Chapter 7. Properties of Real Gases

Summary

- the ideal gas law $\boldsymbol{p} \boldsymbol{V}=\boldsymbol{n} \boldsymbol{R} \boldsymbol{T}$ is extremely useful, but reliable only at low pressures
- equations of state for real gases are essential for the design of engines, pipelines, and industrial equipment
- thermodynamic properties can be evaluated from equations of state to help understand real gases
- the behavior of real gases provides valuable scientific information about molecular interactions

Sections 7.1 to 7.3 Ideal and Real Gases

Ideal Gas

- no molecular interactions
- no molecular volume (point masses)

$$
\text { equation of state } \quad p=\frac{n R T}{V}=\frac{R T}{V_{\mathrm{m}}}
$$

Real Gases

- attractive and repulsive intermolecular forces
- non-zero molecular volume
- $p V_{\mathrm{m}}=R T$ is a "limiting law"

$$
p=\lim _{V_{\mathrm{m}} \rightarrow \infty} \frac{R T}{V_{\mathrm{m}}}
$$

Compression Factor Z

- \boldsymbol{Z} is dimensionless (no units)

$$
Z=\frac{p V}{n R T}=\frac{p V_{\mathrm{m}}}{R T}
$$

- convenient interpretation:

$$
Z=\frac{p}{\frac{n R T}{V}}=\frac{p}{p_{\text {ideal }}}
$$

- $Z=1$ for ideal gases (at all temperatures and pressures)
- $Z<1$ pressure lower than expected relative to an ideal gas (attractive forces dominate, $p<p_{\text {ideal }}$)
- $Z>1$ pressure higher than expected relative to an ideal gas (repulsive forces dominate, $p>p_{\text {ideal }}$)

Compression Factor $Z=p V / n R T$ of Methane

Equations of State for Real Gases

- van der Waals equation $\quad p=\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}}$
- $\underset{\text { (different } a \text { and } b \text { parameters) }}{\text { Redlich-Kwong equation }} \quad p=\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{\sqrt{T}} \frac{1}{V_{\mathrm{m}}\left(V_{\mathrm{m}}+b\right)}$
- virial equation (a power series in $1 / V_{\mathrm{m}}$)

$$
p=R T\left(\frac{1}{V_{\mathrm{m}}}+\frac{B(T)}{V_{\mathrm{m}}^{2}}+\frac{C(T)}{V_{\mathrm{m}}^{3}}+\cdots\right)
$$

- many other equations of state are available

Compression Factor of N_{2} at 200 K and 400 K

Isotherm at $426 \mathrm{~K}\left(153{ }^{\circ} \mathrm{C}\right)$ for CO_{2}

Selected van der Waals a and b Parameters

Gas	$\boldsymbol{a} /$ bar L$^{2} \mathrm{~mol}^{-2}$	$\boldsymbol{b} / \mathrm{L} \mathrm{mol}^{-1}$
He	0.0358	0.0240
Ne	0.220	0.0176
Ar	1.34	0.0317
Kr	2.36	0.0399
CH_{4}	2.28	0.0427
NH_{3}	4.24	0.0373
$\mathrm{C}_{3} \mathrm{H}_{8}$	9.38	0.0903

- Why does parameter a for the noble gases increase with the number of electrons per atom or molecule?
- CH_{4} and NH_{3} both have 10 electrons. Why is \boldsymbol{a} for NH_{3} significantly larger than a for CH_{4} ?
- Parameter b is similar the molar volume of the liquefied gases.

Molecular Interactions Cause Nonideal Gas Behavior

Potential Energy $V(r)$ of

 a Pair of Molecules$r=$ separation distance

Second Virial Coefficient

$$
B(T)=2 \pi N_{\mathrm{A}} \int_{0}^{\infty}\left(1-\mathrm{e}^{-V(r) / k T}\right) r^{2} \mathrm{~d} r
$$

Second Virial Coefficient $B(T)$ of an Ideal Gas that Dimerizes

$$
\mathbf{A}_{1}(g)+\mathbf{A}_{1}(g) \leftrightarrow \mathbf{A}_{2}(g)
$$

equilibrium constant $\quad K(T)=\frac{p_{\mathrm{A} 2}}{p_{\mathrm{A} 1}^{2}}$
For small extents of dimerization, the $2^{\text {nd }}$ virial coefficient is

$$
B(T)=-R T K(T)
$$

Significance This result illustrates that $B(T)$ measures pair-wise molecular interactions.

Why is $B(T)$ negative? One less mole of gas for every mole of A_{2} dimers that forms ($\left.\Delta \boldsymbol{n}_{\mathrm{g}}=\mathbf{- 1} \mathbf{~ m o l}\right)$.

van der Wails a, b Parameters and the end Virial Coefficient $B(T)$

$$
p=\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}} \quad \quad \text { multiply by } \frac{V_{\mathrm{m}}}{R T}
$$

$$
\frac{p V_{\mathrm{m}}}{R T}=Z=\frac{V_{\mathrm{m}}}{V_{\mathrm{m}}-b}-\frac{a}{R T} \frac{1}{V_{\mathrm{m}}}
$$

$$
=1+\frac{b}{V_{\mathrm{m}}}+\frac{b^{2}}{V_{\mathrm{m}}^{2}}+\frac{b^{3}}{V_{\mathrm{m}}^{3}}+\cdots-\frac{a}{R T} \frac{1}{V_{\mathrm{m}}}
$$

$$
=1+\left(b-\frac{a}{R T}\right) \frac{1}{V_{\mathrm{m}}}+\frac{b^{2}}{V_{\mathrm{m}}^{2}}+\frac{b^{3}}{V_{\mathrm{m}}^{3}}+\cdots
$$

$$
=1+\frac{B(T)}{V_{\mathrm{m}}}+\frac{C(T)}{V_{\mathrm{m}}^{2}}+\cdots
$$

$$
B(T)=b-\frac{a}{R T}
$$

The second virial coefficient $B(T)$, a measure of the pairwise interaction of molecules, and the van der Waals

$$
B(T)=b-\frac{a}{R T}
$$ a and b parameters are related.

Low Temperature Limit ($1 / T \rightarrow \infty$)

$$
B(T)=-\frac{a}{R T}
$$

attractive forces dominate

High Temperature Limit ($\mathbf{1 / T} \boldsymbol{\rightarrow} \mathbf{0}$)

$B(T)=b$
repulsive forces dominate

At the Boyle Temperature ($\boldsymbol{T}_{\mathrm{B}}=\boldsymbol{a} / \boldsymbol{R b}$)
$B\left(T_{\mathrm{B}}\right)=0=b-\frac{a}{R T_{\mathrm{B}}} \quad$ attractive and repulsive forces balanced

TABLE 7.3			
Temperatures of Selected Gases			
Temp			
Gas	$T_{B}(K)$	Gas	$T_{B}(\mathrm{~K})$
He	23	O_{2}	400.
H_{2}	110.	CH_{4}	510.
Ne	122	Kr	575
$\mathrm{~N}_{2}$	327	Ethene	735
CO	352	$\mathrm{H}_{2} \mathrm{O}$	1250

Source: Calculated from data in Lide, D. R., ed. CRC Handbook of Thermophysical and
Thermochemical Data. Boca Raton, FL: CRC Press, 1994.
(C) 2013 Pearson Education, Inc.

Gases can be cooled by expansion at temperatures below $T_{\text {Boyle }}$.

Evaluation of Second Virial Coefficient $B(T)$ from Experimental $p-V-T$ Data

Virial equation $\quad \frac{p V_{\mathrm{m}}}{R T}=Z=1+\frac{B(T)}{V_{\mathrm{m}}}+\frac{C(T)}{V_{\mathrm{m}}^{2}}+\cdots$
rearranges to

$$
(Z-1) V_{\mathrm{m}}=B(T)+\frac{C(T)}{V_{\mathrm{m}}}+\cdots
$$

Plot $(Z-1) V_{\mathrm{m}}$ against $1 / V_{\mathrm{m}}$

If the plot is linear:

```
                                    intercept = B(T)
```

slope $=C(T)$
$D(T)$ and higher virial coefficients are negligible

Equations of State for Gases

- ideal gas equation
- van der Waals equation
- Redlich-Kwong equation
- virial equation
- etc. ...

Isotherm at $310 \mathrm{~K}\left(37{ }^{\circ} \mathrm{C}\right)$ for CO_{2}

Van der Waals Isotherms for CO_{2} in the gas + liquid region (< 304 K)

Why are the isotherms at $274 \mathrm{~K}, 258 \mathrm{~K}, 243 \mathrm{~K}$ physically unreasonable?

Isotherms for $\mathbf{C O}_{2}$

Liquid $\mathbf{C O}_{\mathbf{2}}$ can form at temperatures below $304.12 \mathrm{~K}\left(30.98^{\circ} \mathrm{C}\right)$

258 K Isotherm for CO_{2}

Bubble Points and Dew Points

De-compress liquid CO_{2} at 258 K . First gas bubbles form here
1

Compress
CO_{2} gas at 258 K .

First liquid droplets (CO_{2} "dew")
form here

Critical CO_{2} Isotherm at 304.12 K
a "special" isotherm

Critical Point (•)

a mathematical inflection point

$$
\begin{aligned}
& \left(\frac{\partial p}{\partial V_{\mathrm{m}}}\right)_{T=T_{\mathrm{c}}}=0 \\
& \left(\frac{\partial^{2} p}{\partial V_{\mathrm{m}}^{2}}\right)_{T=T_{\mathrm{c}}}=0 \\
& \mathbf{a t} \\
& T_{\mathrm{c}}=304.12 \mathrm{~K} \\
& p_{\mathrm{c}}=73.75 \mathrm{bar}
\end{aligned}
$$

Significance of the Critical Point

$$
\left(\frac{\partial p}{\partial V_{\mathrm{m}}}\right)_{T=T_{\mathrm{c}}}=0
$$

$$
\left(\frac{\partial^{2} p}{\partial V_{\mathrm{m}}^{2}}\right)_{T=T_{\mathrm{c}}}=0
$$

- T_{c} is maximum temperature at which vapor and liquid co-exist
- approaching the critical point from lower temperatures:
- liquid and gas densities become identical
- meniscus disappears
- liquid and vapor phases form a single fluid
- infinite isothermal compressibility at the critical point

$$
\kappa_{T}=-\frac{1}{V_{\mathrm{m}}}\left(\frac{\partial V_{\mathrm{m}}}{\partial p}\right)_{T} \rightarrow \infty
$$

The Densities of Liquid Water and Water Vapor Become Identical at the Critical Point

The Enthalpy of Vaporization of Water Drops to Zero at the Critical Point

Critical Constants of Pure Substances

Substance	$T_{\mathrm{c}} / \mathbf{K}$		$p_{c} /$ bar	$V_{\mathrm{mc}} / \mathbf{L} \mathrm{m}$	l^{-1}	$Z_{\text {c }}$
He	5.25	why increasing	2.27	0.0573		0.301
Ne	44.49		26.79	0.0419		0.303
Ar	150.86		? 48.98	0.0746		0.291
Kr	209.35		54.3	0.0923		0.288
Xe	289.74		$\checkmark_{58.4}$	0.1180		0.286
H_{2}	32.98		12.93	0.0642		0.303
O_{2}	154.58		50.43	0.0734		0.288
N_{2}	126.20		33.98	0.0901		0.292
CO_{2}	304.13		73.75	0.0941		0.274
CH_{4}	190.56		45.99	0.0986		0.286
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	305.32		48.72	0.1455		0.279
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	369.83		42.48	0.2000		0.276
$\mathrm{H}_{2} \mathrm{O}$	647.14	$\begin{aligned} & \text { why so } \\ & \text { high? } \end{aligned}$	220.64	$\begin{aligned} & 0.0559 \\ & 0.0725 \end{aligned}$	why a 0.229	
NH_{3}	405.40		113.53		bit 1	0.244

Notice: $T_{\mathrm{c}}, p_{\mathrm{c}}$, and V_{mc} vary widely, but Z_{c} is nearly constant (important later).

Section 7.4 Law of Corresponding States

Instead of trying to develop van der Waals, Redlich-Kwong, virial, Beattie-Bridgeman, ... equations,

can Mother Nature provide a universal real gas equation of state?

Hint. Notice:

- $T_{\mathrm{c}}, p_{\mathrm{c}}$, and V_{mc} for different gases vary widely
- but Z_{c} is nearly constant (important later).

Evaluation of van der Waals a, b parameters from Critical Data

On the critical isotherm $\left(T=T_{\mathrm{c}}\right)$ at the critical point:

$$
\begin{aligned}
& \left(\frac{\partial p}{\partial V_{\mathrm{m}}}\right)_{T=T_{\mathrm{c}}}=0 \\
& \left(\frac{\partial^{2} p}{\partial V_{\mathrm{m}}^{2}}\right)_{T=T_{\mathrm{c}}}=0
\end{aligned}
$$

Substitute p into these equations from the van der Waals equation

$$
p=\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}}
$$

Evaluation of van der Waals a, b parameters from Critical Data

at $T_{\mathrm{c}}, p_{\mathrm{c}}$, and V_{mc} :

$$
\begin{aligned}
& \frac{\partial}{\partial V_{\mathrm{m}}}\left(\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}}\right)_{T=T_{\mathrm{c}}}=0 \\
& \frac{\partial^{2}}{\partial V_{\mathrm{m}}^{2}}\left(\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}}\right)_{T=T_{\mathrm{c}}}=0
\end{aligned}
$$

differentiate to get:

$$
\begin{aligned}
-\frac{R T_{\mathrm{c}}}{\left(V_{\mathrm{mc}}-b\right)^{2}}+\frac{2 a}{V_{\mathrm{mc}}^{3}} & =0 & & \text { Eq (I) } \\
\frac{2 R T_{\mathrm{c}}}{\left(V_{\mathrm{mc}}-b\right)^{3}}-\frac{6 a}{V_{\mathrm{mc}}^{4}} & =0 & & \text { Eq (II) }
\end{aligned}
$$

Evaluation of van der Waals a, b parameters from Critical Data

Divide Eq (I) by Eq (II)

$$
\frac{1}{2}\left(V_{\mathrm{mc}}-b\right)=\frac{V_{\mathrm{mc}}}{3}
$$

Substitute $V_{\mathrm{mc}}=3 b$ into $\mathrm{Eq}(\mathrm{I})$, get

$$
T_{\mathrm{c}}=\frac{8}{27 R} \frac{a}{b}
$$

Eq (III)

Then $\quad p_{\mathrm{c}}=\frac{R T_{\mathrm{c}}}{V_{\mathrm{mc}}-b}-\frac{a}{V_{\mathrm{mc}}^{2}}=\frac{R 8 a}{27 R b} \frac{1}{3 b-b}-\frac{a}{(3 b)^{2}}$

Gives

$$
p_{\mathrm{c}}=\frac{a}{27 b^{2}}
$$

Eq (IV)

Evaluation of van der Waals $\boldsymbol{a}, \boldsymbol{b}$ parameters from Critical Data

Using thermometers and pressure gauges, T_{c} and p_{c} can usually be measured more precisely than V_{mc}.

Solving Eq (III) and Eq (IV), the van der Waals a and b parameters in terms of T_{c} and p_{c} are

$$
a=\frac{27 R^{2} T_{c}^{2}}{64 p_{\mathrm{c}}}
$$

$$
b=\frac{R T_{\mathrm{c}}}{8 p_{\mathrm{c}}}
$$

Evaluation of van der Waals a, b parameters from Critical Data

Just a mathematical exercise? No!
Important results (including a Nobel Prize for Prof. van der Waals).
Example The critical compression factor Z_{c} for a van der Waals gas is

$$
Z_{\mathrm{c}}=\frac{p_{\mathrm{c}} V_{\mathrm{mc}}}{R T_{\mathrm{c}}}=\frac{\left(\frac{a}{27 b^{2}}\right)(3 b)}{R\left(\frac{8 a}{27 b R}\right)}=\frac{3}{8}
$$

Only an approximate result. But the $Z_{c}=3 / 8$ prediction suggests all gases behave "similarly" at the critical point

Law of Corresponding States

$p-V-T$ calculations use arbitrary "human-defined" units:

- pressure in bars, Pa , atm, ...
- volume in liters, $\mathrm{mL}, \mathrm{m}^{3}, \ldots$
- temperature in $\mathrm{K},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \ldots$

If gases behave similarly at critical points, instead of using arbitrary units, why not try natural units for each gas:

- pressure in units of p_{c}
- volume in units of V_{mc}
- temperature in units of T_{c}

Reduced Pressure, Temperature and Pressure

reduced pressure $\quad p_{\mathrm{r}}=\frac{p}{p_{\mathrm{c}}}$ reduced volume

$$
V_{\mathrm{r}}=\frac{V_{\mathrm{m}}}{V_{\mathrm{mc}}}
$$

reduced temperature $\quad T_{\mathrm{r}}=\frac{T}{T_{\mathrm{c}}}$
$p=p_{\mathrm{c}} p_{\mathrm{r}}$
$T=T_{\mathrm{c}} T_{\mathrm{r}}$
$V_{\mathrm{m}}=V_{\mathrm{mc}} V_{\mathrm{r}}$

Law of Corresponding States

Example. Calculate the temperature and pressure of CO_{2} corresponding to CH_{4} at 200 K and 50.0 bar.

Data

$$
\begin{array}{lll}
\mathrm{CO}_{2} & T_{\mathrm{c}}=304.13 \mathrm{~K} & p_{\mathrm{c}}=73.75 \mathrm{bar} \\
\mathrm{CH}_{4} & T_{\mathrm{c}}=190.56 \mathrm{~K} & p_{\mathrm{c}}=45.99 \mathrm{bar}
\end{array}
$$

For CH_{4} at 200 K and 50.0 bar:

$$
\begin{aligned}
& T_{\mathrm{r}}=200 \mathrm{~K} / 190.56 \mathrm{~K}=1.050 \\
& p_{\mathrm{r}}=50.0 \mathrm{bar} / 45.99 \mathrm{bar}=1.088
\end{aligned}
$$

For CO_{2} at the corresponding state $\left(T_{\mathrm{r}}=1.050, p_{\mathrm{r}}=1.088\right)$:

$$
\begin{aligned}
& T=T_{\mathrm{r}} \times T_{\mathrm{c}}=1.050 \times 304.13 \mathrm{~K}=319.3 \mathrm{~K} \\
& p=p_{\mathrm{r}} \times p_{\mathrm{c}}=1.088 \times 73.75 \mathrm{bar}=80.24 \mathrm{bar}
\end{aligned}
$$

Reduced van der Waals Equation

Substitute

$$
\begin{aligned}
& p=p_{\mathrm{c}} p_{\mathrm{r}} \quad V_{\mathrm{m}}=V_{\mathrm{mc}} V_{\mathrm{r}} \quad T= \\
& a=\frac{27 R^{2} T_{c}^{2}}{64 p_{\mathrm{c}}} \quad b=\frac{R T_{\mathrm{c}}}{8 p_{\mathrm{c}}}
\end{aligned}
$$

$$
T=T_{\mathrm{c}} T_{\mathrm{r}}
$$

into the van der Waals equation $\quad p=\frac{R T}{V_{\mathrm{m}}-b}-\frac{a}{V_{\mathrm{m}}^{2}}$

$$
p_{\mathrm{c}} p_{\mathrm{r}}=\frac{R T_{\mathrm{c}} T_{\mathrm{r}}}{V_{\mathrm{mc}} V_{\mathrm{r}}-\frac{R T_{\mathrm{c}}}{8 p_{\mathrm{c}}}}-\frac{\left(\frac{27 R^{2} T_{\mathrm{c}}^{2}}{64 p_{\mathrm{c}}}\right)}{V_{\mathrm{mc}}^{2} V_{\mathrm{r}}^{2}}
$$

Reduced van der Waals Equation

$$
p_{\mathrm{r}}=\frac{T_{\mathrm{r}}}{\frac{p_{\mathrm{c}} V_{\mathrm{mc}}}{R T_{\mathrm{c}}} V_{\mathrm{r}}-\frac{1}{8}}-\frac{27}{64} \frac{R^{2} T_{\mathrm{c}}^{2}}{p_{\mathrm{c}}^{2} V_{\mathrm{mc}}^{2}} \frac{1}{V_{\mathrm{r}}^{2}}
$$

finally, use $\quad Z_{\mathrm{c}}=\frac{p_{\mathrm{c}} V_{\mathrm{mc}}}{R T_{\mathrm{c}}}=\frac{3}{8} \quad$ to get

$$
p_{\mathrm{r}}=\frac{8}{3} \frac{T_{\mathrm{r}}}{V_{\mathrm{r}}-\frac{1}{3}}-\frac{3}{V_{\mathrm{r}}^{2}}
$$

Significance

- same reduced equation for all gases
- no "human-defined" units
- no gas-specific a or b parameters
- no "human-defined" constants (e.g., R)

Law of Corresponding States

- the van der Waals equation is not always accurate, especially near the critical point and liquid + vapor region
- OK, but the reduced van der Waals equation suggests different gases have similar ("corresponding") properties at identical values of the scaled variables: $p_{\mathrm{r}} V_{\mathrm{r}} \quad T_{\mathrm{r}}$

Is there a "universal" equation of state for real gases?

Try plotting compression factors as a function of reduced temperature and pressure.

Success!

Compression Factors for Different Gases as a Function of Reduced Pressure and Temperature

Comparison Z values plotted for non-reduced p and T are "all over the place". No apparent pattern. Example:

Compression Factors at $400 \mathrm{~K}_{\mathrm{for}} \mathrm{H}_{\mathbf{2}}, \mathrm{O}_{2}$ and Ethylene

Section 7.5 Gibbs Energies, Chemical Potentials and Equilibrium Constants for Real Gases

(no testing on material in this Section)

- many physical and chemical processes occur at fixed T, p
- $\Delta G_{T, p} \leq 0$ predicts spontaneous and equilibrium processes under these conditions
- Last Chapter, changes in the Gibbs energy and chemical potential (Gibbs energy per mole) were calculated for ideal gases
- Important: How are the Gibbs energy and chemical potential of nonideal real gases altered by molecular interactions?

Gibbs Energy of an Ideal Gas

Recall $\mathbf{d} \boldsymbol{G}=-\mathbf{S d} \boldsymbol{T}+\boldsymbol{V} \mathbf{d} \boldsymbol{p}$ for the Gibbs energy gives

$$
\begin{gathered}
\left(\frac{\partial G_{\mathrm{m}}}{\partial p}\right)_{T}=V_{\mathrm{m}} \\
G_{\mathrm{m}}(T, p)=G_{\mathrm{m}}^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+\int_{p^{\circ}}^{p}\left(\frac{\partial G}{\partial p}\right)_{T} \mathrm{~d} p=G_{\mathrm{m}}^{\mathrm{o}}\left(T, p^{\circ}\right)+\int_{p^{\circ}}^{p} V_{\mathrm{m}} \mathrm{~d} p
\end{gathered}
$$

For an ideal gas $\left(\boldsymbol{V}_{\mathrm{m}}=\boldsymbol{R} \boldsymbol{T} / \boldsymbol{p}\right)$:

$$
G_{\mathrm{m}}^{\text {ideal }}(T, p)=G_{\mathrm{m}}^{\mathrm{o}}\left(T, p^{\circ}\right)+\int_{0}^{p} \frac{R T}{p} \mathrm{~d} p
$$

$$
G_{\mathrm{m}}^{\text {ideal }}(T, p)=G_{\mathrm{m}}^{\mathrm{o}}\left(T, p^{\circ}\right)+R T \ln \left(p / p^{\circ}\right)
$$

Gibbs Energy of a Real Gas - the Fugacity

For a real gas $\left(\boldsymbol{V}_{\mathbf{m}}=\boldsymbol{Z R T} / \boldsymbol{p}\right)$, Lewis suggested keeping the same mathematical form as the expression for $G_{\mathrm{m}}{ }^{\text {ideal }}$ by replacing the pressure \boldsymbol{p} with the fugacity \boldsymbol{f}.

$$
\begin{aligned}
G_{\mathrm{m}}^{\text {real }}(T, p) & =G_{\mathrm{m}}^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+R T \ln \left(f / p^{\mathrm{o}}\right) \\
& =G_{\mathrm{m}}^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+R T \ln \left(\gamma p / p^{\mathrm{o}}\right)
\end{aligned}
$$

real gas

The fugacity coefficient γ is correction factor applied to the pressure to give the fugacity.

All gases are ideal as the pressure drops to zero:

$$
\begin{aligned}
& f \rightarrow p
\end{aligned} \quad \text { as } \quad p \rightarrow 0
$$

Fugacity Calculations for Nonideal Gases

$$
\begin{gathered}
G_{\mathrm{m}}^{\text {real }}(T, p)-G_{\mathrm{m}}^{\text {ideal }}(T, p)=G_{\mathrm{m}}^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+R T \ln \left(f / p^{\mathrm{o}}\right)-G_{\mathrm{m}}^{\mathrm{o}}\left(T, p^{\mathrm{o}}\right)+R T \ln \left(p / p^{\mathrm{o}}\right) \\
G_{\mathrm{m}}^{\text {real }}(T, p)-G_{\mathrm{m}}^{\text {ideal }}(T, p)=R T \ln (f / p)=R T \ln (\gamma)
\end{gathered}
$$

$$
G_{\mathrm{m}}^{\mathrm{real}}(T, p)-G_{\mathrm{m}}^{\text {ideal }}(T, p)=R T \int_{0}^{p} \frac{Z-1}{p} \mathrm{~d} p=R T \ln (f / p)=R T \ln (\gamma)
$$

$$
\begin{aligned}
& G_{\mathrm{m}}^{\text {real }}(T, p)-G_{\mathrm{m}}^{\text {ideal }}(T, p)=\left(G_{\mathrm{m}}^{\text {val }}(T, 0)+\int_{0}^{p} V_{\mathrm{m}}^{\text {real }} \mathrm{d} p\right)-\left(G_{\mathrm{m}}^{\text {ideal }}(T, 0)+\int_{0}^{p} V_{\mathrm{m}}^{\text {ideal }} \mathrm{d} p\right) \\
& G_{\mathrm{m}}^{\mathrm{real}}(T, p)-G_{\mathrm{m}}^{\mathrm{ideal}}(T, p)=\int_{0}^{p}\left(V_{\mathrm{m}}^{\text {real }}-\frac{R T}{p}\right) \mathrm{d} p=\int_{0}^{p} \frac{R T}{p}\left(\frac{p V_{\mathrm{m}}^{\text {real }}}{R T}-1\right) \mathrm{d} p
\end{aligned}
$$

Gibbs Energies of Real and Ideal Gases

$$
G_{\mathrm{m}}^{\text {real }}-G_{\mathrm{m}}^{\text {ideal }}=\int_{0}^{p} \frac{Z-1}{p} \mathrm{~d} p
$$

at high pressures

$$
G_{\mathrm{m}}^{\text {real }}>G_{\mathrm{m}}^{\text {ideal }}
$$

at moderate pressures

$$
G_{\mathrm{m}}^{\text {real }}<G_{\mathrm{m}}^{\text {ideal }}
$$

in the limit $p \rightarrow 0$

$$
G_{\mathrm{m}}^{\mathrm{real}}=G_{\mathrm{m}}^{\mathrm{ideal}}
$$

Fugacity Coefficient $\gamma=f / p$

$$
\begin{aligned}
G_{\mathrm{m}}^{\text {real }}-G_{\mathrm{m}}^{\mathrm{ideal}} & =R T \ln (f / p) \\
& =R T \ln \gamma
\end{aligned}
$$

Fugacity Coefficients from Corresponding States

Important Chemical Applications of the Fugacity

Example Chemical equilibrium for the famous ammonia synthesis reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

is usually written for ideal gases as

$$
K=\frac{\left(p_{\mathrm{NH} 3} / p^{\circ}\right)^{2}}{\left(p_{\mathrm{N} 2} / p^{\circ}\right)\left(p_{\mathrm{H} 2} / p^{\circ}\right)^{3}}
$$

or

$$
K=\frac{\left(p_{\mathrm{NH} 3}\right)^{2}}{p_{\mathrm{N} 2}\left(p_{\mathrm{H} 2}\right)^{3}}
$$

But wait!

Important Chemical Applications of the Fugacity

Ammonia is produced industrially (a billion-dollar business) at hundreds of bars pressures, where the gases are strongly nonideal.

Ammonia yields calculated assuming ideal gases can be in error by orders of magnitude.

Ammonia production plants (and many other industrial processes) are designed and operated using fugacities.

$$
K=\frac{\left(f_{\mathrm{NH} 3}\right)^{2}}{f_{\mathrm{N} 2}\left(f_{\mathrm{H} 2}\right)^{3}} \quad\left(\operatorname{not} \quad K=\frac{\left(p_{\mathrm{NH} 3}\right)^{2}}{p_{\mathrm{N} 2}\left(p_{\mathrm{H} 2}\right)^{3}}\right)
$$

Chemical Potential

The Gibbs energy per mole of a substance $\left(G_{\mathrm{m}}\right)$ is frequently called chemical potential (μ).

For a pure substance: $\mu=G_{\mathrm{m}}=\frac{G}{n}$

Chemical potential of substance i in a mixture:

$$
\mu_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{k+i}}
$$

For an ideal gas:

$$
\mu_{i}=\mu_{i}^{\mathrm{o}}+R T \ln \left(p_{i} / p^{\mathrm{o}}\right)
$$

For an real gas:

$$
\mu_{i}=\mu_{i}^{\mathrm{o}}+R T \ln \left(f_{i} / p^{\mathrm{o}}\right)
$$

Often abbreviated: $\quad \mu_{i}=\mu_{i}^{\mathrm{o}}+R T \ln p_{i}$

$$
\mu_{i}=\mu_{i}^{\mathrm{o}}+R T \ln f_{i}
$$

Chapter 8. Phase Diagrams and the Stability of Solids, Liquids and Gases

Summary

- phase diagrams are used to provide graphical representations of conditions required for the existence of solids, liquids or vapors
- the stability of different phases is related to changes in the Gibbs energy with temperature and pressure
- the phase rule is introduced to predict the number of different phases that can co-exist at equilibrium
- the effects of surface tension at the boundary between phases are introduced

Vapor Pressure Phase Diagram for Water

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathrm{H}_{2} \mathrm{O}$ (gas)

Equilibrium constant $K=p_{\mathrm{H} 2 \mathrm{O}}$

Data at $25{ }^{\circ} \mathrm{C}$:

$$
\begin{aligned}
\Delta H^{\circ} & \left.=\Delta H_{\mathrm{ff}^{\circ}}{ }^{(} \mathrm{H}_{2} 0, \mathrm{~g}\right)-\Delta H_{\mathrm{fm}_{\mathrm{m}}{ }^{\circ}\left(\mathrm{H}_{2} 0, l\right)} \\
& =-241,818 \mathrm{~J} \mathrm{~mol}^{-1} \quad-\left(-285,830 \mathrm{~J} \mathrm{~mol}^{-1}\right) \\
& =44,012 \mathrm{~J} \mathrm{~mol}^{-1} \\
\Delta G^{\mathrm{o}} & =\Delta G_{\mathrm{ff}^{\circ}}{ }^{\circ}\left(\mathrm{H}_{2} 0, \mathrm{~g}\right)-\Delta G_{\mathrm{fm}^{\circ}}{ }^{\circ}\left(\mathrm{H}_{2} 0, l\right) \\
& =-228,572 \mathrm{~J} \mathrm{~mol}^{-1} \quad-\left(-237,129 \mathrm{~J} \mathrm{~mol}^{-1}\right) \\
& =8,557 \mathrm{~J} \mathrm{~mol}^{-1} \\
K & =\exp \left(-\Delta G^{\mathrm{o}} / R T\right)=p_{\mathrm{H} 2 \mathrm{O}}=0.0317 \mathrm{bar}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathbf{H}_{2} \mathrm{O}$ (gas)

Temperature Dependence of K and $p_{\mathrm{H} 2 \mathrm{O}}$?

van't Hoff equation

$$
\begin{aligned}
& \frac{\mathrm{d} \ln K}{\mathrm{~d}(1 / T)}=\frac{\mathrm{d} \ln p_{\mathrm{H} 2 \mathrm{O}}}{\mathrm{~d}(1 / T)}=-\frac{\Delta H^{\mathrm{o}}}{R} \approx \mathrm{constant} \\
& \mathrm{~d} \ln p_{\mathrm{H} 2 \mathrm{O}}=-\frac{\Delta H^{\mathrm{o}}}{R} \mathrm{~d} \frac{1}{T}
\end{aligned}
$$

Integrate:
$\ln p_{\mathrm{H} 2 \mathrm{O}}(T)-\ln p_{\mathrm{H} 2 \mathrm{O}}(298.15 \mathrm{~K})=-\frac{\Delta H^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{298.15 \mathrm{~K}}\right)$

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathrm{H}_{2} \mathrm{O}$ (gas)

$\ln p_{\mathrm{H} 2 \mathrm{O}}$ plotted against $1 / T$ (linear)

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathrm{H}_{2} \mathrm{O}$ (gas)

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathrm{H}_{2} \mathbf{O}$ (gas)

$$
K=p_{\mathrm{H} 2 \mathrm{O}}
$$

$p_{\mathrm{H} 2 \mathrm{O}}$ plotted against T (exponential in $1 / T$) (Boiling Point Diagram)

$$
\begin{aligned}
\left.\mathbf{H}_{2} \mathrm{O} \text { (liquid) }\right) & =\mathbf{H}_{2} \mathbf{O}(\text { gas }) \\
K & =p_{\mathrm{H} 2 \mathrm{O}}
\end{aligned}
$$

This example shows:
phase-diagram regions indicate phases present
phase-diagram lines indicate phases co-existing at equilibrium
phase-diagram lines can provide quantitative thermodynamic data (e.g., enthalpy of vaporization)

Section 8.1 Stability of Solid, Liquid and Gas Phases

What is a "Phase"?

A form of matter with uniform chemical composition and uniform physical properties (such as density).
example ice (solid water)
Experience suggests:

- solid phases exist at low temperatures
- heating a solid can convert it to a liquid
- heating a liquid converts it to a gas

Relative Stability of Different Phases

How does a temperature change affect the stability of a phase?
From $\mathbf{d} \mu=\mathbf{d} G_{\mathrm{m}}=-S_{\mathrm{m}} \mathbf{d} \boldsymbol{T}+V_{\mathrm{m}} \mathrm{d} \boldsymbol{p}$, the change in the chemical potential (Gibbs energy per mole) with temperature is

$$
\left(\frac{\partial \mu}{\partial T}\right)_{p}=\left(\frac{\partial G_{\mathrm{m}}}{\partial T}\right)_{p}=-S_{\mathrm{m}}
$$

The relative molar entropies

$$
S_{\mathrm{m}}(\text { solid })<S_{\mathrm{m}}(\text { liquid })<S_{\mathrm{m}}(\text { gas })
$$

indicate that the chemical potential of the gaseous form of a substance is most sensitive to temperature.

Relative Stability of Different Phases

Relative Stability of Different Phases

How does a pressure change affect the stability of a phase?

From $\mathrm{d} \mu=\mathbf{d} \boldsymbol{G}_{\mathrm{m}}=-S_{\mathrm{m}} \mathrm{d} \boldsymbol{T}+V_{\mathrm{m}} \mathrm{d} p$, the change in the chemical potential (Gibbs energy per mole) with pressure is

$$
\left(\frac{\partial \mu}{\partial p}\right)_{T}=\left(\frac{\partial G_{\mathrm{m}}}{\partial p}\right)_{T}=V_{\mathrm{m}}
$$

The relative molar volumes

$$
V_{\mathrm{m}}(\text { solid }) \ll V_{\mathrm{m}}(\text { gas }) \quad V_{\mathrm{m}}(\text { liquid }) \ll V_{\mathrm{m}}(\text { gas })
$$

suggests that only the chemical potential of the gaseous form of a substance is appreciably affected by pressure changes.

Relative Stability of Different Phases

Temperature

At sufficiently low pressures, $\mu_{\text {gas }}$ can drop below $\mu_{\text {liquid }}$ allowing direct conversion of solid to gas (sublimation) upon heating.

> Application: "Dry" Ice $$
\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

A convenient commercial refrigerant that does not form puddles of liquid (like melting ice) that can damage some products.

Section 8.2 Pressure-Temperature Phase Diagrams (for Pure Substances)

- substances can exist as solids, liquids or gases
- what is there at a given temperature and pressure?
- p - T phase diagrams provide a convenient graphical display of the phase (or phases) present at equilibrium
- $p-T$ phase diagrams also provide quantitative information about enthalpy (and volume) changes for phase transitions
- many important practical applications, such as:
- will we have rain, snow, dew, or frost ?
- convert graphite to diamond?
- why do pressure-cookers work so quickly?
- why are high-pressure steam engines more efficient

Temperature-Pressure Phase Diagram for Water

Temperature-Pressure Phase Diagram

(pure substance)

SCF

supercritical $\underline{\text { fluid }}$ ($T>T_{\mathrm{c}}, p>p_{\mathrm{c}}$)

Why does the liquid-gas line end at the critical point?

Why is the solid-liquid line so steep?

What is the significance of the triple point?
temperature $T \rightarrow$

Critical Points and Gas-Liquid-Solid Triple Points

Substance	$\boldsymbol{T}_{\mathbf{c}} / \mathbf{K}$	$\boldsymbol{p}_{\mathbf{c}} / \mathbf{b a r}$	$\boldsymbol{T}_{\text {tp }} / \mathbf{K}$	$\boldsymbol{p}_{\text {tp }} / \mathbf{b a r}$
He	5.25	2.27	2.19	0.051
Ne	44.49	26.79	24.57	0.432
Ar	150.86	48.98	83.81	0.689
Kr	209.35	54.3	115.76	0.741
Xe	289.74	58.4	161.3	0.815
H_{2}	32.98	12.93	13.84	0.0704
O_{2}	154.58	50.43	54.36	0.00152
$\mathrm{~N}_{2}$	126.20	33.98	63.18	0.126
CO_{2}	304.13	73.75	216.55	5.17
CH_{4}	190.56	45.99	90.68	0.117
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	305.32	48.72	89.89	8.0×10^{-6}
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	369.83	42.48	85.47	1.7×10^{-6}
$\mathrm{H}_{2} \mathrm{O}$	647.14	220.64	273.16	0.006117
NH_{3}	405.40	113.53	195.4	0.06076

