
Chapter 16. Kinetic Theory of Gases

Summary

 molecular interpretation of the pressure and pV = nRT

 the importance of molecular motions

 velocities and speeds of gas molecules

 distribution functions for molecular speeds and velocities

 application to effusion (gas leak through a pin hole)

 molecular collision rates – important for chemical kinetics



Section 16.1  Kinetic Theory of Gas Pressure 

and Energy

 gases are treated as a collection of moving particles

 kinetic theory applies if the average distance between

molecules is very large compared to the molecular size

 useful for gases at low pressures

 many applications to physical and chemical processes 

 one of the most successful scientific theories

What  is “Kinetic Theory” ?



 the gas consists of particles of mass m in ceaseless

random motion*

 the size of the particles is negligible compared to the

average distance between collisions

 the particles do not interact, except for perfectly

elastic collisions**
____________________________________________________________

Key assumptions of the Kinetic Theory of Gases

*random motion – not organized motion, as in bulk flow through a tube

**translation kinetic energy unchanged by collisions – no internal 

energy modes (such as vibrations or rotations) are excited   



Example: Argon  gas  at  300 K  and  1 bar
(No internal rotations or vibrations. Why?)

volume per mole: Vm  25 L mol1 =  0.025 m3 mol1

Divide Vm by Avogradro’s number to get 

volume per argon atom:  4.1  1026 m3 =  41 nm3

Use the argon atom diameter  ( 0.29 nm) to calculate

volume occupied by one Ar atom:  (4/3)r3 =  0.013 nm3

Conclusion Only about 0.03 % of the container volume 

is occupied by argon atoms. The system is 

mostly “empty space”.



Kinetic Theory of Gas Pressure

 pressure at fixed n, V is proportional to T

 pressure at fixed n, T is inversely proportional to V

 pressure at fixed T, V is proportional to n

Experiment  results for gases at low pressures

V

nRT
p 

combine to give the empirical ideal gas law:

But is there a  theoretical  interpretation of the ideal gas law?



A particle of mass m with x-component velocity vx collides with 

a wall of area  A.

The collision changes the x-component of the velocity from vx to  vx.

Momentum change per collision:   mvx  m(vx) = 2mvx



Next, calculate the number of particles colliding with the wall 

in the time interval t.

All particles within the distance vxt from the wall will hit it 

in the time interval t if they are moving toward the wall.

One half of the particles 

the volume Avxt

(the ones moving right)

hit the wall in the

time interval t. 



For a container of volume V filled with n moles of particles, 

the number of particles in volume Avxt is
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One half of these molecules hit the wall, so the momentum 

change in time interval t is

(number of collisions)  (momentum change per collision)

 
V

tmAvnN
mv

V

tAv
nN x

x
x 








 


2

A
A 2

2

1



The pressure on the wall is the force (rate of change of momentum)

divided by the wall area. 

Divide by t and A to get 

using M = NAm for the particle molar mass.

This kinetic theory result is starting to resemble the ideal gas law!
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Not all of the molecules travel with the same velocity. As a result, 

the pressure is the average value of nMvx
2/V. Using angular brackets

< vx
2>  to denote the average value of vx

2 gives 

Because molecules are moving randomly, < vx
2> = < vy

2> = < vz
2> 

and the average particle speed squared c2 is  

Important kinetic theory result:
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Comparison of  the Kinetic Theory and Ideal Gas Pressure Equations 

Mean (Average) Particle Speed Squared: 

Root Mean Squared (rms) Particle Speed:
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Comparison of  the Kinetic Theory and Ideal Gas Pressure Equations 

Mean (Average) Particle Translational Kinetic Energy (per mole): 

Equipartition Theorem for the Mean Translational Kinetic Energy

for Each of the x, y, and z Dimensions (per mole):  
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Important interpretation of the  temperature  T

 a measure of average molecular kinetic energy



Comparison of  the Kinetic Theory and Ideal Gas Equations 

Mean (Average) Translational Kinetic Energy (per mole):

Pressure:
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A new interpretation of the pressure of a gas!  

 2/3 of the translational kinetic energy per unit volume



Mean argon atom speed squared: 

Mean molar translational kinetic energy:

Root-mean-squared (rms) argon atom speed:
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Example:   Argon  gas  at 300 K
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from Chem 231:

p =  gas pressure CVm = molar heat capacity at constant volume

 = gas density Cpm = molar heat capacity at constant pressure

adiabatic compressibility S isothermal compressibility T

(at constant entropy)                                    (at constant temperature)
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The Speed of Sound csound (another important speed)
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assuming ideal-gas behavior T = 1/p and:

p =  nRT/V CVm =  3R/2  (for monatomic gases)

 =  nM/V Cpm =  5R/2  (for monatomic gases)

Exercise:    Show for monatomic gases

For argon at 300 K the speed of sound is  csound =  322.6 m s1

Points to ponder:  the speed of sound is     independent of pressure

 proportional to T1/2

 proportional to M1/2
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Example:   The  Speed  of  Sound  for  Argon



Section 16.2   Velocity Distribution in One Dimension

 xi , yi , zi coordinates for the positions of  1023 molecules?

 vxi , vyi , vzi velocity components for  1023 molecules (constantly

changing due to molecular collisions)?

Mission Impossible!                            

Detailed mechanical description of macroscopic systems.

Need to specify:



Impossible to Calculate the Positions and 

Velocities of Molecules in Macroscopic Systems. 

What to do? Give up? 

No! Plan B:

Huge numbers ( 1023) of molecules are moving in random 

directions with different velocities – use statistics.

Calculate the velocity distribution function giving the 

probability of different molecular velocities, from  to +

Average velocities, average speeds, average energies and other 

useful information can then be obtained.



 What are they?

 Why are they important?

 How can we use them?

Distribution  Functions
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An Example of a Distribution Function

 histogram plot of final-exam marks for Chem 232

 number Ni of students with mark xi plotted against mark xi

Ni = 0, 1, 2, 3, 4

xi = 89, 91, 92, 93, 94

a  discrete distribution

Why?

Ni and xi are 

not continuous

 a clear, concise visual presentation of the data



What is the average  mark?

total  marks

total number of students
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 the area under the histogram plot is

 Dividing by                   gives  Pi   = the probability of mark xi

Area = 1 under 

Pi plotted vs. Ni

Why?

The area represents 

the sum of all possible

probabilities.

another way to calculate the average mark:
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 the normalized histogram is the mark probability distribution

Normalized Plot
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Calculating average values for a 

discrete probability distribution
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Calculating average values from 

a discrete probability distribution
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The probability Pi of mark xi = 0, 1, 2, … , 97, 98, 99, 100

is the area of a rectangle of height Pi and width x = 1.



Average of discrete  x0,  x1,  x2, … values:
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What about averages of  continuous values, such as

velocities, speeds, translational kinetic energies, …?

1. Use probability distribution function P(x)

to give the probability x is between x and x + dx

2. Instead of adding discrete xi Pi values,

integrate xP(x)dx values:

xxxPx  d)(replace discrete xiPi

with continuous P(x)dx



Example:  Molecular Speeds
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gives the probability F(v)dv of molecules with speeds

in the range from v to v + dv.

Average speed:

Distribution function:
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Distribution Functions

 applications in every branch of science and technology

Important Example:  Electron Probability Distributions *

Solving Schrodinger’s equation

gives quantum mechanical wave functions (x, y, z)

describing 1s, 2s, 2p, 3s, 3p, 3d, … electron orbitals.

The probability of finding an electron at coordinates 

x to x + dx,  y to y + dy,  z to z + dz in volume element dxdydz is:

2(x, y, z)dxdydz or         *(x, y, z)(x, y, z)dxdydz

[ if (x, y, z) is real ] [ if (x, y, z) is complex ]

 EH ˆ



Probability distribution functions *(x, y, z)(x, y, z)

for  electrons in 1s,  2s,  2p,  3s,  3p,  3d  orbitals

(higher probability density in the brighter regions) 



Normal (Gaussian) Distribution of  Random Errors  
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 = the variance

(average value of 2)

narrow distribution: small 
(high precision)

wide distribution: large 
(low precision)

Another important example of a distribution function:  
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Normal (Gaussian) Distribution of Random Errors 

 

f() is normalized:






  d)(1 f

average value of  is zero:
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average value of 2 :

(the variance 2)
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Why?

Why?



Normal (Gaussian) Distribution of Random Errors 
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95.5 % probability

error  

68.2 % probability

error  3

99.8 % probability



Normal (Gaussian) Distribution of Random Errors 
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negative  error:  

50 % probability
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positive  error:  

50 % probability



Boltzmann Distribution over Molecular Energy Levels
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The probability that a molecule is in energy level Ei

is proportional to the Boltzmann factor exp(Ei /kT)  

Another Example:
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A is a normalization factor



Barometric Equation:   Boltzmann Distribution of         

Molecules in a Gravity Field
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A molecule at elevation h above sea level has 

gravitational potential energy mgh

The probability that a molecule is at elevation h

is proportional to the Boltzmann factor exp(mgh /kT)  

find:
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H2 and He

are by far the

most abundant

elements in the

Universe.

Why is there

 no H2 and 

 no He in our

atmosphere? 
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A molecule of mass m moving in the x-direction with velocity vx

has translational kinetic energy: 

The Boltzmann distribution gives

with normalization constant A

Velocity Distribution f (vx) in One Dimension 
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Back to Section 16.2:
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The pre-exponential normalization factor A is evaluated using:

and 

Velocity Probability Distribution f (vx)  in One Dimension 
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Find:

use a table of definite integrals

to evaluate this term



Velocity Distribution Function in One Dimension  
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What is f(vx)?

f(vx)dvx is the probability

molecular velocity vx is 

in the range  vx to  vx + dvx

m = molecular mass

k = R/NAvogadro = Boltzmann constant

T = temperature



Velocity Distribution Function in One Dimension  
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 Most probable value of vx? Why?

(hint:  there is no bulk flow)

 Why is f(vx) symmetrical?

f(vx)  =  f(vx)

 f(vx)  0  as  vx   Why?

 Same distribution for vy and vz?          



Velocity Distribution Function in One Dimension  
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Compare f (vx) with the normal 

distribution of random errors:
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Notice (it’s no accident!):

f (vx) is a normal distribution 

with variance  2 = <vx
2> = kT/m



As the molecular mass

increases, the velocity

distributions get:

 narrower

 taller

Does this make sense?

Velocity Distribution Functions for Neon, Argon and Krypton

T = 298 K



As the temperature 

decreases, velocity 

distributions get taller 

and narrower.

Does this make sense?

Temperature Effects

Velocity Distribution for Ar at 298 K and 1000 K



Section 16.3   Distribution of Molecular Speeds

A molecular velocity is the vector sum of the 

velocity components in the x, y and z directions.

zyx vvvv




v


xv
 yv



zv


v


magnitude

and

direction



Section 16.3   Distribution of Molecular Speeds

A molecular speed v is the magnitude (no direction)

of the velocity vector.
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Notice that different velocity vectors can give the same speed

(important later). Example:

and

(Pythagoras Theorem)
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Probability of a velocity vector with x, y and z components 

vx to vx + dvx vy to vy + dvy vz to vz + dvz
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dvxdvydvz can be pictured as a “tiny cube” in three-dimensional 

velocity space with edges dvx and dvy and dvz.

To calculate the probability a given molecular speed, add up 

the volumes dvxdvydvz of cubes in a spherical shell that give the 

same speed in any direction

A “speed shell” from v to v + dv

has area 4v2, thickness dv

and “volume” 4v2dv.

The sum of dvxdvydvz values

that gives speeds from 

v to v + dv is 4v2dv.



Show the volume of a speed-shell of radius v

and differential thickness dv is 4 v2dv

shell volume = volume of sphere(radius v + dv) – volume of sphere(radius v)

= (4/3) (v + dv)3 – (4/3) (v)3

= (4/3) [ (v + dv)3 – (v)3 ]

= (4/3) [ v3 + 3v2dv  +  3v(dv)2 +  (dv)3  v3 ]

= (4/3) [ 3v2dv ]

= 4 v2dv

negligible 2nd-order and 

3rd-order differential terms



Maxwell Speed Distribution Function F(v)

Important result:  the probability of a molecular speed 

in the range from v to v + dv is

vv
kT

m
vvF kTmv de

2
4d)( 2/2

2/3
2














vv
RT

M
vvF RTMv de

2
4d)( 2/2

2/3
2














in terms of molar mass M:

in terms of molecular mass m:



What do speed distribution functions “look like”?

F(v) for argon at 

298 K and 1000 K

temperature effects



Speed distribution

functions at 298 K

for Ne, Ar and Kr

mass effects

mNe < mAr < mKr



Maxwell Speed Distribution Function F(v)
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The probability of a molecule with a speed in the range v1 to v2

is the area under the F(v) curve plotted from v1 to v2

F(v)  0  as  v  0  and  as  v  0. This means very few  

molecules have very low or very high speeds

The fraction of molecules with speeds larger than 10 times

the most probable speed (calculated next) is 9  1042. 

No molecules have speeds this high!



Section 16.4    Most Probable, Average and Root-Mean-Square 

(rms) Molecular Speeds

Gas molecules move with a wide range of different speeds.

What is the most probable molecular speed? 

Find vmp that maximizes F(v). Solve:

Most Probable Molecular Speed (vmp)
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What is the average molecular speed? Solve:

Average Molecular Speed (vave)
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use a table of definite integrals

to evaluate this term



Root-mean-squared speed sounds complicated, but it’s just

the square root of the average squared speed* (the variance):

Root-Mean-Squared Speed (vrms)
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This might look familiar!

vrms is identical to the square root of the average squared speed 

calculated from equipartition theory:
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*Note that the root-mean-squared speed vrms

(first square v, then average, then take the square root)

Root-Mean-Squared Speed (vrms)
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differs from the root-squared-mean speed 

(first average v, then square, then take the square root)

which is just the average speed
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Most Probable, Average, and Root-Mean-Square Speeds

Argon at 25 oC

The most probable 

speed is smaller than 

the average speed.

Also, the average speed 

is smaller than the 

rms speed.

Why?

Hint: Notice that F(v)

is not symmetrical.



Theory is fine, but  can  speed  distributions be  measured ?

One approach:  Use a molecular beam and velocity selector

An oven with a pinhole and collimating slits emits a narrow beam of gas molecules.

The molecules pass through a pair of slots offset by angle  in rotating metal discs.

Discs separated by distance L rotating at angular velocity  provide  L = t v and

 =  t which selects molecules with speed v = L/ . Molecules with other speeds

hit the discs and do not reach the detector.



Figure 16.8  Measured () and predicted (  ) speed distributions 

for potassium vapor at 466 K. Miller and Kusch. Phys. Rev. 1955, 99, 1314.

Why does this experiment give F(v)

for the distribution of molecular speeds,

not f(vx) for velocities in the direction

of the molecular beam from the oven?



Distribution of Translational Kinetic Energies E

The kinetic energy of a molecule is E = mv2/2, which gives

v = (2E/m)1/2

dv = dE/(2mE)1/2

for the molecular speed and its differential. 

For some applications it is important to know the probability

distribution of molecular energies.

The probability F(E)dE of a molecule with translational kinetic 

energy in the range E to E + dE is calculated from the probability

F(v)dv of molecular speeds



Distribution of Translational Kinetic Energies E

for the probability of molecular speeds gives (try it!) 

Substitution of v = (2E/m)1/2 and dv = dE/(2mE)1/2 into
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F(E)dE is independent of the molecular mass. Why? 

The average translational kinetic energy is  
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Distribution of Translational Kinetic Energies E

Probability of molecular translational energies:
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Probability of molar translational energies  (use Em = NAE and R = NAk): 
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F(E)dE and  F(Em)dEm are independent of molecular mass. 

Why? 
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Lots and lots of theoretical equations for molecular velocities 

and speeds. Another academic exercise.  Another  Zzzzzz …

No!
Lots and lots of practical applications too!  Predict:

 rates of molecular collisions (important for reaction rates –

reactant molecules need to collide to react)

 rates of molecular collision with surfaces (important

for gas/solid reactions, catalysis, crystallization, etc.)

 leak rates

 isotope separation (e.g., 235UF6 and 238UF6) 

 transport properties, such as viscosity, diffusion and

heat conduction (next Chapter)



Section 16.5   Molecular Collisions with Surfaces

and Gas Effusion

 How many gas molecules hit the wall of a container 

per unit area per second?

 What does the collision rate depend on?

 If there is a hole in the wall of a container, how rapidly do

the gas molecules leak out (effusion)?

use rates of effusion to

measure vapor pressures?



Calculating wall collision rates illustrates a useful application 

of velocity distribution functions. Analysis:

Consider molecules hitting a wall of area A perpendicular to the x axis.

In time interval dt, a molecule moves distance vxdt in the x-direction

A molecule hits the wall in the time interval dt if the molecule is 

moving toward the wall (vx > 0) and within distance vxdt of the wall.

The number of molecules in volume Avxdt with velocities 

from vx to vx + dvx is
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Collision rate per unit surface area per unit time is calculated from
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by: dividing by wall area A

dividing by time interval dt

integrating over all molecules moving toward the wall
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Molecular collision rate

with a wall per unit area

per unit time. 

Zc is proportional to the number of molecules per unit volume, T1/2 and m1/2.



Example 1 A container holds argon at 1 atm and 298 K. How many

argon atoms hit the container wall per square centimeter per second?

Collision rate per unit area per unit time:
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Collision rate per unit time for area  A = 1.00 cm2  = (0.0100 m)2:
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123 s1044.2  Wow! About Avogadro’s number 

per second per square centimeter!



Example 2 A container is filled with an equimolar mixture of argon 

at 0.500 bar and helium at 0.500 bar at 298 K. Calculate the leak rate 

of argon and helium into a vacuum through a circular pinhole of area

0.0100 m2. Also calculate the composition of the leaked gas.

Zc for argon:

Collision rate per unit area per unit time:

mkT

p
Z

2
c 

)K298()KJ10381.1()mol10022.6/molkg0400.0(2

Pa000,50
1231231  




1227 sm1020.1 

Leak rate for argon through hole of area  A = 0.0100 m2:

)sm1020.1()m100100.0( 1227212

c

  AZ

secondper  atomsargon 1020.1 13



Example 2 cont.

Collision rate per unit area per unit time for helium:

)K298()KJ10381.1()mol10022.6/molkg00400.0(2

Pa000,50
1231231c  
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1227 sm1079.3 

Leak rate for helium through hole of area  A = 0.0100 m2:

)sm1079.3()m100100.0( 1227212

c

  AZ

secondper  atoms helium1079.3 13

Mole fraction of He in the leaked gas mixture:

760.0
1020.11079.3

1079.3

(Ar)(He)

(He)
1313

13

cc

c 








ZZ

Z

(compared to He mole fraction 0.500 in the container)

Application:

isotope

separation



Example 3 Invert the procedure: use measured leak rates to

calculate the vapor pressure of solids and liquids.

An organic compound (molar mass M = 256 g mol1) leaks out of

a small hole (area A = 1.235  1010 m2) in the wall of a Knudsen cell

into a vacuum chamber. A leak rate of 0.123 mg in 6 minutes is

measured at 500 K. Calculate the vapor pressure of the compound.

Knudsen Vapor Pressure Cell

The weight of the cell is measured 

before and after gas effusion for a

timed interval.



Example 3 (cont.)

Measured leak rate in units of molecules per square meter per second:

1224

1210

1231

c sm1056.6
)mins60min6()m1023.1(

)mol10022.6()molg254/g000123.0( 
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N
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)K500()K J10381.1(
mol10022.6
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sm1058.6

123
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1

1224
























p

vapor pressure  p =  894 Pa  =  0.00894  bar

mkT

p
Z

2
c Solve                                        for the vapor pressure  p. 



Applications  of  Effusion

 vapor pressure measurements

 leak detection 

 isotope separation ( e.g., 235UF6 / 238UF6 ) 

 molecular weight determination:  leak rate   M1/2

Graham’s Law

(Why is helium frequently used?)



Example Gas molecules at initial pressure p(t = 0) leak out of a 

container (volume V) through a hole of area A into a vacuum.

Derive an expression for the gas pressure p(t) as a function of time.

rearrange:

integrate from t = 0 to t:

A
mkT

p
AZ

t

N

2d

d
c leak rate:

(molecules per second)

substitute N = pV/kT: A
mkT

p

t

kTpV

2d

)/d(


mkT

A

t

p

t

p

p 2d

dln

d

d1


)0(
2

)0(ln)(ln  t
mkT

A
ptp
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ptp
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Section 16.6   Molecular Collisions

 Kinetic theory treating gas molecules as point masses 

used in Sections 16.1  16.5 to analyze:

 pressure exerted on a wall 

 translational kinetic energy

 molecular velocities

 molecular speeds

 rates of molecular collisions with a wall

 rates of molecular effusion through a hole

 Molecular collisions analyzed in this Section are different:

depend on molecular sizes and cross-sectional areas

 Rates of molecular collisions are important for understanding

rates of chemical reactions, mean free paths, viscosity,  

thermal conductivity, and mixing by molecular diffusion



Collisions of Gas Molecules

Analyzing molecular collisions is  tricky!

Depends on:

 relative velocities

 intermolecular potential energies 

 molecular masses, sizes and shapes

 direction of approach



Collisions of Gas Molecules

Approximation used here:  molecules are treated

as hard spheres

 molecules do not interact unless the distance

between their centers is r1 + r2

 potential energy is infinite at shorter distances 

 intermolecular potential energy is zero at

distances between centers beyond r1 + r2

 collisions are elastic (no change in total

kinetic translational kinetic energy)



Collisions of Gas Molecules

If molecules of type 2 are stationary:

molecules of type 1 collide in time dt

with all molecules of type 2 in the cylinder

of volume  (r1+r2)
2vavedt =   2vavedt

collision cross

sectional area

 =  (r1 + r2)
2



But wait ! All molecules are moving! Use average relative speeds 

to calculate collision rates.

Angles of approach range from 0o to 180o. 90o is the average angle.



using the Pythagorean theorem:        

2

2

2

112  vvv

21

88

m

kT

m

kT






kT
v

8
12 

21

21

mm

mm




reduced mass:  

average

approach

angle

Mean Relative Speed <v12>  of Molecules 1 and 2



Example Calculate the average relative speed <v12> 

of H2 (1) and O2 (2) molecules at 298 K.

kg10348.3
mol10022.6

molkg10016.2 23
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m

molecular 

masses
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12 sm1824
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kT
v

Note:  The mean relative speed of H2 and O2 is closer to the mean speed

of H2 (1920 m s1) than to the mean speed of O2 (482 m s1).  Why?



Collisions of Molecule 1 with Molecule 2

Number of collisions per second for a single molecule of type 1 

with molecules of type 2:




 kT

kT

p

t

tv

V

N
z

8

d

d 2122
12 


 (units:  s1)

Total number of collisions of molecules 1 and molecules 2

per unit volume per second (called the collision density):
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p
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821
12

1
12  (units:  m3 s1)

In time dt molecule 1 sweeps out collision volume  <v12>dt.

Collision cross sectional area  =  (r1 + r2)
2.   Reduced mass  = m1m2/(m1 + m2). 



Collisions of Molecule 1 with Molecule 1

Number of collisions per second for a single molecule of type 1 

with other molecules of type 1:
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Total number of collisions of molecules 1 and molecules 1

per unit volume per second (note: a factor of ½ is included so 

each collision is only counted once):
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Collision cross sectional area  =  (r1 + r1)
2.   Reduced mass  = m1m1/(m1 + m1) = m1/2. 





Example Calculate the collision frequency z11 and the collision

density Z11 for O2 gas at 298 K and 1 bar.

z11 =  6.18   109 s1

M

RT

kT

p

m

kT

kT

p
z
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)molkg03200.0(
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1
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 z

kT

p
Z

Z11 =  7.61   1034 m3 s1

(collisions per second for one O2 molecule)

collisions per cubic meter per second

moles of collisions per liter per secondZ11 =  1.26   108 mol L1 s1



Section 16.7   Mean Free Path

mean free path  the average distance a molecule travels

between collisions with other molecules

Useful for analyzing transport of heat, momentum, and mass.

Calculated by dividing the average distance travelled per unit time 

by the number of collisions per unit time.

For a gas consisting of one type of molecules:









v
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z
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211 






22 p

kT

N

V


 is proportional to T,  p1 and  1



Example Calculate the mean free path for argon at 1 atm and

298 K. Is  large compared to the size of an Ar atom?

mean free path  =  79.8   109 m  =  79.8 nm

An Ar atom travels on average 79.8 nm/0.29 nm = 275 diameters 

between collisions.

Data:         = 0.36   1018 m2

Ar atom diameter  =  0.29  109 m 

)m1036.0(2)Pa101325(

)K298()K J10381.1(

2 218

123













p

kT



!  Warnings  !

1)  The flow properties of a gas change significantly at pressures 

so low the mean free path is comparable to the dimensions of 

the container holding the gas   “ballistic”  flow.

2) The hard-sphere “billiard ball” model used in this Chapter for 

molecular collisions is an approximation. 

3)  More realistic (and more complicated!) models exist, 

such as the Lennard-Jones intermolecular potential energy 
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Collision Trajectories for Lennard-Jones Interaction Potentials

Low Speeds                       High Speeds


