Chapter 8. Phase Diagrams and the Stability of Solids, Liquids and Gases

Summary

- phase diagrams are used to provide graphical representations of conditions required for the existence of solids, liquids or vapors
- the stability of different phases is related to changes in the Gibbs energy with temperature and pressure
- the phase rule is introduced to predict the number of different phases that can co-exist at equilibrium
- the effects of surface tension at the boundary between phases are introduced

Vapor Pressure Phase Diagram for Water

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathrm{H}_{2} \mathrm{O}$ (gas)

Equilibrium constant $K=p_{\mathrm{H} 2 \mathrm{O}}$

Data at $25{ }^{\circ} \mathrm{C}$:

$$
\begin{aligned}
\Delta H^{\circ} & \left.=\Delta H_{\mathrm{ff}^{\circ}}{ }^{(} \mathrm{H}_{2} 0, \mathrm{~g}\right)-\Delta H_{\mathrm{fm}_{\mathrm{m}}{ }^{\circ}\left(\mathrm{H}_{2} 0, l\right)} \\
& =-241,818 \mathrm{~J} \mathrm{~mol}^{-1} \quad-\left(-285,830 \mathrm{~J} \mathrm{~mol}^{-1}\right) \\
& =44,012 \mathrm{~J} \mathrm{~mol}^{-1} \\
\Delta G^{\mathrm{o}} & =\Delta G_{\mathrm{ff}^{\circ}}{ }^{\circ}\left(\mathrm{H}_{2} 0, \mathrm{~g}\right)-\Delta G_{\mathrm{fm}^{\circ}}{ }^{\circ}\left(\mathrm{H}_{2} 0, l\right) \\
& =-228,572 \mathrm{~J} \mathrm{~mol}^{-1} \quad-\left(-237,129 \mathrm{~J} \mathrm{~mol}^{-1}\right) \\
& =8,557 \mathrm{~J} \mathrm{~mol}^{-1} \\
K & =\exp \left(-\Delta G^{\mathrm{o}} / R T\right)=p_{\mathrm{H} 2 \mathrm{O}}=0.0317 \mathrm{bar}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathbf{H}_{2} \mathrm{O}$ (gas)

Temperature Dependence of K and $p_{\mathrm{H} 2 \mathrm{O}}$?

van't Hoff equation

$$
\begin{aligned}
& \frac{\mathrm{d} \ln K}{\mathrm{~d}(1 / T)}=\frac{\mathrm{d} \ln p_{\mathrm{H} 2 \mathrm{O}}}{\mathrm{~d}(1 / T)}=-\frac{\Delta H^{\mathrm{o}}}{R} \approx \mathrm{constant} \\
& \mathrm{~d} \ln p_{\mathrm{H} 2 \mathrm{O}}=-\frac{\Delta H^{\mathrm{o}}}{R} \mathrm{~d} \frac{1}{T}
\end{aligned}
$$

Integrate:
$\ln p_{\mathrm{H} 2 \mathrm{O}}(T)-\ln p_{\mathrm{H} 2 \mathrm{O}}(298.15 \mathrm{~K})=-\frac{\Delta H^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{298.15 \mathrm{~K}}\right)$

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathrm{H}_{2} \mathrm{O}$ (gas)

$\ln p_{\mathrm{H} 2 \mathrm{O}}$ plotted against $1 / T$ (linear)

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathrm{H}_{2} \mathrm{O}$ (gas)

$\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathrm{H}_{2} \mathbf{O}$ (gas)

$$
K=p_{\mathrm{H} 2 \mathrm{O}}
$$

$p_{\mathrm{H} 2 \mathrm{O}}$ plotted against T (exponential in $1 / T$) (Boiling Point Diagram)

$$
\begin{aligned}
\left.\mathbf{H}_{2} \mathrm{O} \text { (liquid) }\right) & =\mathbf{H}_{2} \mathbf{O}(\text { gas }) \\
K & =p_{\mathrm{H} 2 \mathrm{O}}
\end{aligned}
$$

This example shows:
phase-diagram regions indicate phases present
phase-diagram lines indicate phases co-existing at equilibrium
phase-diagram lines can provide quantitative thermodynamic data (e.g., enthalpy of vaporization)

Section 8.1 Stability of Solid, Liquid and Gas Phases

What is a "Phase"?

A form of matter with uniform chemical composition and uniform physical properties (such as density).
example ice (solid water)
Experience suggests:

- solid phases exist at low temperatures
- heating a solid can convert it to a liquid
- heating a liquid converts it to a gas

Relative Stability of Different Phases

How does a temperature change affect the stability of a phase?
From $\mathbf{d} \mu=\mathbf{d} G_{\mathrm{m}}=-S_{\mathrm{m}} \mathbf{d} \boldsymbol{T}+V_{\mathrm{m}} \mathrm{d} \boldsymbol{p}$, the change in the chemical potential (Gibbs energy per mole) with temperature is

$$
\left(\frac{\partial \mu}{\partial T}\right)_{p}=\left(\frac{\partial G_{\mathrm{m}}}{\partial T}\right)_{p}=-S_{\mathrm{m}}
$$

The relative molar entropies

$$
S_{\mathrm{m}}(\text { solid })<S_{\mathrm{m}}(\text { liquid })<S_{\mathrm{m}}(\text { gas })
$$

indicate that the chemical potential of the gaseous form of a substance is most sensitive to temperature.

Relative Stability of Different Phases

Relative Stability of Different Phases

How does a pressure change affect the stability of a phase?

From $\mathrm{d} \mu=\mathbf{d} \boldsymbol{G}_{\mathrm{m}}=-S_{\mathrm{m}} \mathrm{d} \boldsymbol{T}+V_{\mathrm{m}} \mathrm{d} p$, the change in the chemical potential (Gibbs energy per mole) with pressure is

$$
\left(\frac{\partial \mu}{\partial p}\right)_{T}=\left(\frac{\partial G_{\mathrm{m}}}{\partial p}\right)_{T}=V_{\mathrm{m}}
$$

The relative molar volumes

$$
V_{\mathrm{m}}(\text { solid }) \ll V_{\mathrm{m}}(\text { gas }) \quad V_{\mathrm{m}}(\text { liquid }) \ll V_{\mathrm{m}}(\text { gas })
$$

suggests that only the chemical potential of the gaseous form of a substance is appreciably affected by pressure changes.

Relative Stability of Different Phases

Temperature

At sufficiently low pressures, $\mu_{\text {gas }}$ can drop below $\mu_{\text {liquid }}$ allowing direct conversion of solid to gas (sublimation) upon heating.

> Application: "Dry" Ice $$
\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

A convenient commercial refrigerant that does not form puddles of liquid (like melting ice) that can damage some products.

Section 8.2 Pressure-Temperature Phase Diagrams (for Pure Substances)

- substances can exist as solids, liquids or gases
- what is there at a given temperature and pressure?
- p - T phase diagrams provide a convenient graphical display of the phase (or phases) present at equilibrium
- $p-T$ phase diagrams also provide quantitative information about enthalpy (and volume) changes for phase transitions
- many important practical applications, such as:
- will we have rain, snow, dew, or frost ?
- convert graphite to diamond?
- why do pressure-cookers work so quickly?
- why are high-pressure steam engines more efficient

Temperature-Pressure Phase Diagram for Water

Temperature-Pressure Phase Diagram

(pure substance)

SCF

supercritical $\underline{\text { fluid }}$ ($T>T_{\mathrm{c}}, p>p_{\mathrm{c}}$)

Why does the liquid-gas line end at the critical point?

Why is the solid-liquid line so steep?

What is the significance of the triple point?
temperature $T \rightarrow$

Critical Points and Gas-Liquid-Solid Triple Points

Substance	$\boldsymbol{T}_{\mathbf{c}} / \mathbf{K}$	$\boldsymbol{p}_{\mathbf{c}} / \mathbf{b a r}$	$\boldsymbol{T}_{\text {tp }} / \mathbf{K}$	$\boldsymbol{p}_{\text {tp }} / \mathbf{b a r}$
He	5.25	2.27	2.19	0.051
Ne	44.49	26.79	24.57	0.432
Ar	150.86	48.98	83.81	0.689
Kr	209.35	54.3	115.76	0.741
Xe	289.74	58.4	161.3	0.815
H_{2}	32.98	12.93	13.84	0.0704
O_{2}	154.58	50.43	54.36	0.00152
$\mathrm{~N}_{2}$	126.20	33.98	63.18	0.126
CO_{2}	304.13	73.75	216.55	5.17
CH_{4}	190.56	45.99	90.68	0.117
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	305.32	48.72	89.89	8.0×10^{-6}
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	369.83	42.48	85.47	1.7×10^{-6}
$\mathrm{H}_{2} \mathrm{O}$	647.14	220.64	273.16	0.006117
NH_{3}	405.40	113.53	195.4	0.06076

$p-T$ Diagram for Sulfur

illustrates the formation of more than one solid phase

Temperature
Can you describe what happens if sulfur is heated from room temperature to $450{ }^{\circ} \mathrm{C}$ at 1 atm ?

- 11 different forms of crystalline water ("ice") are known
- the "normal" form of ice and snow is Ice I (hexagonal)
- notice that Ice VII has melting temperatures above $200^{\circ} \mathrm{C}$!

Section 8.3 The Phase Rule

Important practical questions:

- how many different phases can co-exist at equilibrium?
- how many independent variables ("degrees of freedom") are needed to specify their states

Pure Substance - One Phase: Two Degrees of Freedom

Specifying two variables, such as T and p, describes the state of the system and its intensive properties.

Example liquid water at $10^{\circ} \mathrm{C}$ and 2.00 bar.
Example an ideal gas at 300 K and 5.00 bar .
(Note that the molar volume $V_{\mathrm{m}}=R T / p$ variable is not an independent variable at fixed T, p)

Pure Substance - Two Phases: One Degree of Freedom

Two phases (I and II) of a pure substance in equilibrium.
$\mathrm{H}_{2} \mathrm{O}$ (gas)
phase I
$\mathrm{H}_{2} \mathrm{O}$ (liquid) phase II

At first glance:
four independent variables?

$\begin{array}{llll}T_{\mathrm{I}} & T_{\text {II }} & p_{\mathrm{I}} & p_{\text {II }}\end{array}$ Wrong!

> thermal equilibrium requires $\quad T_{\mathrm{I}}=T_{\text {II }} \quad \mathbf{3}$ constraints
> mechanical equilibrium requires $\quad p_{\text {I }}=p_{\text {II }} \longleftarrow$ on
> chemical equilibrium requires $\quad \mu_{\mathrm{I}}=\mu_{\mathrm{II}} \quad 4$ variables

\rightarrow only one independent variable
Example At $100^{\circ} \mathrm{C}$, liquid water and water vapor are in equilibrium only at 1 atm . p is not an independent variable if T is fixed, and vice versa.

Pure Substance - Three Phases: No Degrees of Freedom!

Three phases (I, II and III) of a pure substance in equilibrium.

```
H2O (gas)
phase I
```

$\mathrm{H}_{2} \mathrm{O}$ (liquid) phase II
six independent variables?
$\begin{array}{llllll}T_{\text {I }} & T_{\text {II }} & T_{\text {III }} & p_{\text {I }} & p_{\text {II }} & p_{\text {III }}\end{array}$
Wrong again!
thermal equilibrium $\quad T_{\mathrm{I}}=T_{\mathrm{II}} \quad T_{\mathrm{II}}=T_{\mathrm{III}} \quad 6$ constraints
mechanical equilibrium $\quad p_{\text {I }}=p_{\text {II }} \quad p_{\text {II }}=p_{\text {III }} \leftarrow \quad$ on
chemical equilibrium $\quad \mu_{\text {I }}=\mu_{\text {II }} \quad \mu_{\text {II }}=\mu_{\text {III }}$
6 variables
\rightarrow no independent variables (a fixed point)
Example Water vapor, liquid water, and solid water (ice) are in equilibrium only at the triple point: $0.016^{\circ} \mathrm{C}$ and 0.006117 bar.

A Practical Application of the Phase Rule

Define the temperature scale and calibrate thermometers

the triple point of water
(an "invariant" point)

$\mathrm{H}_{2} \mathrm{O}$ (vapor)	
\swarrow	ŋ

$\mathrm{H}_{2} \mathrm{O}$ (solid) $\quad \leftrightarrow \quad \mathbf{H}_{2} \mathrm{O}$ (liquid)

$$
\boldsymbol{T}_{\mathrm{tp}} \equiv 273.16 \mathrm{~K} \quad\left(=0.01^{\circ} \mathrm{C}\right)
$$

defines the temperature scale using only water, cheap glassware, and the Phase Rule

Phase Rule

Pure Substances ($C=1$ Component) degrees of freedom $=$ three - number of phases

$$
F=3-P
$$

Systems Consisting of \boldsymbol{C} Components (next Chapter)

$$
F=C+2-P
$$

! Warning !

Phase Rule

 ! Warning !Pure Substances ($C=1$ Component)

$$
F=3-P
$$

Systems Consisting of \boldsymbol{C} Components (next Chapter)

$$
F=C+2-P
$$

These rules apply to equilibrium systems.

Non-equilibrium metastable phases frequently exist, especially for solids (very slow phase conversion rates).

Section 8.4 Multidimensional Phase Diagrams

Sections 8.5 and 8.6 Thermodynamics of Phase Diagrams

Phase diagrams provide information such as:

- boiling points
- freezing points
- critical points
- co-existence curves for the equilibrium of two phases
- triple points for three phases in equilibrium

Using the 1st and 2nd Laws, enthalpy and entropy changes for phase transitions can also be determined, without calorimetry.

Example $\quad \mathbf{H}_{2} \mathbf{O}(l) \leftrightarrow \mathbf{H}_{2} \mathbf{O}(\mathrm{~g})$

The chemical potentials (Gibbs energy per mole) of the liquid and the gas are equal at each point along the boiling curve.

temperature T

Equilibrium at point p, T on the boiling-point curve:
$\mu_{l}(T, p)=\mu_{\mathrm{g}}(T, p)$
Equilibrium at neighboring point $p+\mathrm{d} p, T+\mathrm{d} p$ on the curve:
$\mu_{l}(T+\mathrm{d} T, p+\mathrm{d} p)=\mu_{\mathrm{g}}(T+\mathrm{d} T, p+\mathrm{d} p)$

$$
\mu_{l}\left(\mathcal{I}_{,}, p\right)+\left(\frac{\partial \mu_{l}}{\partial T}\right)_{p} \mathrm{~d} T+\left(\frac{\partial \mu_{l}}{\partial p}\right)_{T} \mathrm{~d} p=\mu_{g}(T, p)+\left(\frac{\partial \mu_{g}}{\partial T}\right)_{p} \mathrm{~d} T+\left(\frac{\partial \mu_{g}}{\partial p}\right)_{T} \mathrm{~d} p
$$

Use $\mathrm{d} G_{\mathrm{m}}=\mathrm{d} \mu=-S_{\mathrm{m}} \mathrm{d} T+V_{\mathrm{m}} \mathrm{d} p$ to get
$-S_{\mathrm{m} \mathrm{d}} \mathrm{d} T+V_{\mathrm{m} /} \mathrm{d} p=-S_{\mathrm{mg}} \mathrm{d} T+V_{\mathrm{mg}} \mathrm{d} p$
$\left(S_{\mathrm{mg}}-S_{\mathrm{m} l}\right) \mathrm{d} T=\left(V_{\mathrm{mg}}-V_{\mathrm{m} l}\right) \mathrm{d} p$

$$
\frac{\mathrm{d} p}{\mathrm{~d} T}=\frac{S_{\mathrm{mg}}-S_{\mathrm{m} l}}{V_{\mathrm{mg}}-V_{\mathrm{m} l}}=\frac{\Delta S_{\text {vap, } \mathrm{m}}}{\Delta V_{\mathrm{m}, \text { vap }}}
$$

The result for $\mathrm{d} p / \mathrm{d} T$ for the liquid-gas equilibrium generalizes to

Clapeyron Equation
(for any phase transition)

$$
\frac{\mathrm{d} p}{\mathrm{~d} T}=\frac{\Delta S_{\mathrm{m}}}{\Delta V_{\mathrm{m}}}=\frac{\Delta H_{\mathrm{m}}}{T \Delta V_{\mathrm{m}}}
$$

Significance

- relates phase-diagram slopes to $\Delta S, \Delta H$, and ΔV
- an exact thermodynamic result (no approximations made)
- applies to liquid-gas, solid-gas, solid-solid transitions
- valuable source of ΔS and ΔH data - without calorimetry (ΔV usually available from density data)
- Why can ΔS_{m} be replaced with $\Delta H_{\mathrm{m}} / T$?
- Why is the ordinary derivative $\mathrm{d} p / \mathrm{d} T$ used instead of the partial derivative $\partial p / \partial T$?

Example Use the Clapeyron equation to calculate $\mathrm{d} p / \mathrm{d} T$ for the melting of ice at the triple point.

Why do this? To understand why the melting curve is so steep. Also, why is the slope $\mathrm{d} p / \mathrm{d} T$ negative, indicating that ice melts at lower temperatures if the pressure is increased.

Can this help to explain glacier flow and why skating is so fast?

Does high pressure produce a film of liquid water for lubrication?

Example Use the Clapeyron equation to calculate $\mathrm{d} p / \mathrm{d} T$ for melting ice at the triple point.

$\mathbf{H}_{2} \mathrm{O}(\mathrm{s}) \leftrightarrow \mathbf{H}_{2} \mathbf{O}(l)$

Data at the water triple point ($273.16 \mathrm{~K}, 0.006117$ bar)

$$
\left.\begin{array}{c}
\Delta H_{\mathrm{fus}, \mathrm{~m}}=6010 \mathrm{~J} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \text { density }=0.931 \mathrm{~g} \mathrm{~cm}^{-3}=931 . \mathrm{kg} \mathrm{~m}^{-3} \\
V_{\mathrm{ms}}=\left(18.01 \mathrm{~g} \mathrm{~mol}^{-1}\right) / 0.931 \mathrm{~g} \mathrm{~cm}^{-3}=19.34 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2} \mathrm{O}(l) \text { density }=1.000 \mathrm{~g} \mathrm{~cm}^{-3}=1000 . \mathrm{kg} \mathrm{~m}^{-3}
\end{array}\right] \begin{aligned}
& V_{\mathrm{m} l}=\left(18.01 \mathrm{~g} \mathrm{~mol}^{-1}\right) / 1.000 \mathrm{~g} \mathrm{~cm}^{-3}=18.01 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
& \Delta V_{\mathrm{m}}=V_{\mathrm{m} l}-V_{\mathrm{ms}}=18.01-19.34=-1.33 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \begin{array}{l}
\begin{array}{l}
\Delta V_{\mathrm{m}} \text { explains why } \\
\mathrm{d} p / \mathrm{d} T \text { is negative! } \\
\text { (liquid is denser) }
\end{array} \\
\frac{\mathrm{d} p}{\mathrm{~d} T}=\frac{\Delta H_{\mathrm{m}}}{T \Delta V_{\mathrm{m}}}=\frac{6010 \mathrm{~J} \mathrm{~mol}^{-1}}{(273.16 \mathrm{~K})\left(-1.33 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)}=-1.65 \times 10^{7} \text { Pa K }{ }^{-1} \\
\frac{\mathrm{~d} p}{\mathrm{~d} T}=-165 \text { bar K} \quad \begin{array}{l}
\text { The equilibrium shifts toward ice as the } \\
\text { pressure increases, favoring the phase with } \\
\text { the smaller volume (higher density). }
\end{array}
\end{array} .
\end{aligned}
$$

Example Use the Clapeyron equation to calculate $\mathrm{d} p / \mathrm{d} T$ for the vaporization of water at the triple point.

$\mathbf{H}_{2} \mathrm{O}(l) \leftrightarrow \mathbf{H}_{2} \mathbf{O}(\mathrm{~g})$

Data at the water triple point ($273.16 \mathrm{~K}, 0.006117$ bar)

$$
\begin{aligned}
& \Delta H_{\mathrm{vap}, \mathrm{~m}}=45,050 \mathrm{~J} \mathrm{~mol}^{-1} \\
& V_{\mathrm{mg}}=R T / p=\left(0.083144 \mathrm{bar} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(273.16 \mathrm{~K}) /(0.006117 \mathrm{bar}) \\
& V_{\mathrm{mg}}=3713 \mathrm{~L} \mathrm{~mol}{ }^{-1}=3.713 \times 10^{6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
& \mathrm{H}_{2} \mathrm{O}(l) \text { density }=1.000 \mathrm{~g} \mathrm{~cm}^{-3}=1000 . \mathrm{kg} \mathrm{~m}^{-3} \\
& V_{\mathrm{m} l}=(18.01 \mathrm{~g} \mathrm{~mol} \\
& -1) / 1.000 \mathrm{~g} \mathrm{~cm}^{-3}=18.01 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
& \Delta V_{\mathrm{m}}=V_{\mathrm{m} l}-V_{\mathrm{ms}}=3.713 \times 10^{6}-18.01=3.713 \times 10^{6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
& \frac{\mathrm{~d} p}{\mathrm{~d} T}=\frac{\Delta H_{\mathrm{m}}}{T \Delta V_{\mathrm{m}}}=\frac{45,050 \mathrm{~J} \mathrm{~mol}^{-1}}{(273.16 \mathrm{~K})\left(3.713 \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)}=44.4 \mathrm{~Pa} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\frac{\mathrm{d} p}{\mathrm{~d} T}=0.000444 \text { bar K}
$$

$\mathrm{d} p / \mathrm{d} T$ for vaporization is much smaller than $\mathrm{d} p / \mathrm{d} T$ for melting (-165 bar $^{-1}$) because ΔV_{m} for vaporization is so much larger.

Clausius-Clapeyron Equation

For vaporization and sublimation

$$
\begin{array}{ll}
\text { liquid } \rightarrow \text { gas } & \Delta V_{\mathrm{m}}=V_{\mathrm{mg}}-V_{\mathrm{m} l} \approx V_{\mathrm{mg}} \\
\text { solid } \rightarrow \text { gas } & \Delta V_{\mathrm{m}}=V_{\mathrm{mg}}-V_{\mathrm{ms}} \approx V_{\mathrm{mg}}
\end{array}
$$

Clausius noted $\Delta V_{\mathrm{m}} \approx R T / p$ and modified the Clapeyron equation:

$$
\frac{\mathrm{d} p}{\mathrm{~d} T}=\frac{\Delta H_{\mathrm{m}}}{T \Delta V_{\mathrm{m}}} \approx \frac{\Delta H_{\mathrm{m}}}{T(R T / p)}
$$

[using $\mathrm{d}(1 / T)=T^{-2} \mathrm{~d} T$ and $\mathrm{d} \ln p=\mathrm{d} p / p$]

Clapeyron Equation

Clausius-Clapeyron Equation

Clausius-Clapeyron Equation

For vaporization and sublimation, assuming $\Delta V_{\mathrm{m}}=R T / p$:

$$
\mathrm{d} \ln p=-\frac{\Delta H_{\mathrm{m}}}{R} \mathrm{~d} \frac{1}{T}
$$

Integrate assuming constant ΔH_{m}

$$
\int_{\ln p_{1}}^{\ln p_{2}} \mathrm{~d} \ln p=-\int_{1 / T_{1}}^{1 / T_{2}} \frac{\Delta H_{\mathrm{m}}}{R} \mathrm{~d} \frac{1}{T} \approx-\frac{\Delta H_{\mathrm{m}}}{R} \int_{1 / T_{1}}^{1 / T_{2}} \mathrm{~d} \frac{1}{T}
$$

$$
\ln p_{2} \approx \ln p_{1}-\frac{\Delta H_{\mathrm{m}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

Used to estimate vapor and sublimation pressures at different temperatures

Clausius-Clapeyron Equation

Example The normal boiling point of water ($p=1 \mathrm{~atm}$) is $100^{\circ} \mathrm{C}$. At this temperature the enthalpy of vaporization is $40,657 \mathrm{~J} \mathrm{~mol}^{-1}$. Estimate the vapor pressure of water at the triple point temperature $\left(0.01^{\circ} \mathrm{C}\right)$.

$$
\begin{array}{ll}
T_{1}=373.15 \mathrm{~K} & p_{1}=1 \mathrm{~atm}=1.01325 \mathrm{bar} \\
T_{2}=273.16 \mathrm{~K} & p_{2}=?
\end{array}
$$

$\ln p_{2} \approx \ln p_{1}-\frac{\Delta H_{\text {vap, } \mathrm{m}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln p_{2} \approx \ln (1.01325)-\frac{40,657}{8.314}\left(\frac{1}{273.16}-\frac{1}{373.15}\right)$
Calculate $p_{2}=0.00836$ bar at $0.01^{\circ} \mathrm{C}$. (Measure 0.00612 bar)

Clausius-Clapeyron Equation

The Clausius-Clapeyron equation for the temperature dependence of vapor pressures $[\mathrm{A}(l) \rightarrow \mathrm{A}(\mathrm{g})]$ and sublimation pressures $[\mathrm{A}(\mathrm{s}) \rightarrow \mathrm{A}(\mathrm{g})]$

$$
\frac{\mathrm{d} \ln p}{\mathrm{~d}(1 / T)}=-\frac{\Delta H_{\mathrm{m}}}{R}
$$

closely resembles the van't Hoff equation for the temperature dependence of the equilibrium constants of chemical reactions

$$
\frac{\mathrm{d} \ln K}{\mathrm{~d}(1 / T)}=-\frac{\Delta H_{\mathrm{R}}^{\mathrm{o}}}{R}
$$

This is no accident! The "equilibrium constant" for $\mathrm{A}(\mathrm{s}) \rightarrow \mathrm{A}(\mathrm{g})$ and $\mathrm{A}(\mathrm{l}) \rightarrow \mathrm{A}(\mathrm{g})$ is $p_{\mathrm{A}} / p^{\mathrm{o}}$.

Section 8.7 Pressure-Dependence of the Vapor Pressure of Solids and Liquids (Almost Negligible)

The vapor pressure p of a pure liquid at standard pressure p° is calculated from the equilibrium condition

$$
\begin{gathered}
\mathrm{A}\left(\text { liquid, } p^{\mathrm{o}}\right) \leftrightarrow \mathrm{A}(\text { gas, } p) \\
\mu_{l}^{\mathrm{o}}\left(p^{\mathrm{o}}\right)=\mu_{\mathrm{g}}^{\mathrm{o}}\left(p^{\mathrm{o}}\right)+R T \ln \left(p / p^{\mathrm{o}}\right)
\end{gathered}
$$

If the liquid is under an applied pressure of $p^{o}+\Delta p$, the equilibrium is shifted and the vapor pressure of the liquid changes to p^{*} :

$$
\mu_{l}\left(p^{\mathrm{o}}+\Delta p\right)=\mu_{\mathrm{g}}^{\mathrm{o}}\left(p^{\mathrm{o}}\right)+R T \ln \left(p^{*} / p^{\mathrm{o}}\right)
$$

Using

$$
\begin{aligned}
\mu_{l}\left(p^{\mathrm{o}}+\Delta p\right) & =\mu_{l}^{\mathrm{o}}\left(p^{\mathrm{o}}\right)+\int_{p^{\mathrm{o}}}^{p^{\mathrm{o}}+\Delta p}\left(\frac{\partial \mu_{l}}{\partial p}\right)_{\mathrm{T}} \mathrm{~d} p \\
& =\mu_{l}^{\mathrm{o}}\left(p^{\mathrm{o}}\right)+\int_{p^{\mathrm{o}}}^{p^{\circ}+\Delta p} V_{\mathrm{m} l} \mathrm{~d} p \approx \mu_{l}^{\mathrm{o}}\left(p^{\mathrm{o}}\right)+V_{\mathrm{m} l} \Delta p
\end{aligned}
$$

shows

$$
\begin{aligned}
\mu_{l}\left(p^{\mathrm{o}}+\Delta p\right) & =\mu_{l}^{\mathrm{o}}\left(p^{\mathrm{o}}\right)+V_{\mathrm{m} l} \Delta p \\
& =\mu_{\mathrm{g}}^{\mathrm{o}}\left(p^{0}\right)+R T \ln \left(p / p^{0}\right)+V_{\mathrm{m} l} \Delta p \\
& =\mu_{\mathrm{g}}^{\mathrm{o}}\left(p^{\mathrm{o}}\right)+R T \ln \left(p^{*} / p^{\mathrm{o}}\right)
\end{aligned}
$$

Find $R T \ln \left(p^{*} / p\right)=V_{\mathrm{m} l} \Delta p$
pressure increase Δp increases the chemical potential of liquid water by $V_{\mathrm{m} l} \Delta p$

$$
\frac{\text { vapor pressure of liquid at } p^{\circ}+\Delta p}{\text { vapor pressure of liquid at } p^{\circ}}=\mathrm{e}^{V_{\mathrm{m} /} \Delta p / R T}
$$

Pressure-Dependence of the Vapor Pressure of Solids and Liquids (Almost Negligible)

Example The vapor pressure p liquid water at $25^{\circ} \mathrm{C}$ under a a pressure of 1 bar is 3.17 kPa . Calculate the vapor pressure of water at $25^{\circ} \mathrm{C}$ under a total applied pressure of 5 bar .

Data: Use $18 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for the molar volume of the liquid.
$V_{\mathrm{m} l}=18 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$
$\Delta p=(5-1) \mathrm{bar}=4 \mathrm{bar}=400,000 \mathrm{~Pa}$
$V_{\mathrm{m} l} \Delta p / R T=\left(18 \times 10^{-6}\right)(400,000) /(8.314)(298.15)=0.00290$
The vapor pressure increases by about 0.29 \% (small effect) to (3.17 bar) $\mathrm{e}^{0.00290}=3.179$ bar

Section 8.8 Surface Tension

- the thermodynamic properties of gases, liquids and solids are well understood
- what about the properties of the boundaries between these phases?
- interfacial properties can be important for systems with large specific surface areas (surface area per unit mass), such as:
- bubbles and foams
- fogs, mists, smokes and suspensions
- dust, powders and nanoparticles
- porous materials
- microemulsions and detergent micelles
- heterogenous catalysts

Surface Tension - Applications

- why do some liquids "spread" on surfaces, others "bead up"
- why do paper towels, fabrics, sponges ... soak up liquid?
- how do soaps and detergents "dissolve" oil in water?
- why can liquids be cooled below the freezing point (supercooled)?
- why can liquids be heated above the boiling point (superheated), then suddenly and dangerously flash into vapor
- how do boiling chips prevent superheating?

water droplets "beading" on a surface

steel paper clip
"floating" on water
water bug
"walking" on water

Surface Tension

Unbalanced attractive intermolecular forces at the surface of a solid or a liquid pull molecules At the surface inward, creating surface tension.

Surface tension acts like a thin, stretched elastic film, compressing the interior molecules.

Surface Tension - Thermodynamic Definition

The surface work $\mathrm{d} w_{\mathrm{s}}$ required to increase the surface area of a system from σ to $\sigma+\mathrm{d} \sigma$ is

$$
\mathrm{d} w_{\mathrm{s}}=\gamma \mathrm{d} \sigma
$$

Breaking attractive intermolecular forces to form new surface area requires work to be done on a system, leading to positive surface work for increasing surface area.

First Law (including $p-V$ and surface work)

$$
\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V+\gamma \mathrm{d} \sigma
$$

Surface Tension - Thermodynamic Definition

$\mathrm{d} G=\mathrm{d}(U-T S+p V)$ for the Gibbs energy gives

$$
\mathrm{d} G=-S \mathrm{~d} T+V \mathrm{~d} p+\gamma \mathrm{d} \sigma
$$

The surface tension can be interpreted as the
"Gibbs surface energy", the increase in G with surface area at fixed temperature and pressure.

$$
\gamma=\left(\frac{\partial G}{\partial \sigma}\right)_{T, p}
$$

To minimize the Gibbs energy, a free droplet forms a sphere, the geometrical object with the smallest area per unit volume.

Applications?

Surface tension has units of force per unit length, such as N^{-1}. γ is analogous to a pressure (force per area) reduced by one dimension

Surface Tension of Selected Liquids at $25^{\circ} \mathrm{C}$

Formula	Name	$\gamma\left(\mathrm{mN} \mathrm{m}^{-1}\right)$	Formula	Name	$\left(\mathrm{mN} \mathrm{m}^{-1}\right)$
Br_{2}	Bromine	40.95	CS_{2}	Carbon disulfide	31.58
$\mathrm{H}_{2} \mathrm{O}$	Water	71.99	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	Ethanol	21.97
Hg	Mercury	485.5	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$	Pyridine	36.56
CCl_{4}	Carbon tetrachloride	26.43	$\mathrm{C}_{6} \mathrm{H}_{6}$	Benzene	28.22
$\mathrm{CH}_{3} \mathrm{OH}$	Methanol	22.07	$\mathrm{C}_{8} \mathrm{H}_{18}$	Octane	21.14

(Why are the surface tensions of water and mercury relatively high?)

Temperature Dependence of the Surface Tension

$$
\gamma \approx \gamma_{\mathrm{o}}\left(1-\frac{T}{T_{\mathrm{c}}}\right)^{n}
$$

γ_{0} is a constant for each liquid
n is a constant (≈ 1.2 for non-hydrogen-bonded liquids)

What is the predicted surface tension at the critical temperature?
Is this value reasonable?

Example Calculate the work required to disperse $16 \mathrm{~cm}^{3}$ of liquid water into a mist of $50-\mathrm{nm}$-diamter droplets at $20^{\circ} \mathrm{C}$. Use $\gamma=0.0728 \mathrm{~N} \mathrm{~m}^{-1}$.

$$
w_{\mathrm{s}}=\int_{\sigma_{i}}^{\sigma_{f}} \mathrm{~d} w_{\mathrm{s}}=\int_{\sigma_{i}}^{\sigma_{f}} \gamma \mathrm{~d} \sigma=\gamma \int_{\sigma_{i}}^{\sigma_{f}} \mathrm{~d} \sigma=\gamma\left(\sigma_{f}-\sigma_{i}\right)
$$

$\sigma_{f}=$ final surface area $=$ number of droplets \times area per droplet

$$
=\frac{\text { total volume }}{\text { volume per drop }} 4 \pi r^{2}=\frac{16 \times 10^{-6} \mathrm{~m}^{3}}{\frac{4}{3} \pi r^{3}} 4 \pi r^{2}=\frac{3}{r}\left(16 \times 10^{-6} \mathrm{~m}^{3}\right)
$$

$$
=\frac{3\left(16 \times 10^{-6} \mathrm{~m}^{3}\right)}{25 \times 10^{-9} \mathrm{~m}}=1920 \mathrm{~m}^{2} \quad \begin{aligned}
& \text { specific surface area } \\
& =\left(1920 \mathrm{~m}^{2}\right) /(16 \mathrm{~g}) \\
& =\mathbf{1 2 0} \mathbf{m}^{\mathbf{2}} \mathbf{g}^{-1}
\end{aligned}
$$

$\sigma_{i}=$ initial surface area $\approx 0 \quad$ (negligibly small, only a few cm^{2})

$$
w_{\mathrm{s}}=\gamma\left(\sigma_{f}-\sigma_{i}\right) \approx \gamma \sigma_{f}=\left(0.0728 \mathrm{~N} \mathrm{~m}^{-1}\right)\left(1920 \mathrm{~m}^{2}\right)=140 \mathbf{J}
$$

Laplace Equation: The Pressure Inside a Curved Surface is Higher than the Outside Pressure

Pressure in a Bubble of Vapor in a Liquid

Pressure in a Soap Bubble

Why $p_{\text {out }}+4 \gamma / r$?

Pressure Inside a Bubble

Example Calculate the pressure inside a $50-\mathrm{nm}$ diameter bubble of water vapor (steam) at the normal boiling point.

$$
\begin{aligned}
& T=373.15 \mathrm{~K} \quad\left(100^{\circ} \mathrm{C}\right) \\
& p_{\text {out }}=101,325 \mathrm{~Pa} \quad(1 \mathrm{ttm})
\end{aligned}
$$

Data: surface tension $\gamma=0.0589 \mathrm{~N} \mathrm{~m}^{-1}$

$$
\begin{aligned}
p_{\text {in }} & =p_{\text {out }}+\frac{2 \gamma}{r} \\
& =101,325 \mathrm{~Pa}+\frac{2\left(0.0589 \mathrm{~N} \mathrm{~m}^{-1}\right)}{25 \times 10^{-9} \mathrm{~m}} \\
& =101,325 \mathrm{~Pa}+4,710,000 \mathrm{~Pa}
\end{aligned}
$$

$$
p_{\text {in }}=4,810,000 \mathrm{~Pa} \quad(47.5 \mathrm{~atm}!)
$$

Pressure Inside a Bubble - Superheating

A liquid heated in a clean, dust-free non-porous container can superheat and suddenly flash into vapor, with explosive violence.

Why?

- the first bubbles of vapor are microscopic in size $(r \ll 1 \mathrm{~mm})$
- surface tension pressure $2 \gamma / r$ strongly compresses the vapor
- vapor in microscopic bubbles is unstable, reverts to liquid (see calculations on the previous slide)

Pressure Inside a Bubble - Superheating

To prevent superheating and "bumping" use:

- boiling chips
- porous materials
- dust, dirt or sand ...

These materials allow vapor to form on macroscopic surfaces with macroscopic radii of curvature and negligible vapor compression.

Supersaturation can be Lethal: Lake Nyos Disaster

Lake Nyos is a crater lake on an extinct volcano in Cameroon, Africa.

A magma chamber under the Lake supersaturates the deeper water with CO_{2}.

On the night of 21 August 1986, a small landslide into the Lake caused rapid mixing, bringing deep water to the surface.

Under reduced pressure, hundreds of thousands of tons of CO_{2} gas were suddenly released from the supersaturated solution.

1,746 people and thousands of livestock were suffocated by the CO_{2} gas (denser than air) flowing down valleys from the Lake.

Pressure Inside a Droplet - Supercooling

A vapor cooled in a clean, dust-free non-porous container can supercool below the condensation temperature.

Why?
 (application: "cloud seeding" to make it rain)

- the first droplets of liquid are microscopic in size ($r \ll 1 \mathrm{~mm}$)
- surface tension pressure $2 \gamma / r$ strongly compresses the liquid
- the increased vapor pressure increases makes the droplets unstable

Pressure Inside a Droplet - Supercooling

Application: Cloud Chambers

- used to detect ionizing radiation (e.g., alpha or beta particles)
- radiation passes through a supercooled vapor, such as ether
- ionized vapor molecules provide sites for condensation
- trail of condensed droplets indicates the particle tracks

Capillary Rise (also called Capillarity)

Dip a glass capillary tube into liquid water.

Water climbs up the tube.
Why?

Applications

- sap rises in trees
- candle wicks soak up wax
- pen tips soak up ink
- porous materials absorb liquid
- soil absorbs rainwater

- removing oil from porous rock can be expensive

Capillary Rise (also called Capillarity)

surface tension $2 \pi r \gamma$

Capillary Rise (also called Capillarity)

Capillary Rise (also called Capillarity)

If the liquid doesn't wet the tube material (contact angle $\boldsymbol{\theta}>\boldsymbol{0}^{\boldsymbol{o}}$) only the vertical component of the surface tension force pulls the liquid up the tube.
capillary rise

$$
h=\frac{2 \gamma \cos \theta}{\rho g r}
$$

Capillary Rise (also called Capillarity)

If the liquid is completely nonwetting (e.g, mercury on glass):

$$
\begin{aligned}
\theta & =180^{\circ} \\
\cos \theta & =-1
\end{aligned}
$$

surface tension pulls liquid down the tube
capillary depression
($h<0$)

$$
h=\frac{2 \gamma \cos \theta}{\rho g r}
$$

Section 8.9 Chemistry in Supercritical Fluids

> and

Section 8.10 Liquid Crystals

reading assignment

