Chemistry 231 Math Toolbox

Ordinary Derivatives of Functions with One Independent VVariable

The ordinary derivative of f(x) is defined as are) AIimO f(X+AXA)X_ f(x) which gives:
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Useful rules for ordinary derivatives (a is a constant):
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Useful Integrals (a is a constant)
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Other Useful Expressions

In(e™) = ax
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Ina — Inb = In(a/b)
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Partial Derivatives of Functions with Two Independent VVariables

The partial x derivative of f(x,y) holding y constant is defined as
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Similarly, the partial y derivative of f(x,y) holding x constant is defined as
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If you can do ordinary differentiation, then you can do partial differentiation! Just keep track
of the variable being held constant.

Example f(x,y) = 37xy?
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Example Vm(p,T) = RT/p for the molar volume of an ideal gas (note that R is a constant)
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Useful Rules for the Partial Derivatives of the Function f(x,y)
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Test for the Existence of the Function u(x.y)

Given du = g(x,y)dx + h(x,y)dy

the function u(x,y) exists if
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