
AHg = 0 reversible process
dH = d(U + pV)
du + d(pV)

dU + pdV + Vdp
dg — PedV + pdV + Vdp

At constant pressure (Pg, =
dH, = dg - pequ+D\SQ/+V5R‘dq < TS

At constant S,p: dHg, < 0 Still inconvenient.
| How is S held constant?




c) Predicting Spontaneity using the Helmholtz Energy A

A U-TS

My < 0
AAry =0

spontaneous process

reversible process

The Helmholtz energy, like the enthalpy, 1s an “auxiliary”
thermodynamic state function. Useful property:

dA = d(U — TS)
dU — d(TS)
dU — TdS — SdT

dqg + dw — TdS — SdT

dg — pedV — TdS — SdT
(using dg — TdS < 0)

dA < —pdV — SdT

At constant temperature and volume (can be arranged):

dA;y

<

0

constant T,V conditions are
experimentally convenient




A=U-TS issometimes called the Helmholtz Free Energy

dA = d(U — TS)

Use dqg

— dw;

IN

Why? From the previous slide:

= dU — d(T9)
dUu — TdS — SdT
dg + dw — TdS — SdT

TdS to get

dw;

~dA;

IA

In an isothermal process, the
maximum work free to be done

on the surroundings equals the
decrease in the Helmholtz Energy.



d) Predicting Spontaneity using the Gibbs Energy G

G=U=TS+pV AG;,< 0 spontaneous process

H-TS AG:, = 0 reversible process

The Gibbs Energy 1s another “auxiliary” thermodynamic
state function. Useful property:

dG = d(U — TS + pV)

dUu — d(TS) + d(pV)

dU — TdS — SdT + pdV + Vdp

dq + dw — TdS — SAT + pdV + Vdp

At fixed T,p, assuming only p-V work:

dGr,= dg — poydV - TdS — SUT+ poy_+ Vdp_= dg — TdS

constant T,p conditions are
dGT,p <0 experimentally convenient




G=U-TS + pV issometimes called the Gibbs Free Energy
Why? From the previous slide:

dlU — TS + pV)

dU — d(TS) + d(pV)

dU — TdS — SAT + pdV + Vdp

dq + dw — TdS — SdT + pdV + Vdp

dg — pdV + dw' — TdS — SdT + pdV + Vdp

w’ is work other than p-V work (such as electrical work)
Atfixed T,p (dT=0 and p.,= p):

dG;,= dg + dw’ — TdS
dG;, < dw’ (using dg < TdS)

—dw’ < —dGq,

dG

, At fixed T,p the maximum non-p-V work
- W' s _AGT,p free to be done on the surroundings equals
the decrease in the Gibbs Energy.




Summary of Criteria Used for the Prediction
of Reversible and Spontaneous Processes

AUg, < O
AHg, < O = 0 reversible
AAry £ 0 < 0 spontaneous
AG;, < O

U is the Internal Energy

H=U + pV Isthe Enthalpy
A=U-TS isthe Helmholtz Energy
G=U-TS +pV isthe Gibbs Energy



Section 6.2 and 6.3 Differential Forms of U, H, Aand G
(the mathematical formulation of thermodynamics)

a) The Internal Energy
The First Law AU =q + w

In differential form ( infinitesimally small changes in U ):

dU = dg + dw

The internal energy is a state function. Any path, reversible or
Ireversible, can be used to calculate dU.

For convenience, take a reversible path ( dg = TdS and dw = —pdV ):

dU = TdS — pdV

Applications?



Differentials of State Functions (from Chapter 2)

Recall that the differential equation
df = g(x, y)dx+h(x, y)dy
for state function f(x,y) of variables x an y is equivalent to
df = (afj dx + [afj dy
OX ), oy ).
Comparing the two equations for df shows

(& [
g(X1 y) _(6)())/ h(X, y) _(aij

Reversing the order of differentiation gives

RGNS
y\ox), | oy ). é?x@yXy OX ),
(0x first then oY) (0y first then ox)




Differential of the Internal Energy

The differential of U(T,V)
dU = TdS - pdV
IS equivalent to

dU = (5”) ds + (5“) dv
os ), oV ).

which shows

((’auj = T and (auj — p
a5 ), N ).

( new ways of understanding the temperature and pressure )

Reversing the order of second differentiation gives

=)= () [ ] - (3]

(0S first then oV) (0V first then 9S)




Differential of the Enthalpy
The differential of H(T,p)

dH = d(U + pV) = dU + d(pV) = dU + pdV + Vdp

dH = TdS — pd+ paV + Vdp

dH = TdS + Vdp

IS equivalent to

dH = (aHj ds + (GHJ dp
55 ). on ),

which shows

(aHj =T and o =V
oS ), op ),

Reversing the order of second differentiation gives

2] (@) -[a®)]- @)




Differential of the Helmholtz Energy

The differential of A(T,V)

dA = d(U —TS) = dU — d(TS) = dU — TdS — SdT

dA = Td$ — pdv — TdS — SdT

dA = —-SdT - pdV
iS equivalent to
+ (j dVv

dA = (aAj aT
oT ),
(%j = —S and (&A‘
oT ), oV

which shows

|-

Reversing the order of second differentiation gives

{af/(gﬁjl ] _(g\s/j ] {aﬁT(S\Af\”

_ _(5p
ot

)

conveniently

in terms of
p, V, T




Differential of the Gibbs Energy
The differential of G(T,p)

dG = d(U - TS + pV) = dU — d(TS) + d(pV)

dG = 'hiﬁ\—hdy —NQ— SAT + M+ Vdp

dG = —sdT + Vdp

IS equivalent to

dG = (5(3) dT + (86) dp
oT ), op ).

which shows
oG oG
(81') = = and (apj =V conveniently
P T in terms of
Reversing the order of second differentiation gives p,V, T

S -5 A5 - (F)



Section 6.2 Summary
dUu = TdS - pdV
dA = —SdT - pdVv

dH
dG

TdS + Vdp
—SdT + Vdp

From the first derivatives of U, H, A, and G:

memorize ?

(an < (aU) _ () _y
oS )y oV ) op )
(P) -5 (2)- s () _y
aT )y oV ); op ).

From the second derivatives of U, H, A, and G (Maxwell relations) :

- &) ) (5

—P

|

s
oV

S

v
oT ),

1

s
ap

)

o
ol

)




Example: Derive an expression for (0U/0V); to calculate changes
In the internal energy with volume at constant temperature.

Suggestion: start with the differential equation for dU

dU = TdS — pdV then divide by dV at constant temperature.

1
(WJ _ T(asj oY But what is (8S/6V); ?
oV ). oV ). V ).
(asj _ (apJ Use the Maxwell relation for A.
oV ) oT ),

S In terms of quantities conveniently

measured in terms of p, V, and T.

(auj ) T(épj . Significance: This result gives (6U/oV);
T aT Vv




Exercises:
a) Show

o= (3), - (8
or J, or ),
b) Use the Maxwell relation for dG to show

oH = _T(é\/j +V
op ), oT J;

c) The temperature of a substance increases when it is
compressed adiabatically. For a reversible adiabatic
compression (constant S), use a Maxwell relation to show

7). I
op ). Cp ol )



Example: Derive an expression for the Gibbs energy of an ideal gas
as a function of pressure. (Why do this? A useful result
for understanding equilibrium of reacting gases).

[ 0G But what is

G(T,p) = G°(T,p° — | d

(T.p) = G°( p>+pjo(apl p (5G/op). 7
Independent variables T and p suggests looking at

dG = -SdT + Vdp  which shows [an =V = RT
op ); p

Find
G(T,p) = G°(T,p°) + j Vdp = GoT, p°) + nRTj dp

G(T,p) = G°(T, p°) +nRTIn(p/p )

G,, = G/n is the Gibbs
energy per mole of gas

G,(T,p) = G, (T,p°) +RTIn(p/ p°)




Example: Derive an expression for the temperature dependence of
G/T. (Why do this? The logarithm of the equilibrium
constant for a chemical reaction is proportional to G/T.)

om) - 3(®) . o
ot ), T\aT ),

Independent variables T and p suggests looking at
dG = -5dT + Vdp which shows (9G/oT), = -S.

(5(1”)) But what is
o) (0G/aT), 2

Find
(a«smj S N WY T [ A R L
or ), T T T T T

T Tz (G=H-TS,s0TS+G=H)

(G(G/T)j __H




Sections 6.4 and 6.5 Gibbs Energy of Gas Mixtures

® systems of fixed composition have been considered so far

® chemical reactions consume reactants and form products,
causing changes in compositions

® no problem — just include composition variables
® many chemical reactions occur at fixed temperature and pressure

® AGr, < Oisused to predict equilibrium under these conditions,



Pure Substances or Systems of Fixed Composition

Gibbs energy is a function of temperature and pressure
dG = (an dT + (an dp
or J, op ).

Mixtures of VVariable Composition

Gibbs energy is a function T, p and the number of moles
Ny, Ny, Ng, ... of each substance in the mixture

4G = (andT P ldp+ | 2 Jdn, + | 22 |dn, + | 2 |dn, + -
oT 8p anl \on, an3 -

p,nl,nz,n3,... T,nl,nz,n3, Tipnn !n 3 Taplnlan?,a



Chemical Potential g of Substance i ina Mixture

definedas u = (an = G,, Gibbs energy per |
mole of substance I

gives dG

|l
®))
S))
23
N
o
—I

+ (?ldp+yldnl+ M, dn, + g, dn, +---
P

P,Ny,N,N,,... Ny,N,Ng,...

Application of Chemical Potentials

The Gibbs energy of a mixture of different substances is

G =Ny + Ny, = Nz + ..



Significance of Chemical Potentials (Huge !)

e positive electric charge flows to regions of lower electric potential
® “north” magnetic poles are drawn to “south” magnetic poles

e objects roll downhill to reach lower gravitational potential energy

Useful analogy:

chemical substances:

expand, compress, warm, cool, vaporize, condense,
freeze, melt, sublime, diffuse, mix, crystallize, react, ...

to reach lower chemical potential and chemical equilibrium



Example. A system is divided into region I and region II.
dn; moles of substance i are transferred from region | to II.

region | dn; moles region 11

n transiferre(i’ 1!

dGrp, = g'dny' + g''dn' = g (=dn;) + 24" (+dnj)
dGr, = (1" — ') dn,

' < dn, > 0 transfer I — 11 dG;, < 0
' > dn, < 0 transfer | «~ 11 dG;, < 0
u'' = u! dn, > 0 transfer | <> 1l dG;, = 0

dn, < 0 (reversible) (equilibrium)




Chemical Equilibrium

The chemical potential (Gibbs energy per mole) of each substance
IS constant throughout the system.

Thermal Equilibrium
The temperature iIs constant throughout the system.

Mechanical Equilibrium
The pressure is constant throughout the system.



Section 6.6 Gibbs Energy of Mixing

D, (left) = p., (right) Semipermeable Barrier

H, (but not other gases)
can pass through palladium
metal films. (Why ?)

Ha+Ar At equilibrium, the pressure
of pure H, and the partial

Pd membrane /' pressure of H, in the mixture
are equal.

Important Conclusion: the chemical potential (Gibbs energy per mole)
of H,, or any ideal gas, mixed or pure, is

AT, p) = Gn(T,p) = G,°T,p° + RTIn(p;/p°)




Gibbs Energy of Mixing of Ideal Gases

Example: Mix ny, moles pure H, and n,. moles pure Ar
at constant temperature and pressure.

n,, mol n, Mol ng, mol H, + n, mol Ar
pure H, pure Ar —> mixed at T, p
T,p T,p total pressure p = py, + Par

AGpix = Gf — G
= N[ Gr®(T,p°) + RTIN(Py, /p0)] + Na[Gpa°(T,p°) + RTIN(p A, /p°)]
= Np[Gr®(T,p°) + RTIN(p /p)] + na[Ga°(T,p°) + RTIN(p/p°)]
= n,RT IN(py,/p) + Ny RT IN(pA/p)

AG.., = n,RTInx,, + ny,RT Inx, | (constantT, p)

mix




Gibbs Energy of Mixing

A Gmixing/ (‘J mol ™" )

—260

—500

— 00

—1000

—1250

—1500

—1750

AG,;, = N\RT Inx, + ngRT Inxg

for one mole total gas
N, + Nng =1 mol

at fixed pressure p
and 298 K

02 04 06 0.8
Mole fraction x,

]

AGmix < 0

mix
n, moles of pure gas A
+

Ng Moles pure gas B




Entropy of Mixing [AS,,, = —nsR Inx, — ngR Inxg

. mix
> n, moles of pure gas A
e © +
'g 4- ng moles pure gas B
T at fixed pressure p
"4 3 —
3 -

2 one mole total gas:
» 2 ny + ng = 1 mol
< il

1- 0G
! 1 = _5
4 oT ),

02 04 06 08 1 0BGy | _ _ Ag
Mole fraction x4 )




Section 6.7 Standard Gibbs Energy Change AGR°
for Chemical Reactions

Example: Calculate AGR° for the following reaction

at 298.15 K (25 °C).
stoichiometric
2NO,(g) > N,0O,(9) coefficients:
Vnoz = —2
Vnzos = 1

AGL(products) — AG°(reactants)

= AGme(NZO41 g) - ZAGme(NOZ1 g)
= 99.8kimol-t - (2) (51.3kiJmol-1)  (Table 4.1)

=—-2.80 klmol-1

AGg?

Important: AGR° Is the change in
Gibbs energy for the conversion of

o 0 (;
AGg = Zvi AGy, (1) pure reactants to pure products
! at standard pressure (p° = 1 bar)

for any reaction:




Section 6.8 Equilibrium Constant K for Chemical
Reactions in Mixtures of Ideal Gases

Actual reactions occur for e mixed gases (not pure)
e usually at non-standard pressures

Example: 2 NO,(g) » N,O,(q)

Mystery pN2042 _ constant at_ equilibrium and
(Prnoz) a given temperature

® why is this ratio of partial pressures constant
for any initial conditions, from pure NO, to pure N,O,?

® why is the product pressure in the numerator?
® why is the reactant pressure in the denominator?
® why Is the reactant pressure squared?



Section 6.8 Equilibrium Constant K for the Reaction
of Mixtures of Ideal Gases

Actual reactions occur for e mixed (not pure) gases
e usually at non-standard pressures

Example: Calculate AG; for the following reaction at 298.15 K
for the mixed gases at partial pressures pyg, and Poos-

2NO,(g) > N,0O,(9)

AGr = AGs(products) — AG;(reactants)
= AG;,(N,Oy4, 09) — 2AG,(NO,, g)
= AG;,°(N,Oy4, 9) + RT In(prp04/P°) — 2[AG4,°(NO,, g) + RT In(pyo,/p°)]

= AG;,°(N,O,, 9) = 2AG4,°(NO,, g) + RT In(Pno04/P°) — 2RT In(pyo,/p°)

AGg = AGR° + RTIn[ (Pn20a/PO) (Pno2/P?) 2]




Non-Standard AGg for the reaction:

— 2NO,(g) = N,0,(g)

no “°” superscript

AG, = AG? + RTIn{ Przoa ! P 2}
(Prnoz/ P7)

Simpler notation

AG, = AG; + RTInQ

using the reaction quotient Q

_ Pnoos!/ P
(Pnoz! P°)°




AG, = AG; + RTInQ

Case I: AGgr =0 Equilibrium in the Reacting Gas Mixture

2NO(9) > N,O4(9)

0 = AG; + RTInQ

equil

InQequ“ — _AGS / RT

equilibriumconstant K = Q. :£ Przos ! P ]
equil

(pNOZ / p0)2

K — e—AGROIRT




AG, = AG; + RTInQ

Case Il: AGRr <0 Forward Reaction in the Gas Mixture

2NOy(g) &> N,O,(0)
AG, = AG; + RTInQ < O

Q < K

Case Ill: AGi >0 Reverse Reaction in the Gas Mixture

2NO,(g) < N,0O,(9)

AG, = AG; + RTInQ > 0

Q > K




Spontaneous Chemical Reactions

|
I
AGL<0 1 AGL>0
I
T Q<K |  Q>K
> I
(@)
a |
- I
LL N
" equilibrium
O
|
)
too | too
much | much
reactant : product
0 . 1
Extent of Reaction —
all all
reactants product



Example NO,(g) and N,O,(g) are in a reaction vessel at 298 K
and partial pressures 0.350 bar and 0.650 bar, respectively.

Is this system at equilibrium?

Data: AGO for the reaction 2 NO,(g) —» N,O,(0)
Is —2.80 kJ mol-* at 298 K.

K — @ AG°/RT _ o-(-2800)/(8314)(298) _ 41130 _ 3 1

Q _ pN204/p0 > — 06502 — 531
(Pnoz/ P) (0.350)

Q > K The gas mixture is not at equilibrium.
Too little NO, reactant. Too much N,O, product.

The reverse reaction 2 NO,(g) « N,O,(g) Is spontaneous.



Equilibrium Constants K for Ideal-Gas Reactions

aA(@) + bB(g) +... —> c¢C(g) + dD(g) +...

Vo= —a Vg = —b Ve = +C Vp = +d

0 VA vB vC vD
< = (/P (pol P o [pj (p) (pj (p]
(Pa!P)*(pg/pP°)° -+ p° p° p° p°

using equilibrium partial pressures p,, Pg, Pcr Pps ---

K = exp(-AG, /RT)

AG® = cAG:°(C, g) + dAG; °(D, g) ... — aAG;,°(C, g) — bAG;.°(D, g) ...

AGy = > Vv, AGP (i)




Section 6.9 Calculating Equilibrium Partial Pressures
for Mixtures of Reacting Gases

Example NO,(g) and N,O,(g) are in a reaction vessel at 298 K and
partial pressures 0.350 bar and 0.650 bar, respectively.

Calculate the gas partial pressures at equilibrium.

Data: at 298 K the equilibrium constant for the reaction
2NO,(g) > N,O,(g) i1s K=3.01

Notice that changes in the number of moles NO, and N,O,
are linked by stoichiometry: Anyg, = —2ANy,04

Also, in a reaction vessel at constant volume, the partial pressure
of each gas is proportional to the number of moles of gas.

RT
Pp= M = constant x n.



Example (cont.) Let x be the change in the N,O, pressure.

2 NOy(9g) —>  N,O4(9)

initial pressures: Pno2(init) Pn204(init)
equilibrium pressures:  Pyoainity — 2X Prn204ini T X
pN204/ po _ (065O+X) — 301

 (Proa/ P°)? (0.350-2x)°

Solve for x = —0.0486. At equilibrium:
Pnoz = Prozgniy — 2% = 0.350 — 2(-0.0486) = 0.447 bar
Pn2os = Prooagniy T X = 0.650 + (-0.0486) = 0.601 bar

check: 0.601/(0.447)2 = 3.008




©© N o O B~ W D F

Equilibrium Calculations

A systematic approach frequently works. Suggestions:

Write the balanced chemical reaction.

Write the equilibrium constant expression.

List the available information.

Assign a variable (e.g., x ) to one of the unknown concentrations
Use stoichiometry to relate x to the other unknown concentrations.
Use the equilibrium constant expression to calculate x.

Calculate the reactant and product concentrations.

Check by using the concentrations to calculate K.



Section 6.10 Temperature Dependence of

Equilibrium Constants

Helpful It f Section 6.3 (a(G/T)j "
elpful result from Section 6.3: = T2
¥ o), T?
gives oG /T)) (8(Gi/T)j _ _H (_
oT oT ) T?
(G(AG/T)j _ AH
oT . T®
Why helpful? For equilibrium constants AGr°® = —RTInK and
AGg _ —RInK

T



Temperature Dependence of Equilibrium Constants

O(AGRIT)| _ (-RINK) = _AHZR
oT ) T
Switched from a partial to
an ordinary derivative. Why?
. dinK AH —
gives T = T2 Significance?

(notice logarithmic relation)

exothermic reactions (AHR° < 0) are less favorable as T increases
endothermic reactions (AHg° > 0) are more favorable as T increases

given K values at a single temperature (e.g., 298.15 K), AH values
from thermochemistry can be used to predict K at other temperatures

chemical equilibrium constants measured at different temperatures
can be used to calculate AHR° without thermochemistry



InK

InK Plotted Against the Temperature
(curved)

dinK  AHg -

slope = =
P dT RT? -

temperature T/K



Better:

to transform

to the van’t Hoff equation = =

For a Linear Plot, Use

and di = _d_T
T T?

dinK  AHQ

dT RT ?
din K AH

— |~




van’t Hoff Plot. Almost Linear Slope —AH/R

van't Hoff plot
- InK against 1/T

slope = -AH°/R

In K

reciprocal temperature 1/ T



van’t Hoff Calculations: InK as a Function of Temperature

dinK = _ AR (ij
R T
INK (T,) 1/T, 0
[dink = - AHRd(lj
InK (T,) 1T, R T

If AHZ° Is constant from T, to T, :
(a good approximation for small temperature intervals)

NK(T,) — nK(T,) = -20=f1 1
R \T, T,




Section 6.11 Chemical Reactions Involving Gases
and Pure Solids or Pure Liquids

“Heterogenous” (Multiphase) Equilibria

Equilibrium-constant expressions contain the pressures
of reacting gases, but not pressure terms for solids or liquids.

Example: Decomposition of solid calcium carbonate.*

CaCO4(s) — CaO(s) + CO,(g)

K = Pcon/P°
Are CaCOs(s) and CaO(s) ignored?

*Why is this a “billion-dollar” reaction?



Effect of Pressure on the Gibbs Energy

From dG = -SdT + Vdp, get
(@] = V (and V/n=V_ per mole)
op ),

At 298 K and 1 bar, the molar volume of a gas is about 25 L,
but typically less than 0.1 L for solids and liguids.

Useful result:

oG, IS negligibly small for solids and liquids
op (but not for gases)
.



CaCO,4(s) — CaO(s) + CO,(g)

K= Pco,/P°
Only CO,? CaCO,;and CaO are ignored ? No!
at equilibrium:

G, (CaCO4,5) = G (CaO,s) + G,(CO, 09)

\ /

~ Independent of pressure

G°,(CaCO,, 5) = G° (CalO,s) + G° (CO,, g)+ RT In(pcp,/P°)

{G°,(CaCO,, 5) — G°(Cal, s) — G°,(CO,, 9)HRT = In(pcoa/P°)
—AGR/RT = In(pco,/p°)

K =exp(—AGRYRT) = (Pcos/P°)

—> CaCO4(s) and CaO(s) are included in
the standard AGg° value



Heterogenous Equilibrium

Example Solid ammonium hydrogen sulfide is placed in an
evacuated flask at 25 °C. What is the total gas
pressure* at equilibrium?

Data: K=0.108 at 25°C

NH,HS(s) —  NHi(g) +  HyS(9)

Initial pressure: 0 0
equilibrium pressure: Prus Pros
total equilibrium pressure P =PnHz T Pras
from stoichiometry Pnbz = Pros = P/2

Ko = (Pnns/P®) (Przs/P®) = (p/2p°) (p/2p°) = 0.108
Solve for p = (4 x 0.108)¥2 = 0.657 bar

*Why might it be important to know the decomposition pressure of NH,HS?




Section 6.12 Equilibrium Constants in Terms of
Molarities or Mole Fractions

Equilibrium Constants K, for Ideal-Gas Reactions

aA(g) + bB(g) +... —> c¢C(g) + dD(g) +...

Vo= —a Vg = —b Ve = +C Vp = +d

0 VA vB vC vD
= (Pl P (Po/ P! [pj (pj (pj [pj
(Pa!P)*(Pg!pP°)° -+ p° p° p° p°

using equilibrium partial pressures p,, Pg, Pcr Pps ---

The terminology K; (=K Is often used for
equilibrium constants defined this way.




Equilibrium Constants K. for Ideal-Gas Reactions

aA(g) + bB(g) +... —> c¢C(g) + dD(g) +...

Chemists frequently use equilibrium constants in terms of molarity concentrations, c;.
VA vB VO —
K, = [pj [pj (pj (pj .
P o . = O
VA VB C o
nART Ng RT nCRT n, RT
Py PV p*V p°V
VA VB o N
N c’RT Ng c°RT Ne c°RT ng ORT
VCO po VCO pO VCO po VCO po
& G
CO CO Co CO pO

ORT VA+vB+vC+VvD+ ---
= K, (C O ]
P




Equilibrium Constants K. for Ideal-Gas Reactions

aA(g) + bB(g) +... —> c¢C(g) + dD(g) +...

0 Ang 0 —Ang
<K, (c FiTj <= K, (c FiT]
p p

AN, = Vo + Vg + Vo + Vp + -+

Example 2NO,(g) — N,O,(9)

0 +1 0
K:KPKCRTJ :KpcRT An, = -1




Equilibrium Constants K, for Ideal-Gas Reactions

aA(g) + bB(g) +...

Can also use equilibrium constants K, in of gas mole fractions x;.

—> c¢C(g) + dD(g) +...

(¥ )
p j (ps

_ (pA L]
T

S 0
PP
= 0
( P p
= Xp Xg Xoo Xp -

-

P

pO

p° p°

Pe

0]

p
P

0]

P

jVA+vB+vC+vD+

J{

Pe

vC
) (3
po

Pc

-
)

Po P

p°p°) (p°p°
vC vD VA+vB+vC+vD+ ---
j paj [pj
p’ p’
VA+vB+vC+VvD+ ---
P
po




Section 6.13 Temperature and Pressure
Dependence of the Extent of Reaction

See Sections 6.8 t0 6.11

Section 6.14 Ammonia Synthesis — a Case Study
Optional reading assignment.

Section 6.15 U, H, C,, C;In Terms
of Measurable Quantities

Done.

Section 6.16 AG for Unfolding RNA Molecules

Optional reading assignment.



Section 6.17 The Role of Mixing
In Chemical Reaction Equilibrium

2 NO,(g) —>  N,0O,(9)

Step I. Chemical Reaction (Only)

React 1 mol pure N, and 2 mol pure O, to form:
2(1 — &) mol pure NO, + & mol pure N,O,

AGI(React) = 2(1 o g)AGme(NOZ’ g) T EAGme(NZOm g)
= ZAGme(NOZ’ g) t & [_ZAGme(NOZ1 g) + AGme(NZO41 g)]

AGI(React) = ZAGme(NOZ’ g) T 5AGRO

g = extent of reaction
AG|Reacty = 2AG4,,°(NO,, g) + £AGR° 0< e <1




2 NO,(g) —>  N,0,(9)

Step I. Chemical Reaction (Only)

1030 1 1 ] ] - -
No minimum?
1025 e ZAGme(NOZ’ g) _
T 1020 Reaction
c_é ' slope = AGR° = -2.8 kJ mol-! goes to 100 %
2 1015} 1 completion
E 1010 | D@ f&=1)7
= AG; °(NO,, g) =51.3 kJ mol-
S 1005}
< 2T AG;,°(N,O,, g) =99.8 kJ mol-!

100.0 F AGR® =99.8 — 2(51.3)
= —2.8 kJ mol-! L AG; °(N,O,, g)
995 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
pure extent of reaction & pure



2 NO,(g) - N,O,(9)

Step 11. Mixing (Only)
Mix:  2(1 - & mol pure NO, + & mol pure N,O,
From Section 6.6:

AG|imixy = MNno2RT INXyop + NpoaRT INXy504

The mole fractions are

X, = Nyoy _ 20-¢) _ 2(1-¢)
Nyo2 + Nuzos 2Q-¢)+¢ 2—¢

XN2os = nzos - - = ==
Nyo2 + Nzos 2Q-¢)+¢ 2—¢

[(mix) 2—8 2—8

AG, . = 2(1—5)RTIn(2_28j 4 gRTIn( ¢ )




2 NO,(g) —>  N,O,(9)

Step I1. Mixing (Only)

0.0

-05 F

1.0 F

-15 F

AG,y(mixy ! KJ mol™

20 F

25 F

_30 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0

pure pure
extent of reaction &

NO, N,O,




2NO,(g) — N,049)
Overall: React and MiX AG = AG, ety + AGymix

103 1 1 1 1

102 reaction only

/
N

= Significance
e 101 (often overlooked)
— ~ - -
x o0 | mixing S~ Pfhysmal mlxm%I
0 o of reactants an
< minimum AG products is required
99 | at equilibrium for the equilibrium
of chemical reactions.
98 ] ] ] ]
0.0 0.2 0.4 0.6 0.8 1.0
pure extent of reaction ¢ pure

NO, N,O,



2 NO,(g) - N,O,(9)

Summary

React 1 mol pure N, and 2 mol pure O, to form
2(1 - &) mol NO, mixed with £ mol N,O,

AG

AGI(react) + AG
= 2AG, °(NO,) + £AG.’

4 2(1—5)RTIn(2_25j T gRTIn( ¢ j
2—& 2—¢&

[(mix)

Exercise Show that the minimum in AG as a function of ¢ gives
the same equilibrium composition calculated using

_ Prneoe! P’
(Pnoz/ P°)°




Practical Considerations

Thermodynamic equilibrium constants such as

pN204/ po K _ CN204 /CO

 (Proa! P°) © (Cyop/C°)’

p

for the reaction 2 NO,(g) — N,O,(g) are dimensionless
pure numbers (no units), by definition.

In practice, for convenience, p° = 1 bar and c® =1 mol L1
are frequently omitted, to give

Pn204 K = Cnzo4

) (pN02)2 ) ((:NOZ)2

C
No numerical errors are made, if p° and c° are unity.

p



111 Warning !

Equilibrium constant expressions such as

_ Prneos! P
(Pnoz/ P°)°

p

developed in this Chapter for ideal gases are accurate
for real gases only in the limitp — O.

For real gases (the subject of the next Chapter), corrections
for nonideal behavior are made using “fugacity coefficients”,
such as 1,04 and 1oo-

_ VN204 pN204/ po
KIO o 03\ 2
(7/Noz pN02/ p”)



