- 1. We used the thermodynamic equation of state to show the internal energy of an isothermal ideal gas is constant. Use $(\partial U/\partial V)_T = 0$ for an ideal gas to show the enthalpy of an isothermal ideal gas is also constant. (Hints: $H \equiv U + pV$ and for an ideal gas pV = nRT)
- 2. 75.0 moles of argon (assumed to be an ideal gas) are compressed isothermally from an initial pressure of 2.00 bar to a final pressure of 5.00 bar at 300 K.
 - a) Calculate ΔU , ΔH , w and q if the compression is reversible ($p_{\text{external}} = p$).
- [8] **b)** Calculate ΔU , ΔH , w and q if the compression is irreversible with $p_{\text{external}} = p_{\text{final}} = 5.00 \text{ bar.}$
 - c) Use the results from a and b to illustrate that U and H are state functions.
 - d) Use the results from a and b to illustrate that w and q are path-dependent.
- 3. a) The compression factor $Z = pV/nRT = pV_m/RT$ is a useful and convenient indicator of the nonideal behavior of real gases. Why? Explain briefly.
- b) The compression factor is also useful for calculating compression/expansion work. Show the work done for the reversible isothermal expansion or compression of a real gas is

$$w = -nRT \int \frac{Z}{V} \, \mathrm{d}V$$

- c) Methane is reversibly compressed from 5.00 bar to 100 bar at 25 °C. For methane under these conditions, Z > 1 (see the graph in the course notes). Do intermolecular forces increase the work required to compress the gas, or decrease it? Justify your answer.
- 4. 28.0 moles of liquid water (about 500 mL) are heated from 20 °C to 100 °C at 1.00 bar.
 - a) Use $C_{pm} = 75.4 \text{ J K}^{-1} \text{ mol}^{-1}$ for the molar heat capacity of liquid water to calculate q.
 - b) The heat calculation in a also gives ΔH for the process. Why?
 - c) Suppose the water is heated in an electric kettle to make tea. Nova Scotia Power charges \$0.153 per kilowatt-hour of electrical energy. Calculate the cost of electrically heating 28.0 moles of liquid water from 20 to 100 °C. (*Hint*: $1 \text{ kW-hr} = 1000 \text{ J s}^{-1} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J}$).
- d) The actual cost of heating the water in an electric kettle is significantly larger than the value calculated in c. Why?

Chem 231 Assignment #2 $\left(\frac{\partial H}{\partial V}\right) = \left[\frac{\partial}{\partial V}(U+PV)\right]_{T}$ (Q1) The internal energy U of an isothermal = 0 ideal gas is constant. The enthalpy is defined as H = U + pVFor an ideal gas H = U + pV = U + nRT (pV = nRT)For an isothermal ideal gas, U and nRT are constants, so H = U + pV is also constant

(QZ) 75.0 moles of ideal gas are compressed from 2.00 ban to 5.00 ban at 300 K (isothermal process).

$$\Delta V = 0$$
 $\Delta H = 0$ (isothermal ideal gas)

$$d w = -Pextenal dp = -pdV = -\frac{nRT}{V} dV$$

$$W = \int dW = -\int \frac{nRT}{V} dV = -nRT \int \frac{1}{V} dV \quad (isothermal)$$

$$V_i$$

$$W = -(75.0 \text{ mol})(8.314 \text{ JK'mvl}^{-1})(300 \text{ K}) \ln \left(\frac{2.00 \text{ ban}}{5.00 \text{ ban}}\right) = [17,400 \text{ J}]$$

$$\Delta U = 9 + W = 0 \qquad \qquad \boxed{9 = -W = -171,400 \text{ J}}$$

(QZ cont.)

b) ineversible compression
$$P_{expensel} = 5.00 \text{ ban}$$

$$\Delta U = 0 \quad \Delta H = 0 \quad (isothermal ideal gas)$$

$$W = -\left(R_{external} \text{ dV}\right) = -\left(s.00 \text{ ban}\right) \int dV$$

$$= -\left(s.00 \text{ ban}\right) \left(V_f - V_i\right)$$

$$= -5.00 \text{ ban} \left(\frac{nRT}{P_f} - \frac{nRT}{P_i}\right) = -s.00 \text{ban} \left(\frac{nRT}{s.00 \text{ ban}} - \frac{nRT}{s.00 \text{ ban}}\right)$$

$$= -nRT \left(\frac{5.00 \text{ ban}}{5.00 \text{ ban}} - \frac{5.00 \text{ ban}}{2.00 \text{ ban}}\right) = -nRT \left(1 - 2.5\right)$$

$$= \frac{3}{2} nRT = \frac{3}{2} \left(75.0 \text{ md}\right) \left(8.314 \text{ JK ind}^{-1}\right) \left(8.00 \text{ K}\right)$$

$$W = 280,600 \text{ J} \qquad \text{notice:} \\ uneversible compression \\ requires more work$$

connecting the initial and final states give the same differences $\Delta U = 0$, $\Delta H = 0$ for state functions U and H

cl) different paths give cl. flarent values of wand q You + grev } path
grev + grev } dependent

(a) a) compression factor $Z = \frac{pV}{nRT} = \frac{pV_{mn}}{RT}$ Why useful and convenient for describing real gases? Z > 1 repulsive intermedecular forces dominate Z < 1 attractive " " casy to will gases index" of gas Z > 1 at all p, V, T values for ideal gases behavior

b) compression/expansion work for reversible processes (p = Posternal) at constant T (isothermal) dw = -Posternal dV = -pdVpra real gas Z = pv nRT gives $p = 2 \frac{nRT}{N}$ $dW = -pdV = -\frac{2}{V}\frac{nRT}{V}dV$ $W = \int dW = -\int nRT + dV$ (isothermal) $W = -nRT + \frac{2}{\sqrt{dV}}$ used to calculate work for real gases $(a) ideal \quad W = -nRT + \frac{1}{\sqrt{dV}}$ real gas $W = -nRT + \frac{2}{\sqrt{dV}}$ (methans) $W = -nRT + \frac{2}{\sqrt{dV}}$ w larger for methane (more negative) than wild (2>)

Q4) 28.0 moles of liquid water heated from 20% to 100% at 1.00 ban (constant pressure)

$$C_p = nC_{pm} = \frac{dq_p}{dT}$$
 multiply by dT

integrate

(Spm=75.4 JK mol-1) n = 28.0 mol (constants)

$$q_p = n G_{pm} \int_{dT}^{T_f} dT = n G_{pm} (T_f - T_i)$$

$$T_i$$

c) cost of electricity to heat the water:
$$\left(\frac{$0.153}{3.6\times10^6}\right)\left(\frac{168,900J}{50.00718}\right) = \frac{$0.00718}{3.6\times10^6}$$