Chapter 8. Phase Diagrams and the Stability of Solids, Liquids and Gases

<u>Summary</u>

- phase diagrams are used to provide graphical representations of conditions required for the existence of solids, liquids or vapors
- the stability of different phases is related to changes in the Gibbs energy with temperature and pressure
- the **phase rule** is introduced to predict the number of different phases that can co-exist at equilibrium
- the effects of **surface tension** at the boundary between phases are introduced

Vapor Pressure Phase Diagram for Water

$H_2O(liquid) = H_2O(gas)$

Equilibrium constant $K = p_{H2O}$

Data at 25 °C:

$$\Delta H^{o} = \Delta H_{\rm fm}^{o}({\rm H}_{2}0, {\rm g}) - \Delta H_{\rm fm}^{o}({\rm H}_{2}0, {\it l})$$

= -241,818 J mol⁻¹ - (-285,830 J mol⁻¹)
= 44,012 J mol⁻¹

$$\Delta G^{\circ} = \Delta G_{\rm fm}^{\circ}({\rm H}_2{\rm 0}, {\rm g}) - \Delta G_{\rm fm}^{\circ}({\rm H}_2{\rm 0}, {\it l})$$

= -228,572 J mol⁻¹ - (-237,129 J mol⁻¹)
= 8,557 J mol⁻¹

 $K = \exp(-\Delta G^{\circ}/RT) = p_{\rm H2O} = 0.0317 \text{ bar}$

$H_2O(liquid) = H_2O(gas)$

Temperature Dependence of *K* and p_{H2O} ?

van't Hoff equation

$$\frac{\mathrm{dln}K}{\mathrm{d}(1/T)} = \frac{\mathrm{dln}p_{\mathrm{H2O}}}{\mathrm{d}(1/T)} = -\frac{\Delta H^{\circ}}{R} \approx \text{constant}$$

$$\mathrm{d}\ln p_{\mathrm{H2O}} = -\frac{\Delta H^{\circ}}{R} \,\mathrm{d}\frac{1}{T}$$

Integrate:

$$\ln p_{\rm H2O}(T) - \ln p_{\rm H2O}(298.15 \,\text{K}) = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T} - \frac{1}{298.15 \,\text{K}}\right)$$

$H_2O(liquid) = H_2O(gas)$

T / K

T / K

 $\mathbf{H}_{2}\mathbf{O}(\mathbf{liquid}) = \mathbf{H}_{2}\mathbf{O}(\mathbf{gas})$ $K = p_{\mathbf{H}_{2}\mathbf{O}}$

This example shows:

phase-diagram regions indicate phases present

<u>phase-diagram lines</u> indicate phases co-existing at equilibrium

<u>phase-diagram lines</u> can provide quantitative thermodynamic data (*e.g.*, enthalpy of vaporization)

Section 8.1 Stability of Solid, Liquid and Gas Phases

What is a "Phase" ?

A form of matter with uniform chemical composition and uniform physical properties (such as density).

example ice (solid water)

Experience suggests:

- solid phases exist at low temperatures
- heating a solid can convert it to a liquid
- heating a liquid converts it to a gas

How does a **<u>temperature change</u>** affect the stability of a phase?

From $d\mu = dG_m = -S_m dT + V_m dp$, the change in the chemical potential (Gibbs energy per mole) with temperature is

$$\left(\frac{\partial \mu}{\partial T}\right)_{p} = \left(\frac{\partial G_{m}}{\partial T}\right)_{p} = -S_{m}$$

The relative molar entropies

$$S_{\rm m}({\rm solid}) < S_{\rm m}({\rm liquid}) < S_{\rm m}({\rm gas})$$

indicate that the chemical potential of the gaseous form of a substance is most sensitive to temperature.

Å

How does a **pressure change** affect the stability of a phase?

From $d\mu = dG_m = -S_m dT + V_m dp$, the change in the chemical potential (Gibbs energy per mole) with pressure is

$$\left(\frac{\partial \mu}{\partial p}\right)_{T} = \left(\frac{\partial G_{\rm m}}{\partial p}\right)_{T} = V_{\rm m}$$

The relative molar volumes

 $V_{\rm m}({\rm solid}) \ll V_{\rm m}({\rm gas})$ $V_{\rm m}({\rm liquid}) \ll V_{\rm m}({\rm gas})$

suggests that only the chemical potential of the gaseous form of a substance is appreciably affected by pressure changes.

At sufficiently low pressures, μ_{gas} can drop below μ_{liquid} allowing direct conversion of **solid to gas** (sublimation) upon heating.

Application: "Dry" Ice $CO_2(s) \rightarrow CO_2(g)$

A convenient commercial refrigerant that does not form puddles of liquid (like melting ice) that can damage some products.

Section 8.2 Pressure-Temperature Phase Diagrams (for Pure Substances)

- substances can exist as **solids**, **liquids or gases**
- what is there at a given temperature and pressure?
- *p*-*T* phase diagrams provide a convenient **graphical display** of the phase (or phases) present at equilibrium
- *p*-*T* phase diagrams also provide **quantitative information** about enthalpy (and volume) changes for phase transitions
- many **important practical applications**, such as:
 - will we have **rain**, **snow**, **dew**, **or frost** ?
 - convert graphite to diamond ?
 - why do **pressure-cookers** work so quickly?
 - why are **high-pressure steam engines** more efficient

Temperature-Pressure Phase Diagram for Water

Temperature-Pressure Phase Diagram

pressure p

SCF <u>supercritical</u> <u>fluid</u> ($T > T_c, p > p_c$)

Why does the liquid-gas line end at the critical point?

Why is the solid-liquid line so steep?

What is the significance of the triple point?

temperature $T \rightarrow$

Critical Points and Gas-Liquid-Solid Triple Points

Substance	<i>T</i> _c / K	p _c / bar	T_{tp} / K	p_{tp} / bar
Не	5.25	2.27	2.19	0.051
Ne	44.49	26.79	24.57	0.432
Ar	150.86	48.98	83.81	0.689
Kr	209.35	54.3	115.76	0.741
Xe	289.74	58.4	161.3	0.815
H_2	32.98	12.93	13.84	0.0704
$\overline{O_2}$	154.58	50.43	54.36	0.00152
$\overline{N_2}$	126.20	33.98	63.18	0.126
CO_2	304.13	73.75	216.55	5.17
CH_4	190.56	45.99	90.68	0.117
CH ₃ CH ₃	305.32	48.72	89.89	$8.0 imes 10^{-6}$
CH ₃ CH ₂ CH ₃	369.83	42.48	85.47	1.7×10^{-6}
H ₂ O	647.14	220.64	273.16	0.006117
NH ₃	405.40	113.53	195.4	0.06076

p-*T* Diagram for Sulfur

illustrates the formation of more than one solid phase

Temperature Can you describe what happens if sulfur is heated from room temperature to 450 °C at 1 atm?

p-*T* Diagram for Water up to 10^7 bar

Section 8.3 The Phase Rule

Important practical questions:

- how many different phases can co-exist at equilibrium?
- how many independent variables ("degrees of freedom") are needed to specify their states

Pure Substance – One Phase: Two Degrees of Freedom

Specifying **two variables**, such as *T* and *p*, describes the state of the system and its intensive properties.

- **Example** liquid water at 10 °C and 2.00 bar.
- **Example** an ideal gas at 300 K and 5.00 bar. (Note that the molar volume $V_{\rm m} = RT/p$ variable is not an independent variable at fixed *T*, *p*)

Pure Substance – Two Phases: One Degree of Freedom

Two phases (I and II) of a pure substance in equilibrium.

H ₂ O(gas) phase I	
-	H ₂ O(liquid)
	phase II

At first glance:

four *independent* variables?

 $T_{\rm I} \quad T_{\rm II} \quad p_{\rm I} \quad p_{\rm II}$ Wrong!

thermal equilibrium requires $T_{\rm I}$ mechanical equilibrium requires $p_{\rm I}$ chemical equilibrium requires $\mu_{\rm I}$

$$= T_{II} = p_{II}$$

$$= p_{II} = \mu_{II}$$

$$= \mu_{II}$$

$$= 3 \text{ constraints}$$

$$= 0 \text{ on}$$

$$= 4 \text{ variables}$$

→ only <u>one independent variable</u>

Example At 100 °C, liquid water and water vapor are in equilibrium only at 1 atm. p is not an independent variable if T is fixed, and *vice versa*.

Pure Substance – Three Phases: <u>No Degrees of Freedom!</u>

Three phases (I, II and III) of a pure substance in equilibrium.

H ₂ O (gas) phase I		H ₂ O (liquid) phase II
	H ₂ O (soli	d)
	phase II	I

six <u>independent</u> variables? T_{I} T_{II} T_{III} p_{I} p_{II} p_{III} Wrong again!

thermal equilibrium $T_{\rm I} = T_{\rm II}$ $T_{\rm II} = T_{\rm III}$ 6 constraintsmechanical equilibrium $p_{\rm I} = p_{\rm II}$ $p_{\rm II} = p_{\rm III}$ 6 constraintschemical equilibrium $\mu_{\rm I} = \mu_{\rm II}$ $\mu_{\rm II} = \mu_{\rm III}$ 6 variables

\rightarrow <u>no independent variables (a fixed point)</u>

ExampleWater vapor, liquid water, and solid water (ice) are in equilibrium**only at the triple point:**0.016 °C and 0.006117 bar.

<u>A Practical Application of the Phase Rule</u> Define the temperature scale and calibrate thermometers

$$H_{2}O \text{ (vapor)}$$

$$I_{2}O \text{ (solid)} \xrightarrow{I} \qquad I_{2}O \text{ (liquid)}$$

$$T_{tp} \equiv 273.16 \text{ K} \quad (= 0.01 \text{ °C})$$

defines the temperature scale using only water, cheap glassware, and the Phase Rule

Phase Rule

Pure Substances (*C* = 1 Component)

degrees of freedom = three - number of phases

$$F = 3 - P$$

Systems Consisting of C Components (next Chapter)

$$F = C + 2 - P$$

Phase Rule

! Warning !

Pure Substances (C = 1 Component)

$$F = 3 - P$$

Systems Consisting of C Components (next Chapter)

$$F = C + 2 - P$$

These rules apply to <u>equilibrium</u> systems.

Non-equilibrium metastable phases frequently exist, especially for solids (very slow phase conversion **rates**).

Section 8.4 Multidimensional Phase Diagrams

Sections 8.5 and 8.6 Thermodynamics of Phase Diagrams

Phase diagrams provide information such as:

- boiling points
- freezing points
- critical points
- co-existence curves for the equilibrium of two phases
- triple points for three phases in equilibrium

Using the 1st and 2nd Laws, enthalpy and entropy changes for phase transitions can also be determined, *without calorimetry*.

The chemical potentials (Gibbs energy per mole) of the liquid and the gas are equal at each point along the boiling curve.

temperature T

Equilibrium at point *p*, *T* on the boiling-point curve:

$$\mu_l(T,p) = \mu_g(T,p)$$

Equilibrium at neighboring point p + dp, T + dp on the curve:

$$\mu_l(T + dT, p + dp) = \mu_g(T + dT, p + dp)$$

$$\mu_l(T,p) + \left(\frac{\partial \mu_l}{\partial T}\right)_p dT + \left(\frac{\partial \mu_l}{\partial p}\right)_T dp = \mu_g(T,p) + \left(\frac{\partial \mu_g}{\partial T}\right)_p dT + \left(\frac{\partial \mu_g}{\partial p}\right)_T dp$$

Use $dG_m = d\mu = -S_m dT + V_m dp$ to get

 $-S_{\mathrm{m}l}\mathrm{d}T + V_{\mathrm{m}l}\mathrm{d}p = -S_{\mathrm{m}g}\mathrm{d}T + V_{\mathrm{m}g}\mathrm{d}p$

 $(S_{\rm mg} - S_{\rm ml}) dT = (V_{\rm mg} - V_{\rm ml}) dp$

d <i>p</i>	$S_{\rm mg} - S_{\rm ml}$	$\Delta S_{\rm vap,m}$	
dT –	$V_{ m mg} - V_{ m ml}$	$-\Delta V_{ m m,vap}$	

The result for dp/dT for the liquid-gas equilibrium generalizes to

Clapeyron Equation $\frac{dp}{dT} = \frac{dz}{dT}$ (for any phase transition)

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta S_{\mathrm{m}}}{\Delta V_{\mathrm{m}}} = \frac{\Delta H_{\mathrm{m}}}{T\Delta V_{\mathrm{m}}}$$

Significance

- relates phase-diagram slopes to ΔS , ΔH , and ΔV
- an exact thermodynamic result (no approximations made)
- applies to liquid-gas, solid-gas, solid-solid transitions
- valuable source of ΔS and ΔH data *without calorimetry* (ΔV usually available from density data)
- Why can $\Delta S_{\rm m}$ be replaced with $\Delta H_{\rm m}/T$?
- Why is the ordinary derivative dp/dT used instead of the partial derivative $\partial p/\partial T$?

Example Use the Clapeyron equation to calculate dp/dT for the melting of ice at the triple point.

Why do this? To understand why the melting curve is so steep. Also, why is the slope dp/dT negative, indicating that ice melts at lower temperatures if the pressure is increased.

Can this help to explain glacier flow and why skating is so fast?

Does high pressure produce a film of liquid water for lubrication? **Example** Use the Clapeyron equation to calculate dp/dT for **melting ice** at the triple point.

 $H_2O(s) \leftrightarrow H_2O(l)$ **Data at the water triple point** (273.16 K, 0.006117 bar) $\Delta H_{\rm fus,m} = 6010 \,\rm J \, mol^{-1}$ $H_2O(s)$ density = 0.931 g cm⁻³ = 931. kg m⁻³ $V_{\rm ms} = (18.01 \text{ g mol}^{-1}) / 0.931 \text{ g cm}^{-3} = 19.34 \text{ cm}^3 \text{ mol}^{-1}$ $H_2O(l)$ density = 1.000 g cm⁻³ = 1000. kg m⁻³ $V_{\rm ml} = (18.01 \text{ g mol}^{-1}) / 1.000 \text{ g cm}^{-3} = 18.01 \text{ cm}^3 \text{ mol}^{-1}$ $\Delta V_{\rm m} = V_{\rm ml} - V_{\rm ms} = 18.01 - 19.34 = -1.33 \text{ cm}^3 \text{ mol}^{-1} \begin{bmatrix} \Delta V_{\rm m} \text{ explains why} \\ \frac{dp}{dT} \text{ is negative!} \end{bmatrix}$ (liquid is denser) $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta H_{\mathrm{m}}}{T\Delta V_{\mathrm{m}}} = \frac{6010 \,\mathrm{J}\,\mathrm{mol}^{-1}}{(273.16 \,\mathrm{K}) \,(-1.33 \times 10^{-6} \,\mathrm{m}^3 \,\mathrm{mol}^{-1})} = -1.65 \times 10^7 \,\mathrm{Pa}\,\mathrm{K}^{-1}$

 $\frac{\mathrm{d}p}{\mathrm{d}T} = -165 \text{ bar } \mathrm{K}^{-1}$

The equilibrium shifts toward ice as the pressure increases, favoring the phase with the smaller volume (higher density).

Example Use the Clapeyron equation to calculate dp/dTfor the **vaporization of water** at the triple point.

$H_2O(l) \leftrightarrow H_2O(g)$

Data at the water triple point (273.16 K, 0.006117 bar)

 $\Delta H_{\rm vap,m} = 45,050 \, {\rm J} \, {\rm mol}^{-1}$ $V_{\rm mg} = RT/p = (0.083144 \text{ bar L mol}^{-1} \text{ K}^{-1})(273.16 \text{ K})/(0.006117 \text{ bar})$ $V_{\rm mg} = 3713 \,\mathrm{L} \,\mathrm{mol}^{-1} = 3.713 \times 10^{6} \,\mathrm{cm}^{3} \,\mathrm{mol}^{-1}$ $H_2O(l)$ density = 1.000 g cm⁻³ = 1000. kg m⁻³ $V_{\rm ml} = (18.01 \text{ g mol}^{-1}) / 1.000 \text{ g cm}^{-3} = 18.01 \text{ cm}^3 \text{ mol}^{-1}$ $\Delta V_{\rm m} = V_{\rm ml} - V_{\rm ms} = 3.713 \times 10^6 - 18.01 = 3.713 \times 10^6 \text{ cm}^3 \text{ mol}^{-1}$ $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta H_{\mathrm{m}}}{T\Delta V_{\mathrm{m}}} = \frac{45,050 \,\mathrm{J} \,\mathrm{mol}^{-1}}{(273.16 \,\mathrm{K}) \,(3.713 \,\mathrm{m}^3 \,\mathrm{mol}^{-1})} = 44.4 \,\mathrm{Pa} \,\mathrm{K}^{-1}$ dp/dT for vaporization is much smaller than = 0.000444 bar K⁻¹ dp/dT for welting (-165 bar K⁻¹) because

 $\Delta V_{\rm m}$ for vaporization is so much larger.

Clausius-Clapeyron Equation

For **vaporization** and **sublimation**

liquid → gas $\Delta V_{\rm m} = V_{\rm mg} - V_{\rm ml} \approx V_{\rm mg}$ solid → gas $\Delta V_{\rm m} = V_{\rm mg} - V_{\rm ms} \approx V_{\rm mg}$

Clausius noted $\Delta V_{\rm m} \approx RT/p$ and modified the Clapeyron equation:

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta H_{\mathrm{m}}}{T\Delta V_{\mathrm{m}}} \approx \frac{\Delta H_{\mathrm{m}}}{T(RT/p)}$$

[using $d(1/T) = T^{-2}dT$ and dlnp = dp/p]

For **vaporization and sublimation**, assuming $\Delta V_{\rm m} = RT/p$:

$$\mathrm{dln}p = -\frac{\Delta H_{\mathrm{m}}}{R} \,\mathrm{d}\frac{1}{T}$$

Integrate assuming constant $\Delta H_{\rm m}$

$$\int_{\ln p_1}^{\ln p_2} d\ln p = -\int_{1/T_1}^{1/T_2} \frac{\Delta H_m}{R} d\frac{1}{T} \approx -\frac{\Delta H_m}{R} \int_{1/T_1}^{1/T_2} d\frac{1}{T}$$

$$\ln p_2 \approx \ln p_1 - \frac{\Delta H_{\rm m}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Used to estimate vapor and sublimation pressures at different temperatures

Clausius-Clapeyron Equation

Example The normal boiling point of water (p = 1 atm) is 100 °C. At this temperature the enthalpy of vaporization is 40,657 J mol⁻¹. Estimate the vapor pressure of water at the triple point temperature (0.01 °C).

 $T_1 = 373.15 \text{ K}$ $p_1 = 1 \text{ atm} = 1.01325 \text{ bar}$

 $T_{2} = 273.16 \text{ K} \qquad p_{2} = ?$ $\ln p_{2} \approx \ln p_{1} - \frac{\Delta H_{\text{vap,m}}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$ $\ln p_{2} \approx \ln(1.01325) - \frac{40,657}{8.314} \left(\frac{1}{273.16} - \frac{1}{373.15}\right)$

Calculate $p_2 = 0.00836$ bar at 0.01 °C. (Measure 0.00612 bar)

Clausius-Clapeyron Equation

The **Clausius-Clapeyron equation** for the temperature dependence of vapor pressures $[A(l) \rightarrow A(g)]$ and sublimation pressures $[A(s) \rightarrow A(g)]$

$$\frac{\mathrm{dln}p}{\mathrm{d}(1/T)} = -\frac{\Delta H_{\mathrm{m}}}{R}$$

closely resembles the **van't Hoff equation** for the temperature dependence of the equilibrium constants of chemical reactions

$$\frac{\mathrm{dln}K}{\mathrm{d}(1/T)} = -\frac{\Delta H_{\mathrm{R}}^{\mathrm{o}}}{R}$$

This is no accident! The "equilibrium constant" for $A(s) \rightarrow A(g)$ and $A(l) \rightarrow A(g)$ is p_A/p^o .

Section 8.7 Pressure-Dependence of the Vapor Pressure of Solids and Liquids (Almost Negligible)

The vapor pressure p of a pure liquid at standard pressure p° is calculated from the equilibrium condition

 $A(\text{liquid}, p^{\text{o}}) \leftrightarrow A(\text{gas}, p)$

$$\mu_l^{o}(p^{o}) = \mu_g^{o}(p^{o}) + RT \ln(p/p^{o})$$

If the liquid is under an applied pressure of $p^{o} + \Delta p$, the equilibrium is shifted and the vapor pressure of the liquid changes to p^* :

$$\mu_l(p^{\rm o} + \Delta p) = \mu_{\rm g}^{\rm o}(p^{\rm o}) + RT \ln(p^{*}/p^{\rm o})$$

Using

$$\mu_{l}(p^{\circ} + \Delta p) = \mu_{l}^{\circ}(p^{\circ}) + \int_{p^{\circ}}^{p^{\circ} + \Delta p} \left(\frac{\partial \mu_{l}}{\partial p}\right)_{T} dp$$
$$= \mu_{l}^{\circ}(p^{\circ}) + \int_{p^{\circ}}^{p^{\circ} + \Delta p} V_{ml} dp \approx \mu_{l}^{\circ}(p^{\circ}) + V_{ml} \Delta p$$

shows

$$\mu_{l}(p^{o} + \Delta p) = \mu_{l}^{o}(p^{o}) + V_{ml}\Delta p$$

$$= \mu_{g}^{o}(p^{o}) + RT \ln(p/p^{o}) + V_{ml}\Delta p$$

$$= \mu_{g}^{o}(p^{o}) + RT \ln(p^{*}/p^{o})$$
Find $RT \ln(p^{*}/p) = V_{ml}\Delta p$
pressure increase Δp increases the chemical potential of liquid water by $V_{ml}\Delta p$

 $\frac{\text{vapor pressure of liquid at } p^{\circ} + \Delta p}{\text{vapor pressure of liquid at } p^{\circ}} = e^{V_{ml} \Delta p/RT}$

Pressure-Dependence of the Vapor Pressure of Solids and Liquids (Almost Negligible)

Example The vapor pressure *p* liquid water at 25 °C under a a pressure of 1 bar is 3.17 kPa. Calculate the vapor pressure of water at 25 °C under a total applied pressure of 5 bar.

Data: Use 18 cm³ mol⁻¹ for the molar volume of the liquid.

$$V_{\rm ml} = 18 \times 10^{-6} \,\mathrm{m^3 \ mol^{-1}}$$

 $\Delta p = (5 - 1) \,\mathrm{bar} = 4 \,\mathrm{bar} = 400,000 \,\mathrm{Pa}$
 $V_{\rm ml} \Delta p/RT = (18 \times 10^{-6})(400,000)/(8.314)(298.15) = 0.00290$

The vapor pressure increases by about 0.29 % (small effect) to $(3.17 \text{ bar})e^{0.00290} = 3.179 \text{ bar}$

Section 8.8 Surface Tension

- the thermodynamic properties of gases, liquids and solids are well understood
- what about the properties of the boundaries between these phases?
- interfacial properties can be important for systems with large specific surface areas (surface area per unit mass), such as:
 - bubbles and foams
 - fogs, mists, smokes and suspensions
 - dust, powders and nanoparticles
 - porous materials
 - microemulsions and detergent micelles
 - heterogenous catalysts

Surface Tension - Applications

- why do some liquids "spread" on surfaces, others "bead up"
- why do paper towels, fabrics, sponges ... soak up liquid?
- how do soaps and detergents "dissolve" oil in water?
- why can liquids be cooled below the freezing point (supercooled)?
- why can liquids be heated above the boiling point (superheated), then suddenly and dangerously flash into vapor
- how do boiling chips prevent superheating?

water droplets "beading" on a surface

steel paper clip "floating" on water

water bug "walking" on water

Surface Tension

Unbalanced attractive intermolecular forces at the surface of a solid or a liquid pull molecules At the surface inward, creating **surface tension**.

Surface tension acts like a thin, stretched elastic film, compressing the interior molecules.

Surface Tension - Thermodynamic Definition

The surface work dw_s required to increase the surface area of a system from σ to $\sigma + d\sigma$ is

$$\mathrm{d} w_{\mathrm{s}} = \gamma \mathrm{d} \sigma$$

Breaking attractive intermolecular forces to form new surface area requires work to be done on a system, leading to positive surface work for increasing surface area.

First Law (including *p*-*V* and surface work)

$$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V + \gamma \mathrm{d}\sigma$$

Surface Tension - Thermodynamic Definition

dG = d(U - TS + pV) for the Gibbs energy gives

$$\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \gamma \mathrm{d}\sigma$$

The surface tension can be interpreted as the

"Gibbs surface energy", the increase in *G* with surface area at fixed temperature and pressure.

$$\gamma = \left(\frac{\partial G}{\partial \sigma}\right)_{T,p}$$

To minimize the Gibbs energy, a free droplet forms a sphere, the geometrical object with the smallest area per unit volume.

Applications?

Surface tension has units of **force per unit length**, such as N m⁻¹. γ is analogous to a pressure (force per area) reduced by one dimension

Surface Tension of Selected Liquids at 25 °C

Formula	Name	$\gamma \ (mN \ m^{-1})$	Formula	Name	$(mN m^{-1})$
Br ₂	Bromine	40.95	CS ₂	Carbon disulfide	31.58
H_2O	Water	71.99	C ₂ H ₅ OH	Ethanol	21.97
Hg	Mercury	485.5	C ₆ H ₅ N	Pyridine	36.56
CCl_4	Carbon tetrachloride	26.43	C_6H_6	Benzene	28.22
CH ₃ OH	Methanol	22.07	C_8H_{18}	Octane	21.14

(Why are the surface tensions of water and mercury relatively high?)

Temperature Dependence of the Surface Tension

$$\gamma \approx \gamma_{\rm o} \left(1 - \frac{T}{T_{\rm c}}\right)^n$$

γ_{o} is a constant for each liquid

n is a constant (≈ 1.2 for non-hydrogen-bonded liquids)

What is the predicted surface tension at the critical temperature? Is this value reasonable? **Example** Calculate the work required to disperse 16 cm³ of liquid water into a mist of 50-nm-diamter droplets at 20 °C. Use $\gamma = 0.0728$ N m⁻¹.

$$w_{s} = \int_{\sigma_{i}}^{\sigma_{f}} dw_{s} = \int_{\sigma_{i}}^{\sigma_{f}} \gamma d\sigma = \gamma \int_{\sigma_{i}}^{\sigma_{f}} d\sigma = \gamma (\sigma_{f} - \sigma_{i})$$

 σ_f = final surface area = number of droplets × area per droplet

$$= \frac{\text{total volume}}{\text{volume per drop}} 4\pi r^{2} = \frac{16 \times 10^{-6} \text{ m}^{3}}{\frac{4}{3}\pi r^{3}} 4\pi r^{2} = \frac{3}{r} (16 \times 10^{-6} \text{ m}^{3})$$
$$= \frac{3 (16 \times 10^{-6} \text{ m}^{3})}{25 \times 10^{-9} \text{ m}} = 1920 \text{ m}^{2}$$

$$= \frac{1920 \text{ m}^{2}}{120 \text{ m}^{2} \text{ g}^{-1}}$$

 σ_i = initial surface area ≈ 0 (negligibly small, only a few cm²)

 $w_{\rm s} = \gamma (\sigma_f - \sigma_i) \approx \gamma \sigma_f = (0.0728 \text{ N m}^{-1}) (1920 \text{ m}^2) = 140 \text{ J}$

Laplace Equation:The Pressure Inside a Curved Surfaceis Higher than the Outside Pressure

• surface tension on circumference $2\pi r$ pulls left

- outside pressure on area πr^2 pushes left
- inside pressure on area πr^2 pushes right

 $p_{\rm in}\pi r^2$

Horizontal Force Balance on a Bubble Cut in Half

$$\gamma 2\pi r + p_{\rm out}\pi r^2 = p_{\rm in}\pi r^2$$

$$p_{\rm in} = p_{\rm out} + \frac{2\gamma}{r}$$

Pressure in a Bubble of Vapor in a Liquid

Pressure in a Soap Bubble

Why $p_{out} + 4\gamma/r$?

Pressure Inside a Bubble

Example Calculate the pressure inside a 50-nm diameter bubble of water vapor (steam) at the normal boiling point.

T = 373.15 K (100 °C) $p_{\rm out} = 101,325 \, {\rm Pa} \quad (1 \, {\rm atm})$ **Data:** surface tension $\gamma = 0.0589$ N m⁻¹ $p_{\rm in} = p_{\rm out} + \frac{2\gamma}{r}$ = 101,325 Pa + $\frac{2(0.0589 \text{ N m}^{-1})}{25 \times 10^{-9} \text{ m}}$ = 101,325 Pa + 4,710,000 Pa= 4,810,000 Pa (47.5 atm !)

** The vapor in the bubble (*p* >> 1 atm) is <u>unstable</u> at 100 °C **

Pressure Inside a <u>Bubble</u> - <u>Superheating</u>

A liquid heated in a clean, dust-free non-porous container can superheat and suddenly flash into vapor, with explosive violence.

Why?

- the first bubbles of vapor are **microscopic in size** $(r \ll 1 \text{ mm})$
- surface tension pressure $2\gamma/r$ strongly compresses the vapor
- vapor in microscopic bubbles is unstable, reverts to liquid (see calculations on the previous slide)

Pressure Inside a <u>Bubble</u> - <u>Superheating</u>

To prevent superheating and "bumping" use:

- boiling chips
- porous materials
- dust, dirt or sand ...

These materials allow vapor to form on macroscopic surfaces with **macroscopic radii of curvature** and negligible vapor compression.

Supersaturation can be Lethal: Lake Nyos Disaster

Lake Nyos is a crater lake on an extinct volcano in Cameroon, Africa.

A magma chamber under the Lake supersaturates the deeper water with CO_2 .

On the night of 21 August 1986, a small landslide into the Lake caused rapid mixing, bringing deep water to the surface.

Under reduced pressure, hundreds of thousands of tons of CO_2 gas were suddenly released from the supersaturated solution.

1,746 people and thousands of livestock were suffocated by the CO_2 gas (denser than air) flowing down valleys from the Lake.

Pressure Inside a <u>Droplet</u> - <u>Supercooling</u>

A vapor cooled in a clean, dust-free non-porous container can supercool below the condensation temperature.

Why? (application: "cloud seeding" to make it rain)

- the first droplets of liquid are **microscopic in size** $(r \ll 1 \text{ mm})$
- surface tension pressure $2\gamma/r$ strongly compresses the liquid
- the increased vapor pressure increases makes the droplets unstable

(see Section 8.7)

Pressure Inside a <u>Droplet</u> - <u>Supercooling</u>

Application:

Cloud Chambers

- used to detect ionizing radiation (*e.g.*, alpha or beta particles)
- radiation passes through a supercooled vapor, such as ether
- ionized vapor molecules provide sites for condensation
- trail of condensed droplets indicates the particle tracks

Dip a glass capillary tube into liquid water.

Water climbs up the tube.

Why?

Applications

- sap rises in trees
- candle wicks soak up wax
- pen tips soak up ink
- porous materials absorb liquid
- soil absorbs rainwater
- removing oil from porous rock can be expensive

Surface tension acting around the meniscus of circumference $2\pi r$ pulls a cylinder of liquid of height h and density ρ

If the liquid doesn't wet the tube material (contact angle $\theta > 0^{\circ}$) only the vertical component of the surface tension force pulls the liquid up the tube.

$$h = \frac{2\gamma\cos\theta}{\rho\,g\,r}$$

If the liquid is completely nonwetting (*e.g.*, mercury on glass):

> $\theta = 180^{\circ}$ $\cos\theta = -1$

surface tension pulls liquid down the tube

(*h*

$$\begin{array}{c} \text{capillary} \\ \underline{\textbf{depression}} \\ (h < 0) \end{array} \quad h = \quad \frac{2\gamma\cos\theta}{\rho\,g\,r} \end{array}$$

Section 8.9 Chemistry in Supercritical Fluids

and

Section 8.10 Liquid Crystals

reading assignment