Chapter 6. Chemical Equilibrium

Summary

- the First and Second Laws are combined to predict conditions for spontaneous processes, including chemical reactions
- the Helmholtz energy $\boldsymbol{A}=\boldsymbol{U}-\boldsymbol{T S}$ provides $\Delta \boldsymbol{A}_{\boldsymbol{T}, \boldsymbol{V}}<\mathbf{0}$ for spontaneous processes at constant temperature and volume
- the Gibbs energy $\boldsymbol{G}=\boldsymbol{U}+\boldsymbol{p} \boldsymbol{V}-\boldsymbol{T S}$ provides $\Delta \boldsymbol{G}_{\boldsymbol{T}, \boldsymbol{p}}<\mathbf{0}$ for spontaneous processes at constant temperature and pressure
- the Gibbs energy is used to derive expressions for the equilibrium constant of chemical reactions

Motivation for Chapter 6

Could do most of thermodynamics with p, V, T, q, w, U, S. Ok. But sometimes the calculations are very inconvenient!

Example: Prove that freezing liquid water is spontaneous at $-10^{\circ} \mathrm{C}$.

Take the $\underline{3-\text { step reversible path (Why? So } \Delta S \text { can be calculated.): }}$

$$
\begin{aligned}
\Delta H\left(-10^{\circ} \mathrm{C}\right) & =\Delta H_{\mathrm{I}}+\Delta H_{\mathrm{II}}+\Delta H_{\mathrm{III}} \\
& =C_{p \mathrm{~m}}(l)(273-263) \mathrm{K}-\Delta H_{\mathrm{fus}, \mathrm{~m}}(273 \mathrm{~K})+C_{p \mathrm{~m}}(\mathrm{~s})(263-273) \mathrm{K} \\
& =-5618 \mathrm{~J} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\Delta S\left(-10^{\circ} \mathrm{C}\right) & =\Delta S_{\mathrm{I}}+\Delta S_{\mathrm{II}}+\Delta S_{\mathrm{III}} \quad \text { (all steps reversible) } \\
& =\int_{263 \mathrm{~K}}^{273 \mathrm{~K}} \frac{C_{p \mathrm{~m}}(l)}{T} \mathrm{~d} T+\frac{-\Delta H_{\mathrm{fus}, \mathrm{~m}}}{273 \mathrm{~K}}+\int_{273 \mathrm{~K}}^{263 \mathrm{~K}} \frac{C_{p \mathrm{~m}}(\mathrm{~s})}{T} \mathrm{~d} T \\
& =-19.20 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad q / T=21.36 \mathrm{~J} \mathrm{~K}^{-1} \neq \Delta S! \\
\Delta S_{\text {system }}+ & \Delta S_{\text {surroundings }}=-19.20 \mathrm{~J}+\frac{5618 \mathrm{~J}}{263 \mathrm{~K}}=+2.15 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

$\Delta S>0$ [isolated (system + surroundings)] $\quad \therefore$ Spontaneous

What to do?

Legendre Transformations to the rescue!

Given the exact differential $\mathrm{d} Y_{\text {I }}$

$$
\mathrm{d} Y_{\mathrm{I}}=C_{1} \mathrm{~d} X_{1}+C_{2} \mathrm{~d} X_{2}
$$

the function $Y_{\mathrm{I}}\left(X_{1}, X_{2}\right)$ can be "transformed" into the new functions (maybe more convenient?):

$$
\begin{aligned}
& Y_{\mathrm{II}}=Y_{\mathrm{I}}-C_{1} X_{1} \\
& Y_{\mathrm{III}}=Y_{\mathrm{I}}-C_{2} X_{2} \\
& Y_{\mathrm{IV}}=Y_{\mathrm{I}}-C_{1} X_{1}-C_{2} X_{2}
\end{aligned}
$$

Legendre Transformations for Thermodynamics

$$
\mathrm{d} U=\mathrm{d} q+\mathrm{d} w \quad \text { (First Law) }
$$

For a reversible path ($\mathrm{d} q=T \mathrm{~d} S$ and $\mathrm{d} w=-p \mathrm{~d} V$):

$$
\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V
$$

Legendre transforms of $\boldsymbol{U}(S, V)$ are:

$$
\begin{array}{ll}
U-T S & (A=\text { Helmholtz function }) \\
U+p V & (H=\text { enthalpy }) \\
U-T S+p V & (G=\text { Gibbs function })
\end{array}
$$

Section 6.1 Predicting Spontaneous Processes

a) Using the Internal Energy $\left(\mathbf{d} U_{S, V} \leq \mathbf{0}\right)$

$$
\begin{array}{ll}
\Delta U_{S, V}<0 & \text { spontaneous process } \\
\Delta U_{S, V}=0 & \text { reversible process }
\end{array}
$$

Where do these rules come from?

First Law:

$$
\mathrm{d} U=\mathrm{d} q+\mathrm{d} w
$$

For a reversible path: $(\mathrm{d} q=T \mathrm{~d} S$ and $\mathrm{d} w=-p \mathrm{~d} V)$

For a spontaneous path:
Eq. I minus Eq. II:
same as:

$$
\begin{equation*}
\mathrm{d} U=\mathrm{d} q-p_{\mathrm{ext}} \mathrm{~d} V \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V \tag{I}
\end{equation*}
$$

$$
\begin{aligned}
0 & =T \mathrm{~d} S-\mathrm{d} q-\left(p_{\mathrm{ext}}-p\right) \mathrm{d} V \\
\mathrm{~d} q & =T \mathrm{~d} S-\left(p_{\mathrm{ext}}-p\right) \mathrm{d} V
\end{aligned}
$$

Irreversible Expansions $\quad p-p_{\text {ext }}>0 \mathrm{~d} V>0$
Irreversible Compressions $\quad p-p_{\text {ext }}<0 \mathrm{~d} V<0$
notice: $\left(\boldsymbol{p}-\boldsymbol{p}_{\text {ext }}\right) \mathrm{d} \boldsymbol{V} \geq \mathbf{0}$
from previous slide:

$$
\mathrm{d} q=T \mathrm{~d} S-\left(p_{\mathrm{ext}}-p\right) \mathrm{d} V
$$

Important Result: $\mathrm{d} q \leq T \mathrm{~d} S$

Why important? First Law:
(assuming only $p-V$ work)
using $\mathrm{d} q \leq T \mathrm{~d} S$ gives at constant S, V this means

$$
(\mathrm{d} S=0, \mathrm{~d} V=0)
$$

$\mathrm{d} U=\mathrm{d} q+\mathrm{d} w=\mathrm{d} q-p_{\text {ext }} \mathrm{d} V$
$\mathrm{d} U \leq T \mathrm{~d} S-p_{\text {ext }} \mathrm{d} V$
$\mathrm{d} U_{S, V} \leq 0$

$$
\begin{array}{ll}
\mathrm{d} U_{S, V}<0 & \text { spontaneous } \\
\mathrm{d} U_{S, V}=0 & \text { reversible } \\
\hline
\end{array}
$$

$\Delta U_{S, V} \leq 0$ is a useful result, but experimentally inconvenient. How do you keep the entropy constant? Try the enthalpy?
b) Predicting Spontaneous Processes using the Enthalpy

$$
\begin{aligned}
& \boldsymbol{H} \equiv \boldsymbol{U}+\boldsymbol{p} \boldsymbol{V} \\
& \mathrm{d} H=\mathrm{d}(U+p V) \\
&=\mathrm{d} U+\mathrm{d}(p V) \\
&=\mathrm{d} U+p \boldsymbol{H}_{S, p}<\mathbf{0} \\
&=\mathbf{0} \\
& \text { spontaneous process } \\
& \text { reversible process }
\end{aligned}
$$

At constant pressure ($p_{\mathrm{ext}}=p$):
$\mathrm{d} H_{p}=\mathrm{d} q-p_{\text {ext }} \mathrm{d} V+p \mathrm{~d} V+V \mathrm{~d} p=\mathrm{d} q \leq T \mathrm{~d} S$
At constant S, p :

$$
\mathbf{d} H_{S, p} \leq 0
$$

Still inconvenient. How is S held constant?
c) Predicting Spontaneity using the Helmholtz Energy \boldsymbol{A}

$$
A \equiv U-T S
$$

$$
\begin{array}{ll}
\Delta A_{T, V}<0 & \text { spontaneous process } \\
\Delta A_{T, V}=0 & \text { reversible process }
\end{array}
$$

The Helmholtz energy, like the enthalpy, is an "auxiliary" thermodynamic state function. Useful property:

$$
\begin{aligned}
\mathrm{d} A & =\mathrm{d}(U-T S) \\
& =\mathrm{d} U-\mathrm{d}(T S) \\
& =\mathrm{d} U-T \mathrm{~d} S-S \mathrm{~d} T \\
& =\mathrm{d} q+\mathrm{d} w-T \mathrm{~d} S-S \mathrm{~d} T \\
& =\mathrm{d} q-p_{\text {ext }} \mathrm{d} V-T \mathrm{~d} S-S \mathrm{~d} T \\
\mathrm{~d} A & \leq-p_{\text {ext }} \mathrm{d} V-S \mathrm{~d} T \quad(\text { using } \mathrm{d} q-T \mathrm{~d} S \leq 0)
\end{aligned}
$$

At constant temperature and volume (can be arranged):
$A=U-T S$ is sometimes called the Helmholtz Free Energy
Why? From the previous slide:

$$
\begin{aligned}
\mathrm{d} A & =\mathrm{d}(U-T S) \\
& =\mathrm{d} U-\mathrm{d}(T S) \\
& =\mathrm{d} U-T \mathrm{~d} S-S \mathrm{~d} T \\
& =\mathrm{d} q+\mathrm{d} w-T \mathrm{~d} S-S \mathrm{~d} T
\end{aligned}
$$

Use $\mathrm{d} q \leq T \mathrm{~d} S$ to get

$$
\begin{aligned}
\mathrm{d} A_{T} & \leq \mathrm{d} w_{T} \\
-\mathrm{d} w_{T} & \leq-\mathrm{d} A_{T}
\end{aligned}
$$

$-w_{T} \leq-\Delta A_{T}$
In an isothermal process, the maximum work free to be done on the surroundings equals the decrease in the Helmholtz Energy.

d) Predicting Spontaneity using the Gibbs Energy G

$$
\begin{aligned}
G & \equiv U-T S+p V \\
& =H-T S
\end{aligned}
$$

$\Delta G_{T, p}<0 \quad$ spontaneous process
$\Delta G_{T, p}=0 \quad$ reversible process

The Gibbs Energy is another "auxiliary" thermodynamic state function. Useful property:

$$
\begin{aligned}
\mathrm{d} G & =\mathrm{d}(U-T S+p V) \\
& =\mathrm{d} U-\mathrm{d}(T S)+\mathrm{d}(p V) \\
& =\mathrm{d} U-T \mathrm{~d} S-S \mathrm{~d} T+p \mathrm{~d} V+V \mathrm{~d} p \\
& =\mathrm{d} q+\mathrm{d} w-T \mathrm{~d} S-S \mathrm{~d} T+p \mathrm{~d} V+V \mathrm{~d} p
\end{aligned}
$$

At fixed T, p, assuming only p - V work:

$$
\begin{array}{r}
\mathrm{d} G_{T, p}=\mathrm{d} q-p_{\mathrm{ext}} \mathrm{~d} V-T \mathrm{~d} S-S \mathrm{~d} X+p \mathrm{~d} V+V \mathrm{~d} 2=\mathrm{d} q-T \mathrm{~d} S \\
\mathbf{d} \boldsymbol{G}_{\boldsymbol{T}, \boldsymbol{p}} \leq \mathbf{0} \begin{array}{l}
\text { constant T,p conditions are } \\
\text { experimentally convenient }
\end{array}
\end{array}
$$

$G=U-T S+p V$ is sometimes called the Gibbs Free Energy
Why? From the previous slide:

$$
\begin{aligned}
\mathrm{d} G & =\mathrm{d}(U-T S+p V) \\
& =\mathrm{d} U-\mathrm{d}(T S)+\mathrm{d}(p V) \\
& =\mathrm{d} U-T \mathrm{~d} S-S \mathrm{~d} T+p \mathrm{~d} V+V \mathrm{~d} p \\
& =\mathrm{d} q+\mathrm{d} w-T \mathrm{~d} S-S \mathrm{~d} T+p \mathrm{~d} V+V \mathrm{~d} p \\
& =\mathrm{d} q-p_{\text {ext }} \mathrm{d} V+\mathrm{d} w^{\prime}-T \mathrm{~d} S-S \mathrm{~d} T+p \mathrm{~d} V+V \mathrm{~d} p
\end{aligned}
$$

$\boldsymbol{w}^{\boldsymbol{\prime}}$ is work other than \boldsymbol{p} - \boldsymbol{V} work (such as electrical work)
At fixed $T, p \quad\left(\mathrm{~d} T=0\right.$ and $\left.p_{\mathrm{ext}}=p\right)$:

$$
\begin{aligned}
\mathrm{d} G_{T, p} & =\mathrm{d} q+\mathrm{d} w^{\prime}-T \mathrm{~d} S \\
\mathrm{~d} G_{T, p} & \leq \mathrm{d} w^{\prime} \\
-\mathrm{d} w^{\prime} & \leq-\mathrm{d} G_{T, p}
\end{aligned} \quad(\text { using } \mathrm{d} q \leq T \mathrm{~d} S)
$$

$$
-w^{\prime} \leq-\Delta G_{T, p}
$$

At fixed Tsp the maximum non-p-V work free to be done on the surroundings equals the decrease in the Gibbs Energy.

Summary of Criteria Used for the Prediction of Reversible and Spontaneous Processes

$$
\begin{aligned}
\Delta U_{S, V} & \leq 0 \\
\Delta H_{S, p} & \leq 0 \\
\Delta \boldsymbol{A}_{T, V} & \leq 0
\end{aligned}
$$

$$
=0 \text { reversible }
$$

$$
\text { < } 0 \text { spontaneous }
$$

U is the Internal Energy
$H=U+p V$ is the Enthalpy
$A=U-T S$ is the Helmholtz Energy
$G=U-T S+p V$ is the Gibbs Energy

Section 6.2 and 6.3 Differential Forms of U, H, A and G

(the mathematical formulation of thermodynamics)
a) The Internal Energy

The First Law $\quad \Delta U=q+w$
In differential form (infinitesimally small changes in \boldsymbol{U}):

$$
\mathrm{d} U=\mathrm{d} q+\mathrm{d} w
$$

The internal energy is a state function. Any path, reversible or ireversible, can be used to calculate $\mathrm{d} U$.

For convenience, take a reversible path ($\mathrm{d} q=T \mathrm{~d} S$ and $\mathrm{d} w=-p \mathrm{~d} V$):

$$
\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V
$$

Applications?

Differentials of State Functions (from Chapter 2)

Recall that the differential equation

$$
\mathrm{d} f=g(x, y) \mathrm{d} x+h(x, y) \mathrm{d} y
$$

for state function $f(x, y)$ of variables x an y is equivalent to

$$
\mathrm{d} f=\left(\frac{\partial f}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial f}{\partial y}\right)_{x} \mathrm{~d} y
$$

Comparing the two equations for $\mathrm{d} f$ shows

$$
g(x, y)=\left(\frac{\partial f}{\partial x}\right)_{y} \quad h(x, y)=\left(\frac{\partial f}{\partial y}\right)_{x}
$$

Reversing the order of differentiation gives

$$
\left[\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)_{y}\right]_{x}=\left(\frac{\partial g}{\partial y}\right)_{x}=\left[\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)_{x}\right]_{y}=\left(\frac{\partial h}{\partial x}\right)_{y}
$$

Differential of the Internal Energy

The differential of $U(T, V)$

$$
\mathrm{d} U=T \mathrm{~d} S-p d V
$$

is equivalent to

$$
\mathrm{d} U=\left(\frac{\partial U}{\partial S}\right)_{V} \mathrm{~d} S+\left(\frac{\partial U}{\partial V}\right)_{S} \mathrm{~d} V
$$

which shows

$$
\left(\frac{\partial U}{\partial S}\right)_{V}=T \quad \text { and } \quad\left(\frac{\partial U}{\partial V}\right)_{S}=-p
$$

(new ways of understanding the temperature and pressure)
Reversing the order of second differentiation gives

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial S}\right)_{V}\right]_{T}=\left(\frac{\partial T}{\partial V}\right)_{S}=\left[\frac{\partial}{\partial S}\left(\frac{\partial U}{\partial V}\right)_{S}\right]_{V}=-\left(\frac{\partial p}{\partial S}\right)_{V}} \\
& (\partial S \text { first then } \partial V)
\end{aligned}
$$

Differential of the Enthalpy

The differential of $H(T, p)$

$$
\begin{aligned}
\mathrm{d} H & =\mathrm{d}(U+p V)=\mathrm{d} U+\mathrm{d}(p V)=\mathrm{d} U+p \mathrm{~d} V+V \mathrm{~d} p \\
\mathrm{~d} H & =T \mathrm{~d} S-p \mathrm{~d} Y+p \mathrm{~d} V+V \mathrm{~d} p \\
\mathrm{~d} H & =T \mathrm{~d} S+V \mathrm{~d} p
\end{aligned}
$$

is equivalent to

$$
\mathrm{d} H=\left(\frac{\partial H}{\partial S}\right)_{p} \mathrm{~d} S+\left(\frac{\partial H}{\partial p}\right)_{S} \mathrm{~d} p
$$

which shows

$$
\left(\frac{\partial H}{\partial S}\right)_{p}=T \quad \text { and } \quad\left(\frac{\partial H}{\partial p}\right)_{S}=V
$$

Reversing the order of second differentiation gives

$$
\left[\frac{\partial}{\partial p}\left(\frac{\partial H}{\partial S}\right)_{p}\right]_{S}=\left(\frac{\partial T}{\partial p}\right)_{S}=\left[\frac{\partial}{\partial S}\left(\frac{\partial H}{\partial p}\right)_{S}\right]_{p}=\left(\frac{\partial V}{\partial S}\right)_{p}
$$

Differential of the Helmholtz Energy

The differential of $A(T, V)$

$$
\begin{aligned}
& \mathrm{d} A=\mathrm{d}(U-T S)=\mathrm{d} U-\mathrm{d}(T S)=\mathrm{d} U-T \mathrm{~d} S-S \mathrm{~d} T \\
& \mathrm{~d} A=T \mathrm{~d} S-p \mathrm{~d} V-T \mathrm{~d} S-S \mathrm{~d} T \\
& \mathrm{~d} A=-S \mathrm{~d} T-p \mathrm{~d} V
\end{aligned}
$$

is equivalent to

$$
\mathrm{d} A=\left(\frac{\partial A}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial A}{\partial V}\right)_{T} \mathrm{~d} V
$$

which shows

$$
\left(\frac{\partial A}{\partial T}\right)_{V}=-S \quad \text { and } \quad\left(\frac{\partial A}{\partial V}\right)_{T}=-p
$$

Reversing the order of second differentiation gives

$$
\left[\frac{\partial}{\partial V}\left(\frac{\partial A}{\partial T}\right)_{V}\right]_{T}=-\left(\frac{\partial S}{\partial V}\right)_{T}=\left[\frac{\partial}{\partial T}\left(\frac{\partial A}{\partial V}\right)_{T}\right]_{V}=-\left(\frac{\partial p}{\partial T}\right)_{V}^{K}
$$

conveniently in terms of p, V, T

Differential of the Gibbs Energy

The differential of $G(T, p)$

$$
\begin{aligned}
\mathrm{d} G & =\mathrm{d}(U-T S+p V)=\mathrm{d} U-\mathrm{d}(T S)+\mathrm{d}(p V) \\
\mathrm{d} G & =T \mathrm{~d} \mathrm{~S}-p \mathrm{~d} V-7 \mathrm{~d} S-S \mathrm{~d} T+p \mathrm{~d} K+V \mathrm{~d} p \\
\mathrm{~d} G & =-S \mathrm{~d} T+V \mathrm{~d} p
\end{aligned}
$$

is equivalent to

$$
\mathrm{d} G=\left(\frac{\partial G}{\partial T}\right)_{p} \mathrm{~d} T+\left(\frac{\partial G}{\partial p}\right)_{T} \mathrm{~d} p
$$

which shows
$\left(\frac{\partial G}{\partial T}\right)_{p}=-S \quad$ and $\quad\left(\frac{\partial G}{\partial p}\right)_{T}=V$
Reversing the order of second differentiation gives
conveniently in terms of
p, V, T

$$
\left[\frac{\partial}{\partial p}\left(\frac{\partial G}{\partial T}\right)_{p}\right]_{T}=-\left(\frac{\partial S}{\partial p}\right)_{T}=\left[\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial p}\right)_{T}\right]_{p}=\left(\frac{\partial V}{\partial T}\right)_{p}^{L}
$$

Section 6.2 Summary

$$
\begin{array}{|lrl}
\hline \mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V & \mathrm{~d} H=T \mathrm{~d} S+V \mathrm{~d} p \\
\mathrm{~d} A=-S \mathrm{~d} T-p \mathrm{~d} V & \mathrm{~d} G=-S \mathrm{~d} T+V \mathrm{~d} p \\
\hline
\end{array}
$$

From the first derivatives of U, H, A, and G :

$$
\begin{array}{llll}
\hline\left(\frac{\partial U}{\partial S}\right)_{V}=T & \left(\frac{\partial U}{\partial V}\right)_{S}=-p & \left(\frac{\partial H}{\partial S}\right)_{p}=T & \left(\frac{\partial H}{\partial p}\right)_{S}=V \\
\left(\frac{\partial A}{\partial T}\right)_{V}=-S & \left(\frac{\partial A}{\partial V}\right)_{T}=-p & \left(\frac{\partial G}{\partial T}\right)_{p}=-S & \left(\frac{\partial G}{\partial p}\right)_{T}=V
\end{array}
$$

From the second derivatives of U, H, A, and G (Maxwell relations) :

$$
\left.\begin{array}{ll}
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V} & \left(\frac{\partial T}{\partial p}\right)_{S}
\end{array}=\left(\frac{\partial V}{\partial S}\right)_{p}, ~\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V} \quad-\left(\frac{\partial S}{\partial p}\right)_{T}=\left(\frac{\partial V}{\partial T}\right)_{p}\right)
$$

Example: Derive an expression for $(\partial U / \partial V)_{T}$ to calculate changes in the internal energy with volume at constant temperature.

Suggestion: start with the differential equation for $\mathrm{d} U$ $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V \quad$ then divide by $\mathrm{d} V$ at constant temperature.

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-p\left(\frac{\partial V}{\partial V}\right)_{T}^{1} \quad \text { But what is }(\partial S / \partial V)_{T} ?
$$

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V}
$$

Use the Maxwell relation for A.

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{V}-p
$$

Significance: This result gives $(\partial U / \partial V)_{T}$ in terms of quantities conveniently measured in terms of p, V, and T.

Exercises:

a) Show

$$
C p=\left(\frac{\partial H}{\partial T}\right)_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p}
$$

b) Use the Maxwell relation for $\mathrm{d} G$ to show

$$
\left(\frac{\partial H}{\partial p}\right)_{T}=-T\left(\frac{\partial V}{\partial T}\right)_{T}+V
$$

c) The temperature of a substance increases when it is compressed adiabatically. For a reversible adiabatic compression (constant S), use a Maxwell relation to show

$$
\left(\frac{\partial T}{\partial p}\right)_{S}=\frac{T}{C_{p}}\left(\frac{\partial V}{\partial T}\right)_{p}
$$

Example: Derive an expression for the Gibbs energy of an ideal gas as a function of pressure. (Why do this? A useful result for understanding equilibrium of reacting gases).

$$
G(T, p)=G^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+\int_{p^{\mathrm{o}}}^{p}\left(\frac{\partial G}{\partial p}\right)_{T} \mathrm{~d} p
$$

But what is
$(\partial G / \partial p)_{T}$?

Independent variables T and p suggests looking at
$\mathrm{d} G=-S \mathrm{~d} T+V \mathrm{~d} p \quad$ which shows $\quad\left(\frac{\partial G}{\partial p}\right)_{T}=V=\frac{n R T}{p}$
Find

$$
\begin{aligned}
& G(T, p)=G^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+\int_{p^{\mathrm{o}}}^{p} \frac{n R T}{p} \mathrm{~d} p=G^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+n R T \int_{p^{\mathrm{o}}}^{p} \frac{1}{p} \mathrm{~d} p \\
& G(T, p)=G^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+n R T \ln \left(p / p^{\mathrm{o}}\right)
\end{aligned}
$$

$$
G_{\mathrm{m}}(T, p)=G_{\mathrm{m}}^{\mathrm{o}}\left(T, p^{\circ}\right)+R T \ln \left(p / p^{\circ}\right)
$$

$G_{\mathrm{m}}=G / n$ is the Gibbs energy per mole of gas

Example: Derive an expression for the temperature dependence of G / T. (Why do this? The logarithm of the equilibrium constant for a chemical reaction is proportional to G / T.)

$$
\left(\frac{\partial(G / T)}{\partial T}\right)_{p}=\frac{1}{T}\left(\frac{\partial G}{\partial T}\right)_{p}+G\left(\frac{\partial(1 / T)}{\partial T}\right)_{p} \quad \begin{gathered}
\text { But what is } \\
(\partial G / \partial T)_{p} ?
\end{gathered}
$$

Independent variables T and p suggests looking at $\mathrm{d} G=-S \mathrm{~d} T+V \mathrm{~d} p \quad$ which shows $(\partial G / \partial T)_{p}=-S$.

Find

$$
\begin{aligned}
& \left(\frac{\partial(G / T)}{\partial T}\right)_{p}=\frac{1}{T}(-S)+G\left(\frac{-1}{T^{2}}\right)=-\frac{S}{T}-\frac{G}{T^{2}}=-\frac{T S+G}{T^{2}} \\
& \left(\frac{\partial(G / T)}{\partial T}\right)_{p}=-\frac{H}{T^{2}} \quad(G=H-T S, \text { so } T S+G=H)
\end{aligned}
$$

Sections 6.4 and 6.5 Gibbs Energy of Gas Mixtures

- systems of fixed composition have been considered so far
- chemical reactions consume reactants and form products, causing changes in compositions
- no problem - just include composition variables
- many chemical reactions occur at fixed temperature and pressure
- $\Delta G_{T, p} \leq 0$ is used to predict equilibrium under these conditions,

Pure Substances or Systems of Fixed Composition

Gibbs energy is a function of temperature and pressure

$$
\mathrm{d} G=\left(\frac{\partial G}{\partial T}\right)_{p} \mathrm{~d} T+\left(\frac{\partial G}{\partial p}\right)_{T} \mathrm{~d} p
$$

Mixtures of Variable Composition

Gibbs energy is a function T, p and the number of moles $n_{1}, n_{2}, n_{3}, \ldots$ of each substance in the mixture

$$
\mathrm{d} G=\left(\frac{\partial G}{\partial T}\right)_{p, n_{1}, n_{2}, n_{3}, \ldots} \mathrm{~d} T+\left(\frac{\partial G}{\partial p}\right)_{T, n_{1}, n_{2}, n_{3}, \ldots} \mathrm{~d} p+\left(\frac{\partial G}{\partial n_{1}}\right)_{T, p, n_{2}, n_{3}, \ldots} \mathrm{~d} n_{1}+\left(\frac{\partial G}{\partial n_{2}}\right)_{T, p, n_{1}, n_{3}, \ldots} \mathrm{~d} n_{2}+\left(\frac{\partial G}{\partial n_{3}}\right)_{T, p, n_{1}, n_{2}, \ldots} \mathrm{~d} n_{3}+\cdots
$$

Chemical Potential μ_{i} of Substance i in a Mixture

defined as $\mu_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{k+i}}=G_{\mathrm{m}, i}$

Gibbs energy per mole of substance i

Application of Chemical Potentials

The Gibbs energy of a mixture of different substances is

$$
G=n_{1} \mu_{1}+n_{2} \mu_{2}=n_{3} \mu_{3}+\ldots
$$

Significance of Chemical Potentials (Huge!)

- positive electric charge flows to regions of lower electric potential
- "north" magnetic poles are drawn to "south" magnetic poles
- objects roll downhill to reach lower gravitational potential energy

Useful analogy:
chemical substances:
expand, compress, warm, cool, vaporize, condense, freeze, melt, sublime, diffuse, mix, crystallize, react, ...
to reach lower chemical potential and chemical equilibrium

Example. A system is divided into region I and region II.
$\mathrm{d} n_{i}$ moles of substance i are transferred from region I to II.

Chemical Equilibrium

The chemical potential (Gibbs energy per mole) of each substance is constant throughout the system.

Thermal Equilibrium

The temperature is constant throughout the system.

Mechanical Equilibrium

The pressure is constant throughout the system.

Section 6.6 Gibbs Energy of Mixing

$$
p_{\mathrm{H} 2}(\text { left })=p_{\mathrm{H} 2}(\text { right })
$$

Semipermeable Barrier

H_{2} (but not other gases)
can pass through palladium metal films. (Why?)
At equilibrium, the pressure of pure H_{2} and the partial pressure of H_{2} in the mixture are equal.

Important Conclusion: the chemical potential (Gibbs energy per mole) of H_{2}, or any ideal gas, mixed or pure, is

$$
\mu\left(T, p_{i}\right)=G_{\mathrm{m} i}\left(T, p_{i}\right)=G_{\mathrm{m} i}^{0}\left(T, p^{0}\right)+R T \ln \left(p_{i} / p^{0}\right)
$$

Gibbs Energy of Mixing of Ideal Gases

Example: $\operatorname{Mix} n_{\mathrm{H} 2}$ moles pure H_{2} and n_{Ar} moles pure Ar at constant temperature and pressure.

$n_{\mathrm{H} 2} \mathrm{~mol}$	$n_{\mathrm{Ar}} \mathrm{mol}$			
pure H_{2}	pure Ar	\longrightarrow		$n_{\mathrm{H} 2} \mathrm{~mol} \mathrm{H}_{2}+n_{\mathrm{Ar}} \mathrm{mol} \mathrm{Ar}$
:---:				
T, p	\quad	mixed at T, p		
:---:				
total pressure $p=p_{\mathrm{H} 2}+p_{\mathrm{Ar}}$				

$$
\begin{aligned}
\Delta G_{\mathrm{mix}}= & G_{f}-G_{i} \\
= & n_{\mathrm{H} 2}\left[G_{\mathrm{mH} 2}{ }^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+R T \ln \left(p_{\mathrm{H} 2} / p^{\mathrm{o}}\right)\right]+n_{\mathrm{Ar}}\left[G_{\mathrm{mAr}}{ }^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+R T \ln \left(p_{\mathrm{Ar}} / p^{\mathrm{o}}\right)\right] \\
& -n_{\mathrm{H} 2}\left[G_{\mathrm{mH} 2}{ }^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+R T \ln \left(p / p^{\mathrm{o}}\right)\right]+n_{\mathrm{Ar}}\left[G_{\mathrm{mAr}}{ }^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+R T \ln \left(p / p^{\mathrm{o}}\right)\right] \\
= & n_{\mathrm{H} 2} R T \ln \left(p_{\mathrm{H} 2} / p\right)+n_{\mathrm{Ar}} R T \ln \left(p_{\mathrm{Ar}} / p\right)
\end{aligned}
$$

$\Delta G_{\text {mix }}=n_{\mathrm{H} 2} R T \ln x_{\mathrm{H} 2}+n_{\mathrm{Ar}} R T \ln x_{\mathrm{Ar}} \quad($ constant $T, p)$

Gibbs Energy of Mixing
 $\Delta G_{\text {mix }}=n_{\mathrm{A}} R T \ln x_{\mathrm{A}}+n_{\mathrm{B}} R T \ln x_{\mathrm{B}}$

mix
$\boldsymbol{n}_{\mathrm{A}}$ moles of pure gas A
+
n_{B} moles pure gas B

$$
x_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}=\frac{p_{\mathrm{A}}}{p}
$$

mix
$\boldsymbol{n}_{\mathrm{A}}$ moles of pure gas A
$+$
$\boldsymbol{n}_{\mathrm{B}}$ moles pure gas B at fixed pressure p one mole total gas: $n_{\mathrm{A}}+n_{\mathrm{B}}=1 \mathrm{~mol}$

$$
\left(\frac{\partial G}{\partial T}\right)_{p}=-S
$$

$$
\left(\frac{\partial \Delta G_{\text {mix }}}{\partial T}\right)_{p}=-\Delta S_{\text {mix }}
$$

Section 6.7 Standard Gibbs Energy Change $\Delta G_{R}{ }^{0}$ for Chemical Reactions

Example: Calculate $\Delta G_{R}{ }^{\circ}$ for the following reaction at $298.15 \mathrm{~K}\left(25{ }^{\circ} \mathrm{C}\right)$.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

$\Delta G_{\mathrm{R}}{ }^{\mathrm{o}}=\Delta G_{\mathrm{f}}{ }^{\mathrm{o}}$ (products) $-\Delta G_{\mathrm{f}}{ }^{\mathrm{o}}$ (reactants) $=\Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~g}\right)-2 \Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{NO}_{2}, \mathrm{~g}\right)$ $=99.8 \mathrm{~kJ} \mathrm{~mol}^{-1}-(2)\left(51.3 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \quad$ (Table 4.1) $=-2.80 \mathrm{~kJ} \mathrm{~mol}^{-1}$
for any reaction:
$\Delta G_{\mathrm{R}}^{\mathrm{o}}=\sum_{i} v_{i} \Delta G_{\mathrm{fm}}^{\mathrm{o}}(i)$

Important: $\Delta G_{\mathbf{R}}{ }^{0}$ is the change in Gibbs energy for the conversion of pure reactants to pure products at standard pressure ($p^{\circ}=1 \mathrm{bar}$)

Section 6.8 Equilibrium Constant K for Chemical
 Reactions in Mixtures of Ideal Gases

Actual reactions occur for • mixed gases (not pure)

- usually at non-standard pressures

Example: $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Mystery

$$
\frac{p_{\mathrm{N} 2 \mathrm{O} 4}}{\left(p_{\mathrm{NO} 2}\right)^{2}}=\mathrm{constant}
$$

at equilibrium and a given temperature

- why is this ratio of partial pressures constant for any initial conditions, from pure NO_{2} to pure $\mathrm{N}_{2} \mathrm{O}_{4}$?
- why is the product pressure in the numerator?
- why is the reactant pressure in the denominator?
- why is the reactant pressure squared?

Section 6.8 Equilibrium Constant K for the Reaction of Mixtures of Ideal Gases

Actual reactions occur for • mixed (not pure) gases

- usually at non-standard pressures

Example: Calculate ΔG_{R} for the following reaction at 298.15 K for the mixed gases at partial pressures $p_{\mathrm{NO} 2}$ and $p_{\mathrm{N} 204}$.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

$$
\begin{aligned}
\Delta G_{\mathrm{R}} & =\Delta G_{\mathrm{f}}(\text { products })-\Delta G_{\mathrm{f}}(\text { reactants }) \\
& =\Delta G_{\mathrm{fm}}\left(\mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~g}\right)-2 \Delta G_{\mathrm{fm}}\left(\mathrm{NO}_{2}, \mathrm{~g}\right) \\
& =\Delta G_{\mathrm{fm}}{ }^{\circ}\left(\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~g}\right)+R T \ln \left(p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\mathrm{o}}\right)-2\left[\Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{NO}_{2}, \mathrm{~g}\right)+R T \ln \left(p_{\mathrm{N} 22} / p^{\mathrm{o}}\right)\right] \\
& =\Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~g}\right)-2 \Delta G_{\mathrm{fm}^{\mathrm{o}}}\left(\mathrm{NO}_{2}, \mathrm{~g}\right)+R T \ln \left(p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\mathrm{o}}\right)-2 R T \ln \left(p_{\mathrm{NO} 2} / p^{\mathrm{o}}\right)
\end{aligned}
$$

$$
\Delta G_{\mathrm{R}}=\Delta G_{\mathrm{R}}{ }^{0}+R T \ln \left[\left(p_{\mathrm{N} 204} / p^{0}\right)^{1}\left(p_{\mathrm{NO} 2} / p^{0}\right)^{-2}\right]
$$

Non-Standard ΔG_{R} for the reaction:

no " o " superscript

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

$$
\Delta G_{\mathrm{R}}=\Delta G_{\mathrm{R}}^{\mathrm{o}}+R T \ln \left[\frac{p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\mathrm{o}}}{\left(p_{\mathrm{NO} 2} / p^{\mathrm{o}}\right)^{2}}\right]
$$

Simpler notation

$$
\Delta G_{\mathrm{R}}=\Delta G_{\mathrm{R}}^{\mathrm{o}}+R T \ln Q
$$

using the reaction quotient Q

$$
Q=\frac{p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\mathrm{o}}}{\left(p_{\mathrm{NO} 2} / p^{\mathrm{o}}\right)^{2}}
$$

$$
\Delta G_{\mathrm{R}}=\Delta G_{\mathrm{R}}^{\mathrm{o}}+R T \ln Q
$$

Case I: $\Delta G_{R}=0 \quad$ Equilibrium in the Reacting Gas Mixture

$$
\begin{gathered}
2 \mathbf{N O}_{2}(\mathbf{g}) \leftrightarrow \mathbf{N}_{2} \mathrm{O}_{4}(\mathbf{g}) \\
0=\Delta G_{\mathrm{R}}^{\mathrm{o}}+R T \ln Q_{\text {equil }} \\
\ln Q_{\text {equil }}=-\Delta G_{\mathrm{R}}^{\mathrm{o}} / R T
\end{gathered}
$$

equilibrium constant $\quad K=Q_{\text {equil }}=\left(\frac{p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\mathrm{o}}}{\left(p_{\mathrm{NO} 2} / p^{\mathrm{o}}\right)^{2}}\right)_{\text {equil }}$

$$
K=\mathrm{e}^{-\Delta G_{\mathrm{R}}{ }^{\circ} / R T}
$$

$$
\Delta G_{\mathrm{R}}=\Delta G_{\mathrm{R}}^{\mathrm{o}}+R T \ln Q
$$

Case II: $\Delta G_{\mathrm{R}}<0$ Forward Reaction in the Gas Mixture

$$
\begin{gathered}
2 \mathrm{NO}_{2}(\mathbf{g}) \rightarrow \mathbf{N}_{2} \mathrm{O}_{4}(\mathbf{g}) \\
\Delta G_{\mathrm{R}}=\Delta G_{\mathrm{R}}^{\mathrm{o}}+R T \ln Q<0
\end{gathered}
$$

$$
Q<K
$$

Case III: $\Delta G_{R}>0 \quad$ Reverse Reaction in the Gas Mixture

$$
\begin{gathered}
2 \mathbf{N O}_{2}(\mathbf{g}) \leftarrow \mathbf{N}_{2} \mathrm{O}_{4}(\mathbf{g}) \\
\Delta G_{\mathrm{R}}=\Delta G_{\mathrm{R}}^{\mathrm{o}}+R T \ln Q>0 \\
Q>K
\end{gathered}
$$

Spontaneous Chemical Reactions

Example $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are in a reaction vessel at 298 K and partial pressures 0.350 bar and 0.650 bar, respectively.
Is this system at equilibrium?
Data: ΔG° for the reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is $-2.80 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K .

$$
\begin{aligned}
& K=\mathrm{e}^{-\Delta G^{\mathrm{o}} / R T}=\mathrm{e}^{-(-2800) /(8.314)(298)}=\mathrm{e}^{1.130}=3.01 \\
& Q=\frac{p_{\mathrm{N} 2 \mathrm{O}} / p^{\mathrm{o}}}{\left(p_{\mathrm{N} 2} / p^{\mathrm{o}}\right)^{2}}=\frac{0.650}{(0.350)^{2}}=5.31
\end{aligned}
$$

$\boldsymbol{Q}>\boldsymbol{K} \quad$ The gas mixture is not at equilibrium. Too little NO_{2} reactant. Too much $\mathrm{N}_{2} \mathrm{O}_{4}$ product.
The reverse reaction $2 \mathbf{N O}_{\mathbf{2}}(\mathrm{g}) \leftarrow \mathbf{N}_{2} \mathbf{O}_{4}(\mathrm{~g})$ is spontaneous.

Equilibrium Constants K for Ideal-Gas Reactions

$$
\begin{aligned}
& \boldsymbol{a} \mathbf{A}(\mathbf{g})+\boldsymbol{b} \mathbf{B}(\mathbf{g})+\ldots \longrightarrow \\
& v_{\mathrm{A}}=-a \quad v_{\mathrm{B}}=-b
\end{aligned}
$$

$$
K=\frac{\left(p_{\mathrm{C}} / p^{\circ}\right)^{c}\left(p_{\mathrm{D}} / p^{\circ}\right)^{d} \cdots}{\left(p_{\mathrm{A}} / p^{\circ}\right)^{a}\left(p_{\mathrm{B}} / p^{\circ}\right)^{b} \cdots}=\left(\frac{p_{\mathrm{A}}}{p^{\circ}}\right)^{\mathrm{DA}}\left(\frac{p_{\mathrm{B}}}{p^{\circ}}\right)^{\mathrm{LB}}\left(\frac{p_{\mathrm{C}}}{p^{\circ}}\right)^{\mathrm{LC}}\left(\frac{p_{\mathrm{D}}}{p^{\circ}}\right)^{\mathrm{DD}} \cdots
$$

using equilibrium partial pressures $p_{\mathrm{A}}, p_{\mathrm{B}}, p_{\mathrm{C}}, p_{\mathrm{D}}, \ldots$

$$
\begin{gathered}
K=\exp \left(-\Delta G_{\mathrm{R}}^{\mathrm{o}} / R T\right) \\
\Delta G^{\mathrm{o}}=c \Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}(\mathrm{C}, \mathrm{~g})+d \Delta G_{\mathrm{fm}}{ }^{\circ}(\mathrm{D}, \mathrm{~g}) \ldots-a \Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}(\mathrm{C}, \mathrm{~g})-b \Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}(\mathrm{D}, \mathrm{~g}) \ldots \\
\Delta G_{\mathrm{R}}^{\mathrm{o}}=\sum_{i} v_{i} \Delta G_{\mathrm{fm}}^{\mathrm{o}}(i)
\end{gathered}
$$

Section 6.9 Calculating Equilibrium Partial Pressures for Mixtures of Reacting Gases

Example $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are in a reaction vessel at 298 K and partial pressures 0.350 bar and 0.650 bar, respectively.
Calculate the gas partial pressures at equilibrium.
Data: at 298 K the equilibrium constant for the reaction $\mathbf{2} \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathbf{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is $K=3.01$

Notice that changes in the number of moles NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are linked by stoichiometry: $\Delta n_{\mathrm{NO} 2}=-2 \Delta n_{\mathrm{N} 2 \mathrm{O} 4}$

Also, in a reaction vessel at constant volume, the partial pressure of each gas is proportional to the number of moles of gas.

$$
p_{i}=\frac{R T}{V} n_{i}=\text { constant } \times n_{i}
$$

Example (cont.) Let x be the change in the $\mathrm{N}_{2} \mathrm{O}_{4}$ pressure.

$2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

initial pressures:
$p_{\mathrm{NO} 2 \text { (init) }} \quad p_{\mathrm{N} 2 \mathrm{O} 4 \text { (init) }}$
equilibrium pressures: $p_{\mathrm{NO} 2(\text { init })}-2 x \quad p_{\mathrm{N} 2 \mathrm{O} 4(\text { init })}+x$

$$
K=\frac{p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\mathrm{o}}}{\left(p_{\mathrm{NO} 2} / p^{\mathrm{o}}\right)^{2}}=\frac{(0.650+x)}{(0.350-2 x)^{2}}=3.01
$$

Solve for $x=-0.0486$. At equilibrium:

$$
\begin{aligned}
p_{\mathrm{NO} 2}=p_{\mathrm{NO} 2(\text { init })}-2 x=0.350-2(-0.0486) & =0.447 \mathrm{bar} \\
p_{\mathrm{N} 2 \mathrm{O} 4}=p_{\mathrm{N} 2 \mathrm{O} 4(\text { init })}+x=0.650+(-0.0486) & =0.601 \mathrm{bar}
\end{aligned}
$$

check: $0.601 /(0.447)^{2}=3.008$

Equilibrium Calculations

A systematic approach frequently works. Suggestions:

1. Write the balanced chemical reaction.
2. Write the equilibrium constant expression.
3. List the available information.
4. Assign a variable (e.g., x) to one of the unknown concentrations
5. Use stoichiometry to relate x to the other unknown concentrations.
6. Use the equilibrium constant expression to calculate x.
7. Calculate the reactant and product concentrations.
8. Check by using the concentrations to calculate K.

Section 6.10 Temperature Dependence of Equilibrium Constants

Helpful result from Section 6.3: $\left(\frac{\partial(G / T)}{\partial T}\right)_{p}=-\frac{H}{T^{2}}$
gives $\quad\left(\frac{\partial\left(G_{f} / T\right)}{\partial T}\right)_{p}-\left(\frac{\partial\left(G_{i} / T\right)}{\partial T}\right)_{p}=-\frac{H_{f}}{T^{2}}-\left(-\frac{H_{i}}{T^{2}}\right)$

$$
\left(\frac{\partial(\Delta G / T)}{\partial T}\right)_{p}=-\frac{\Delta H}{T^{2}}
$$

Why helpful? For equilibrium constants $\Delta G_{\mathrm{R}}{ }^{\mathrm{o}}=-R T \ln K$ and

$$
\frac{\Delta G_{\mathrm{R}}^{\circ}}{T}=-R \ln K
$$

Temperature Dependence of Equilibrium Constants

$$
\begin{gathered}
\left(\frac{\partial\left(\Delta G_{\mathrm{R}}^{\mathrm{o}} / T\right)}{\partial T}\right)_{p}=\frac{\mathrm{d}}{\mathrm{~d} T}\left(\frac{\Delta G_{\mathrm{R}}^{\mathrm{o}}}{T}\right)_{R}=\frac{\mathrm{d}}{\mathrm{~d} T} \\
\text { gives } \frac{\mathrm{d} \ln K}{\mathrm{~d} T}=\frac{\Delta H_{\mathrm{R}}^{\mathrm{o}}}{R T^{2}}
\end{gathered}
$$

Switched from a partial to an ordinary derivative. Why?

Significance?

(notice logarithmic relation)

- exothermic reactions $\left(\Delta H_{\mathrm{R}}{ }^{\mathrm{o}}<0\right)$ are less favorable as T increases
- endothermic reactions $\left(\Delta H_{\mathrm{R}}{ }^{\circ}>0\right)$ are more favorable as T increases
- given K values at a single temperature (e.g., 298.15 K), ΔH values from thermochemistry can be used to predict K at other temperatures
- chemical equilibrium constants measured at different temperatures can be used to calculate $\Delta H_{\mathrm{R}}{ }^{\circ}$ without thermochemistry

InK Plotted Against the Temperature (curved)

temperature T / K

Better: For a Linear Plot, Use

$$
\frac{\mathrm{d} \frac{1}{T}}{\mathrm{~d} T}=-\frac{1}{T^{2}} \quad \text { and } \quad \mathrm{d} \frac{1}{T}=-\frac{\mathrm{d} T}{T^{2}}
$$

to transform

$$
\frac{\mathrm{d} \ln K}{\mathrm{~d} T}=\frac{\Delta H_{\mathrm{R}}^{\circ}}{R T^{2}}
$$

to the van't Hoff equation

$$
\frac{\mathrm{d} \ln K}{\mathrm{~d} \frac{1}{T}}=-\frac{\Delta H_{\mathrm{R}}^{\mathrm{o}}}{R}
$$

van't Hoff Plot. Almost Linear Slope $-\Delta H^{\mathbf{0}} / \boldsymbol{R}$

van't Hoff Calculations: $\ln K$ as a Function of Temperature

$$
\mathrm{d} \ln K=-\frac{\Delta H_{\mathrm{R}}^{\mathrm{o}}}{R} \mathrm{~d}\left(\frac{1}{T}\right)
$$

$$
\int_{\ln K\left(T_{1}\right)}^{\ln K\left(T_{2}\right)} \mathrm{d} \ln K=-\int_{1 / T_{1}}^{1 / T_{2}} \frac{\Delta H_{\mathrm{R}}^{\mathrm{o}}}{R} \mathrm{~d}\left(\frac{1}{T}\right)
$$

If $\Delta H_{\mathrm{R}}{ }^{\circ}$ is constant from T_{1} to T_{2} :
(a good approximation for small temperature intervals)

$$
\ln K\left(T_{2}\right)-\ln K\left(T_{1}\right)=-\frac{\Delta H_{\mathrm{R}}^{\mathrm{o}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

Section 6.11 Chemical Reactions Involving Gases and Pure Solids or Pure Liquids

"Heterogenous" (Multiphase) Equilibria

Equilibrium-constant expressions contain the pressures of reacting gases, but not pressure terms for solids or liquids.

Example: Decomposition of solid calcium carbonate.*

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \boldsymbol{K}=\boldsymbol{p}_{\mathrm{CO} 2} / \boldsymbol{p}^{\mathbf{o}} \\
& \text { Are } \mathrm{CaCO}_{3}(\mathrm{~s}) \text { and } \mathrm{CaO}(\mathrm{~s}) \text { ignored? }
\end{aligned}
$$

*Why is this a "billion-dollar" reaction?

Effect of Pressure on the Gibbs Energy

From $\mathrm{d} G=-S \mathrm{~d} T+V \mathrm{~d} p$, get

$$
\left(\frac{\partial G}{\partial p}\right)_{T}=V \quad\left(\text { and } V / n=V_{\mathrm{m}} \text { per mole }\right)
$$

At 298 K and 1 bar, the molar volume of a gas is about 25 L , but typically less than 0.1 L for solids and liquids.

Useful result:

$$
\left(\frac{\partial G_{\mathrm{m}}}{\partial p}\right)_{T} \text { is negligibly small for solids and liquids }
$$

$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
 $$
K=p_{\mathrm{CO}_{2}} / p^{0}
$$

Only CO_{2} ? CaCO_{3} and CaO are ignored ? No!

at equilibrium:

$G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{CaCO}_{3}, \mathrm{~s}\right)=G_{\mathrm{m}}^{\mathrm{o}}(\mathrm{CaO}, \mathrm{s})+G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{CO}_{2}, \mathrm{~g}\right)+R T \ln \left(p_{\mathrm{CO} 2} / p^{\mathrm{o}}\right)$

$$
-\Delta G_{\mathrm{R}}{ }^{\mathrm{o}} / R T=\ln \left(p_{\mathrm{CO} 2} / p^{\mathrm{o}}\right)
$$

$$
K=\exp \left(-\Delta G_{\mathrm{R}}{ }^{0} / R T\right)=\left(p_{\mathrm{CO} 2} / p^{0}\right)
$$

$\Rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$ and $\mathrm{CaO}(\mathrm{s})$ are included in the standard $\Delta G_{R}{ }^{0}$ value

Heterogenous Equilibrium

Example
Solid ammonium hydrogen sulfide is placed in an evacuated flask at $25^{\circ} \mathrm{C}$. What is the total gas pressure* at equilibrium?

Data: $K=0.108$ at $25^{\circ} \mathrm{C}$
initial pressure:
equilibrium pressure:
0
$p_{\mathrm{NH} 3}$
$p_{\text {H2S }}$

$$
\begin{aligned}
p & =p_{\mathrm{NH} 3}+p_{\mathrm{H} 2 \mathrm{~S}} \\
p_{\mathrm{NH} 3} & =p_{\mathrm{H} 2 \mathrm{~S}}=p / 2
\end{aligned}
$$

$$
\begin{aligned}
K_{\mathrm{p}}=\left(p_{\mathrm{NH} 3} / p^{\mathrm{o}}\right)\left(p_{\mathrm{H} 2 \mathrm{~S}} / p^{\mathrm{o}}\right) & =\left(p / 2 p^{\mathrm{o}}\right)\left(p / 2 p^{\mathrm{o}}\right)=0.108 \\
\text { Solve for } p & =(4 \times 0.108)^{1 / 2}=\mathbf{0 . 6 5 7} \mathbf{b a r}
\end{aligned}
$$

*Why might it be important to know the decomposition pressure of $\mathrm{NH}_{4} \mathrm{HS}$?

Section 6.12 Equilibrium Constants in Terms of Molarities or Mole Fractions

Equilibrium Constants K_{p} for Ideal-Gas Reactions

$$
\begin{aligned}
& \boldsymbol{a} \mathbf{A}(\mathbf{g})+\boldsymbol{b} \mathbf{B}(\mathbf{g})+\ldots \rightarrow \underset{\mathrm{c}}{\mathbf{C}(\mathbf{g})+\boldsymbol{d} \mathbf{D}(\mathbf{g})+\ldots} \\
& v_{\mathrm{A}}=-a \quad v_{\mathrm{B}}=-b
\end{aligned}
$$

$$
K=\frac{\left(p_{\mathrm{C}} / p^{\circ}\right)^{c}\left(p_{\mathrm{D}} / p^{\circ}\right)^{d} \cdots}{\left(p_{\mathrm{A}} / p^{\circ}\right)^{a}\left(p_{\mathrm{B}} / p^{\circ}\right)^{b} \cdots}=\left(\frac{p_{\mathrm{A}}}{p^{\circ}}\right)^{\mathrm{vA}}\left(\frac{p_{\mathrm{B}}}{p^{\circ}}\right)^{\text {®B }}\left(\frac{p_{\mathrm{C}}}{p^{\circ}}\right)^{\text {C }}\left(\frac{p_{\mathrm{D}}}{p^{\circ}}\right)^{\mathrm{DD}} \cdots
$$

$$
\text { using equilibrium partial pressures } p_{\mathrm{A}}, p_{\mathrm{B}}, p_{\mathrm{C}}, p_{\mathrm{D}}, \ldots
$$

The terminology $\boldsymbol{K}_{\boldsymbol{p}}(=\boldsymbol{K})$ is often used for equilibrium constants defined this way.

Equilibrium Constants $\boldsymbol{K}_{\boldsymbol{c}}$ for Ideal-Gas Reactions

$a \mathbf{A}(\mathrm{~g})+b \mathbf{B}(\mathrm{~g})+\ldots \rightarrow c \mathbf{C}(\mathrm{~g})+d \mathbf{D}(\mathrm{~g})+\ldots$
Chemists frequently use equilibrium constants in terms of molarity concentrations, c_{i}.

$$
\begin{aligned}
& K_{p}=\left(\frac{p_{\mathrm{A}}}{p^{o}}\right)^{v \mathrm{~A}}\left(\frac{p_{\mathrm{B}}}{p^{o}}\right)^{v \mathrm{~B}}\left(\frac{p_{\mathrm{C}}}{p^{o}}\right)^{v \mathrm{C}}\left(\frac{p_{\mathrm{D}}}{p^{o}}\right)^{v \mathrm{D}} \ldots \\
& =\left(\frac{n_{\mathrm{A}} R T}{p^{\circ} V}\right)^{\nu \mathrm{A}}\left(\frac{n_{\mathrm{B}} R T}{p^{0} V}\right)^{\nu \mathrm{B}}\left(\frac{n_{\mathrm{C}} R T}{p^{0} V}\right)^{\nu \mathrm{C}}\left(\frac{n_{\mathrm{D}} R T}{p^{0} V}\right)^{\nu \mathrm{D}} \cdots \\
& =\left(\frac{n_{\mathrm{A}}}{V c^{\mathrm{o}}} \frac{c^{\mathrm{o}} R T}{p^{\mathrm{o}}}\right)^{v \mathrm{~A}}\left(\frac{n_{\mathrm{B}}}{V c^{\mathrm{o}}} \frac{c^{\mathrm{o}} R T}{p^{\mathrm{o}}}\right)^{\nu \mathrm{B}}\left(\frac{n_{\mathrm{C}}}{V c^{\mathrm{o}}} \frac{c^{\mathrm{o}} R T}{p^{\mathrm{o}}}\right)^{\nu \mathrm{C}}\left(\frac{n_{\mathrm{D}}}{V c^{\mathrm{o}}} \frac{c^{\mathrm{o}} R T}{p^{\mathrm{o}}}\right)^{v \mathrm{D}} \\
& =\left(\frac{c_{\mathrm{A}}}{c^{0}}\right)^{\nu \mathrm{A}}\left(\frac{c_{\mathrm{B}}}{c^{0}}\right)^{\nu \mathrm{B}}\left(\frac{c_{\mathrm{C}}}{c^{0}}\right)^{\nu \mathrm{C}}\left(\frac{c_{\mathrm{D}}}{c^{o}}\right)^{\nu \mathrm{D}} \cdots\left(\frac{c^{0} R T}{p^{0}}\right)^{\nu \mathrm{A}+\nu \mathrm{B}+\nu \mathrm{C}+\nu \mathrm{D}+\cdots} \\
& =K_{c}\left(\frac{c^{\mathrm{o}} R T}{p^{\mathrm{o}}}\right)^{v \mathrm{~A}+v \mathrm{~B}+\nu \mathrm{C}+\nu \mathrm{D}+\cdots}
\end{aligned}
$$

Equilibrium Constants $\boldsymbol{K}_{\boldsymbol{c}}$ for Ideal-Gas Reactions

$a \mathbf{A}(\mathrm{~g})+b \mathbf{B}(\mathrm{~g})+\ldots \rightarrow c \mathbf{C}(\mathrm{~g})+d \mathbf{D}(\mathrm{~g})+\ldots$

$$
K_{p}=K_{c}\left(\frac{c^{\circ} R T}{p^{\circ}}\right)^{\Delta n_{g}}
$$

$$
K_{c}=K_{p}\left(\frac{c^{\circ} R T}{p^{\circ}}\right)^{-\Delta n_{g}}
$$

$$
\Delta n_{g}=v_{\mathrm{A}}+v_{\mathrm{B}}+v_{\mathrm{C}}+v_{\mathrm{D}}+\cdots
$$

Example

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

$$
K_{c}=K_{p}\left(\frac{c^{\circ} R T}{p^{\circ}}\right)^{+1}=K_{p} \frac{c^{\circ} R T}{p^{\circ}}
$$

$$
\Delta n_{g}=-1
$$

Equilibrium Constants $\boldsymbol{K}_{\boldsymbol{x}}$ for Ideal-Gas Reactions

$a \mathbf{A}(\mathrm{~g})+b \mathbf{B}(\mathrm{~g})+\ldots \rightarrow c \mathbf{C}(\mathrm{~g})+d \mathbf{D}(\mathrm{~g})+\ldots$
Can also use equilibrium constants K_{x} in of gas mole fractions x_{i}.

$$
\begin{aligned}
K_{p} & =\left(\frac{p_{\mathrm{A}}}{p^{o}}\right)^{v \mathrm{~A}}\left(\frac{p_{\mathrm{B}}}{p^{o}}\right)^{\nu \mathrm{B}}\left(\frac{p_{\mathrm{C}}}{p^{o}}\right)^{\nu \mathrm{C}}\left(\frac{p_{\mathrm{D}}}{p^{o}}\right)^{\nu \mathrm{D}} \cdots \\
& =\left(\frac{p_{\mathrm{A}}}{p} \frac{p}{p^{o}}\right)^{v \mathrm{~A}}\left(\frac{p_{\mathrm{B}}}{p^{\mathrm{o}}} \frac{p}{p^{o}}\right)^{\nu \mathrm{B}}\left(\frac{p_{\mathrm{C}}}{p^{\mathrm{o}}} \frac{p}{p^{o}}\right)^{\nu \mathrm{C}}\left(\frac{p_{\mathrm{D}}}{p^{\mathrm{o}}} \frac{p}{p^{o}}\right)^{\nu \mathrm{D}} \cdots \\
& =\left(\frac{p_{\mathrm{A}}}{p}\right)^{v \mathrm{~A}}\left(\frac{p_{\mathrm{B}}}{p^{o}}\right)^{\nu \mathrm{B}}\left(\frac{p_{\mathrm{C}}}{p^{o}}\right)^{\nu \mathrm{C}}\left(\frac{p_{\mathrm{D}}}{p^{o}}\right)^{\nu \mathrm{D}} \cdots\left(\frac{p}{p^{o}}\right)^{v \mathrm{~A}+\nu \mathrm{B}+\nu \mathrm{C}+\nu \mathrm{D}+\cdots} \\
& =x_{\mathrm{A}}^{v \mathrm{~A}} x_{\mathrm{B}}^{\nu \mathrm{B}} x_{\mathrm{C}}^{\nu \mathrm{C}} x_{\mathrm{D}}^{\nu \mathrm{D}} \cdots\left(\frac{p}{p^{o}}\right)^{v \mathrm{~A}+\nu \mathrm{B}+\nu \mathrm{C}+\nu \mathrm{D}+\cdots} \\
& =K_{x}\left(\frac{p}{p^{\mathrm{o}}}\right)^{v \mathrm{~A}+\nu \mathrm{B}+\nu \mathrm{C}+\nu \mathrm{D}+\cdots}
\end{aligned}
$$

Section 6.13 Temperature and Pressure
 Dependence of the Extent of Reaction

See Sections 6.8 to 6.11

Section 6.14 Ammonia Synthesis - a Case Study
Optional reading assignment.

Section $6.15 U, H, C_{V}, C_{p}$ in Terms of Measurable Quantities

Done.

Section 6.16 ΔG for Unfolding RNA Molecules

Optional reading assignment.

Section 6.17 The Role of Mixing in Chemical Reaction Equilibrium

$2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Step I. Chemical Reaction (Only)

React 1 mol pure N_{2} and 2 mol pure O_{2} to form: $\mathbf{2}(\mathbf{1}-\varepsilon)$ mol pure $\mathrm{NO}_{2}+\varepsilon \mathrm{mol}$ pure $\mathrm{N}_{2} \mathrm{O}_{4}$

$$
\begin{aligned}
\Delta G_{\mathrm{I}(\text { React })} & =2(1-\varepsilon) \Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{NO}_{2}, \mathrm{~g}\right)+\varepsilon \Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~g}\right) \\
& =2 \Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{NO}_{2}, \mathrm{~g}\right)+\varepsilon\left[-2 \Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{NO}_{2}, \mathrm{~g}\right)+\Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~g}\right)\right]
\end{aligned}
$$

$$
\Delta G_{\mathrm{I}(\text { React })}=2 \Delta G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{NO}_{2}, \mathrm{~g}\right)+\varepsilon \Delta G_{\mathrm{R}}{ }^{\mathrm{o}}
$$

$$
\Delta G_{\mathrm{I}(\text { React })}=2 \Delta{G_{\mathrm{fm}}{ }^{\mathrm{o}}\left(\mathrm{NO}_{2}, \mathrm{~g}\right)+\varepsilon \Delta G_{\mathrm{R}}{ }^{\mathrm{o}}, ~}_{\text {a }}
$$

$$
\begin{aligned}
\varepsilon= & \text { extent of reaction } \\
& 0 \leq \varepsilon \leq 1
\end{aligned}
$$

$2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Step I. Chemical Reaction (Only)

$2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Step II. Mixing (Only)

Mix: $\quad 2(1-\varepsilon)$ mol pure $\mathrm{NO}_{2}+\varepsilon$ mol pure $\mathrm{N}_{2} \mathrm{O}_{4}$
From Section 6.6:

$$
\Delta G_{\mathrm{II}(\operatorname{mix})}=n_{\mathrm{NO} 2} R T \ln x_{\mathrm{NO} 2}+n_{\mathrm{N} 2 \mathrm{O} 4} R T \ln x_{\mathrm{N} 2 \mathrm{O} 4}
$$

The mole fractions are

$$
\begin{aligned}
& x_{\mathrm{NO} 2}=\frac{n_{\mathrm{NO} 2}}{n_{\mathrm{NO} 2}+n_{\mathrm{N} 2 \mathrm{O} 4}}=\frac{2(1-\varepsilon)}{2(1-\varepsilon)+\varepsilon}=\frac{2(1-\varepsilon)}{2-\varepsilon} \\
& x_{\mathrm{N} 2 \mathrm{O} 4}=\frac{n_{\mathrm{N} 2 \mathrm{O} 4}}{n_{\mathrm{NO} 2}+n_{\mathrm{N} 2 \mathrm{O} 4}}=\frac{\varepsilon}{2(1-\varepsilon)+\varepsilon}=\frac{\varepsilon}{2-\varepsilon}
\end{aligned}
$$

$$
\Delta G_{\mathrm{II}(\text { mix })}=2(1-\varepsilon) R T \ln \left(\frac{2-2 \varepsilon}{2-\varepsilon}\right)+\varepsilon R T \ln \left(\frac{\varepsilon}{2-\varepsilon}\right)
$$

$2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Step II. Mixing (Only)

$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Overall: React and Mix $\Delta G=\Delta G_{\text {I(react) }}+\Delta G_{\text {II(mix) }}$

$2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Summary

React 1 mol pure N_{2} and 2 mol pure O_{2} to form $2(1-\varepsilon) \mathrm{mol} \mathrm{NO}_{2} \underline{\text { mixed }}$ with $\varepsilon \mathrm{mol} \mathrm{N}_{2} \mathrm{O}_{4}$

$$
\begin{aligned}
\Delta G & =\Delta G_{\mathrm{Ifreact)}}+\Delta G_{\mathrm{IIfmix)}} \\
& =2 \Delta G_{\mathrm{fm}}{ }^{\circ}\left(\mathrm{NO}_{2}\right)+\varepsilon \Delta G_{\mathrm{R}}{ }^{\circ} \\
& +2(1-\varepsilon) R T \ln \left(\frac{2-2 \varepsilon}{2-\varepsilon}\right)+\varepsilon R T \ln \left(\frac{\varepsilon}{2-\varepsilon}\right)
\end{aligned}
$$

Exercise Show that the minimum in ΔG as a function of ε gives the same equilibrium composition calculated using

$$
K=\frac{p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\circ}}{\left(p_{\mathrm{NO} 2} / p^{\circ}\right)^{2}}
$$

Practical Considerations

Thermodynamic equilibrium constants such as

$$
K_{p}=\frac{p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\mathrm{o}}}{\left(p_{\mathrm{NO} 2} / p^{\mathrm{o}}\right)^{2}} \quad K_{c}=\frac{c_{\mathrm{N} 2 \mathrm{O} 4} / c^{\mathrm{o}}}{\left(c_{\mathrm{NO} 2} / c^{\mathrm{o}}\right)^{2}}
$$

for the reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are dimensionless pure numbers (no units), by definition.

In practice, for convenience, $p^{0}=1$ bar and $c^{0}=1 \mathrm{~mol} \mathrm{~L}^{-1}$ are frequently omitted, to give

$$
K_{p}=\frac{p_{\mathrm{N} 2 \mathrm{O} 4}}{\left(p_{\mathrm{NO} 2}\right)^{2}}
$$

$$
K_{c}=\frac{c_{\mathrm{N} 2 \mathrm{O} 4}}{\left(c_{\mathrm{NO} 2}\right)^{2}}
$$

No numerical errors are made, if p^{0} and c^{0} are unity.

!!! Warning !!!

Equilibrium constant expressions such as

$$
K_{p}=\frac{p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\mathrm{o}}}{\left(p_{\mathrm{NO} 2} / p^{\mathrm{o}}\right)^{2}}
$$

developed in this Chapter for ideal gases are accurate for real gases only in the limit $p \rightarrow 0$.

For real gases (the subject of the next Chapter), corrections for nonideal behavior are made using "fugacity coefficients", such as $\gamma_{\mathrm{N} 2 \mathrm{O} 4}$ and $\gamma_{\mathrm{NO} 2}$.

$$
K_{p}=\frac{\gamma_{\mathrm{N} 2 \mathrm{O} 4} p_{\mathrm{N} 2 \mathrm{O} 4} / p^{\mathrm{o}}}{\left(\gamma_{\mathrm{NO} 2} p_{\mathrm{NO} 2} / p^{\mathrm{o}}\right)^{2}}
$$

