Linear Regression

a useful technique for analyzing experimental data
Suppose you measure the optical absorbance of a solution of a compound at different concentrations. Data:

concentration / M
0.00
0.90
1.70
2.50
3.90
absorbance
0.11
0.79
1.79
2.62
3.85

Plotting the data gives:

Looks like
the data can be represented by a straight line:

with slope m and intercept b. But there are five data points to calculate two unknowns (m and b)

What to Do? Statistics to the Rescue!

For N data points represented by the line

$$
f(x)=a_{0}+a_{1} x
$$

intercept $=a_{0}$
slope $=a_{1}$
the "best" values of a_{0} and a_{1} are evaluated from the data by minimizing S, the sum of the squared deviations between the measured and calculated values of $f(x)$.

$$
\begin{aligned}
S & =\sum_{i=1}^{N}\left[f\left(x_{i}\right)_{\text {measured }}-f\left(x_{i}\right)_{\text {calculated }}\right]^{2} \\
& =\sum_{i=1}^{N}\left[f\left(x_{i}\right)_{\text {measured }}-a_{0}-a_{1} x_{i}\right]^{2}
\end{aligned}
$$

How is the Sum of Squared Deviations Minimized?

by using Partial Derivatives!

$$
\begin{aligned}
& \left(\frac{\partial S}{\partial a_{0}}\right)_{a_{1}}=\left[\frac{\partial}{\partial a_{0}} \sum_{i=1}^{N}\left[f\left(x_{i}\right)_{\text {measured }}-a_{0}-a_{1} x_{i}\right]^{2}\right]_{a_{1}}=0 \\
& \left(\frac{\partial S}{\partial a_{1}}\right)_{a_{0}}=\left[\frac{\partial}{\partial a_{1}} \sum_{i=1}^{N}\left[f\left(x_{i}\right)_{\text {measured }}-a_{0}-a_{1} x_{i}\right]^{2}\right]_{a_{0}}=0
\end{aligned}
$$

Minimizing S gives two equations (try it!'):

$$
\begin{aligned}
&(-2) \sum_{i=1}^{N}\left[f\left(x_{i}\right)_{\text {measured }}-a_{0}-a_{1} x_{i}\right]=0 \\
&(-2) \sum_{i=1}^{N}\left[f\left(x_{i}\right)_{\text {measured }}-a_{0}-a_{1} x_{i}\right] x_{i}=0
\end{aligned}
$$

Two Equations. Two Unknowns.

$$
\begin{aligned}
N a_{0}+\left(\sum_{i=1}^{N} x_{i}\right) a_{1} & =\sum_{i=1}^{N} f\left(x_{i}\right)_{\text {measured }} \\
\left(\sum_{i=1}^{N} x_{i}\right) a_{0}+\left(\sum_{i=1}^{N} x_{i}^{2}\right) a_{1} & =\sum_{i=1}^{N} x_{i} f\left(x_{i}\right)_{\text {measurued }}
\end{aligned}
$$

Solve for the intercept a_{0} and the slope a_{1}.

line intercept:

$$
a_{0}=\frac{\left(\sum_{i=1}^{N} x_{i}^{2}\right)\left(\sum_{i=1}^{N} x_{i} f\left(x_{i}\right)\right)-\left(\sum_{i=1}^{N} f\left(x_{i}\right)\right)\left(\sum_{i=1}^{N} x_{i} f\left(x_{i}\right)\right)}{N\left(\sum_{i=1}^{N} x_{i}^{2}\right)-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}
$$

line slope:

$$
a_{1}=\frac{N\left(\sum_{i=1}^{N} x_{i} f\left(x_{i}\right)\right)-\left(\sum_{i=1}^{N} x_{i}\right)\left(\sum_{i=1}^{N} f\left(x_{i}\right)\right)}{N\left(\sum_{i=1}^{N} x_{i}^{2}\right)-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}
$$

"Line of Best Fit" (also called linear regression and least-squares) calculations are widely used in science and technology.

Can be easily extended to more complicated equations, such as

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& \text { (multiple linear regression) } \\
& f(x)=a_{0} \sin \left(a_{1} x\right) \\
& \text { (nonlinear regression) }
\end{aligned}
$$

