Thermodynamics

Predicts the direction of everyday spontaneous processes:

- flow of heat from warmer to cooler regions
- expansion from higher to lower pressure
- mixing from higher to lower concentrations
- chemical reaction from higher to lower activities

But what are the rates of these important processes?

Chapter 17. Transport Processes

- most systems are not at equilibrium
- how rapidly does a non-equilibrium system reach equilibrium?
- need to know rates of transport of
- mass (Fick's law of diffusion)
- heat (Fourier's law of thermal conductivity)
- momentum (Newton's law of viscosity)
- charge (Ohm's law of electrical conductivity)

$$
\begin{aligned}
& J_{x}=-D \frac{\partial C}{\partial x} \\
& J_{x}=-\kappa \frac{\partial T}{\partial x} \\
& J_{x}=-\eta \frac{\partial v}{\partial z} \\
& J_{x}=-\kappa \frac{\partial \phi}{\partial x} \\
& \hline
\end{aligned}
$$

- flux J_{x} (quantity transported per unit area per unit time) is proportional to a transport coefficient and a driving gradient

Section 17.1 What is Transport?

- equilibrium: uniform temperature, pressure, and chemical potentials
- but most systems have gradients in temperature, pressure, composition, etc.
- transport refers to the flow of heat, momentum and matter to approach thermal, mechanical and chemical equilibrium
- practical applications describing the rates of physical and chemical processes in every branch of science and technology
- biochemical transport (e.g., O_{2} carried hemoglobin) essential for multi-cellular plants and animals

Transport Equation

$$
J_{x}=-\alpha \frac{\partial(\text { property })}{\partial x}
$$

$J_{x}=$ flux density (also called the flux): the amount of mass, energy, momentum, or charge flowing per unit area per unit time in the x-direction
$\alpha=$ transport coefficient
∂ (property)
$\partial x \quad=$ gradient in a system property driving the flux

Why the minus sign in transport equations? The flow is "down" the gradient, such as heat flowing from regions of higher to lower temperature.

Section 17.2 Mass Transport by Diffusion

Diffusion: transport of matter by random molecular motions (not by bulk flow, such as stirring or pumped flow in a pipe)

Fick's Law of Diffusion

$$
J_{x}=-D \frac{\partial C}{\partial x}
$$

$J_{x}=$ flux density of molecules diffusing in the x-direction
$D=$ diffusion coefficient
$\frac{\partial C}{\partial x}=$ concentration gradient

Fick's Law of Diffusion

$$
J_{x}=-D \frac{\partial C}{\partial x}
$$

Applies to gases, liquids and solids.
$J_{x}=$ flux density, SI units: $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ (for molecules)
$\frac{\partial C}{\partial x}=\frac{\partial(N / V)}{\partial x}=$ concentration gradient, SI units: m^{-4}
$D=$ diffusion coefficient, SI units: $\mathrm{m}^{2} \mathrm{~s}^{-1}$

Fick's Law of Diffusion

Provides mixing on the molecular level.

$J_{x}=-D \frac{\partial C}{\partial x}$

Studied in every branch of science and technology.

Applications:

- chemical kinetics. Molecules must diffuse together to react. Some reactions rates are diffusion-limited, such as $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$.
- rates of mass transfer, such as gas absorption and dissolution
- transport across membranes, metabolic rates
- transmission of nerve impulses
- rates of nuclear fission (neutron transport in reactors)
- waste management

Diffusion Coefficients at $\mathbf{3 0 0} \mathrm{K}$ and 1 bar

	$D / \mathbf{m}^{2} \mathbf{s}^{-1}$
helium (g)	4.4×10^{-5}
argon (g)	1.1×10^{-5}
water (g)	0.28×10^{-5}
water (l)	2.3×10^{-9}
benzene (l)	2.2×10^{-9}
n-hexane (l)	4.1×10^{-9}
helium in water (l)	6.3×10^{-9}
aluminum (s)	1.3×10^{-34}

Values of D range over many orders of magnitude, from as low as $10^{-35} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ for solids up to about $10^{-4} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ for gases, with intermediate values for liquids.

Diffusion Measurements

Many techniques are used. Example: Loschmidt gas diffusion cell

start diffusion

diffusion for a timed interval
stop diffusion, analyze upper and lower mixtures to calculate D

Avoid convection (stirring) during diffusion measurements!

Not diffusion!

Put denser solutions underneath less dense solutions.

Use narrow tubes or gels to prevent convection.

Example For argon at 298 K and $1 \mathrm{~atm}: D=1.1 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. The concentration gradient in the x-direction is $0.25 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~cm}^{-1}$.
Calculate the flux density J_{x} of argon atoms.
$\frac{\partial C}{\partial x}=\frac{\partial(N / V)}{\partial x}=\left(0.25 \frac{\mathrm{~mol}}{\mathrm{Lcm}}\right)\left(6.022 \times 10^{23} \frac{1}{\mathrm{~mol}}\right)\left(10^{3} \frac{\mathrm{~L}}{\mathrm{~m}^{3}}\right)\left(10^{2} \frac{\mathrm{~cm}}{\mathrm{~m}}\right)$
$\begin{aligned} & \text { concentration } \\ & \text { gradient (SI units) }\end{aligned} \frac{\partial C}{\partial x}=1.50 \times 10^{28} \mathrm{~m}^{-4}$ molecules per unit volume $\begin{array}{r}\text { per unit length }\end{array}$
flux density $\quad J_{x}=-D \frac{\partial C}{\partial x}=-\left(1.1 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)\left(1.50 \times 10^{28} \mathrm{~m}^{-4}\right)$

$$
J_{x}=-1.65 \times 10^{23} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \quad \text { (flux density of argon atoms) }
$$

$$
J_{x_{\mathrm{m}}}=-0.273 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}
$$

(molar flux density of argon $=J_{x} / N_{\mathrm{A}}$)

Gas Diffusion Coefficients from Kinetic Theory

$$
J_{x}=-D \frac{\partial C}{\partial x}
$$

- Need to know how equilibrium velocity distributions are changed by non-equilibrium concentration gradients
- Accurate calculations are complicated
- Can get a good qualitative understanding of gas diffusion using the hard-sphere model developed in the previous Chapter
- Simplified treatments of thermal conductivity and viscosity can also be developed

Why important: Theory is used to understand macroscopic transport processes on a molecular level.

Where is this from? Collision rate with a wall: $Z_{c}=(N / V)<v>/ 4=C<v>/ 4$

Diffusion Coefficients from Kinetic Theory

$$
J_{x}=-D \frac{\partial C}{\partial x}
$$

Net diffusion flux of molecules in the x-direction at $x=0$:

$$
\begin{aligned}
J_{x} & =J_{+}-J_{-} \\
& \approx\left[C(x=0)-\lambda \frac{\partial C}{\partial x}\right] \frac{\langle v>}{4}-\left[C(x=0)+\lambda \frac{\partial C}{\partial x}\right] \frac{<v>}{4}
\end{aligned}
$$

$$
=-\lambda \frac{<v>}{2} \frac{\partial C}{\partial x}
$$

approximate diffusion coefficient:

$$
=-D \frac{\partial C}{\partial x}
$$

$$
D_{\text {approx }} \approx \frac{1}{2} \lambda<v>=\sqrt{\frac{k T}{\pi m}} \frac{1}{C \sigma}
$$

Why approximate? Molecules collide and scatter over distances of λ.

Diffusion Coefficients from Kinetic Theory

Exact diffusion coefficient for a gas of hard-sphere molecules:

$$
D=\frac{3 \pi}{8} \frac{1}{2}<v>\lambda=\frac{3 \pi}{8} \sqrt{\frac{k T}{\pi m}} \frac{1}{C \sigma}
$$

The diffusion coefficient is proportional to the average speed and the mean free path of the molecules. As a result:
D is proportional to $T^{1 / 2}, m^{-1 / 2}, C^{-1}$, and σ^{-1}. Does this make sense?

Example: Calculate the diffusion coefficient of argon gas at 298 K and 1 atm .

Data: cross sectional area $\sigma=0.36 \times 10^{-18} \mathrm{~m}^{2}$

$$
D=\frac{3 \pi}{8} \sqrt{\frac{k T}{\pi m}} \frac{1}{C \sigma^{2}}=\frac{3 \pi}{8} \sqrt{\frac{R T}{\pi M}} \frac{1}{C \sigma}
$$

$\left.C=\frac{N}{V}=\frac{p}{k T}=\frac{101325 \mathrm{~Pa}}{\left(1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}\right.} \mathrm{K}^{-1}\right)(298 \mathrm{~K}) \quad=2.46 \times 10^{25} \mathrm{~m}^{-3}$
$D=\frac{3 \pi}{8} \sqrt{\frac{R T}{\pi M}} \frac{1}{C \sigma}$
$D=\frac{3 \pi}{8} \sqrt{\frac{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})}{\pi\left(0.03995 \mathrm{~kg} \mathrm{~mol}^{-1}\right)}} \frac{1}{\left(2.46 \times 10^{25} \mathrm{~m}^{-3}\right)\left(0.36 \times 10^{-18} \mathrm{~m}^{2}\right)}$
$D=1.87 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$

Section 17.3 Time Evolution of Diffusion

- a concentration gradient causes molecules to diffuse
- given an initial concentration distribution at time $t=0$, what is the distribution of molecules at a later time t ?
- how long does it take for molecules to diffuse a given distance?
- diffusion motions are random - is there a statistical interpretation?

Mass Balance: Important for Analyzing Diffusion Processes

N is the number of molecules in in the volume $A \mathrm{~d} x$ between positions x and $x+\mathrm{d} x$.

The number of molecules diffusing into volume $A \mathrm{~d} x$ from the left (x) minus the number of molecules diffusing out of the volume on the right $(x+\mathrm{d} x)$ gives $\mathrm{d} N / \mathrm{d} t$.

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=\text { rate molecules enter }- \text { rate molecules leave }
$$

mass balance on the volume $A \mathrm{~d} x$ between x and $x+\mathrm{d} x$:

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=J_{x}(x) A-J_{x}(x+\mathrm{d} x) A
$$

$$
\frac{1}{A \mathrm{~d} x} \frac{\mathrm{~d} N}{\mathrm{~d} t}=\frac{J_{x}(x)-J_{x}(x+\mathrm{d} x)}{\mathrm{d} x}
$$

Use $C=N / V=N /(A \mathrm{~d} x)$ to get :
Continuity Equation

$$
\frac{\partial C}{\partial t}=-\frac{\partial J_{x}}{\partial x}
$$

Time Evolution of Concentration Gradients: Fick's Second Law of Diffusion

Combine $J_{x}=-D \partial C / \partial x$ and $\partial C / \partial t=-\partial J_{x} / \partial x:$

$$
\frac{\partial C}{\partial t}=-\frac{\partial}{\partial x}\left(J_{x}\right)=-\frac{\partial}{\partial x}\left(-D \frac{\partial C}{\partial x}\right)
$$

Why use partial derivatives?

If the concentration changes aren't too large, the diffusion coefficient can be treated as a constant to get

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

Fick's Second Law of Diffusion

The time derivative of the concentration $C(x, t)$ is proportional to the second x-derivative (the "curvature") of $C(x, t)$.

Time Evolution of Concentration Gradients: Fick's Second Law of Diffusion

Application: Tracer Diffusion

Suppose N_{0} molecules are initially located at position $x=0$ at time $t=0$ in a column of cross-sectional area A.

After diffusion for time t, where are the molecules?

Solving Fick's Second Law $\frac{\partial C(x, t)}{\partial t}=D \frac{\partial^{2} C(x, t)}{\partial x^{2}}$ gives

$$
C(x, t)=\frac{N_{0}}{2 A \sqrt{\pi D t}} \mathrm{e}^{-x^{2} / 4 D t}
$$

Tracer Diffusion

$$
D=10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}
$$

$$
C(x, t)=\frac{N_{0}}{2 A \sqrt{\pi D t}} \mathrm{e}^{-x^{2} / 4 D t}
$$

(Does this look familiar?)

Conservation of mass:

$$
N_{0}=A \int_{-\infty}^{+\infty} C(x, t) \mathrm{d} x
$$

Section 17.4 Statistical Interpretation of Diffusion

Compare the Gaussian probability distribution of random errors

$$
f(\varepsilon)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\varepsilon^{2} / 2 \sigma^{2}}
$$

and the concentration distribution of randomly diffusion molecules

$$
C(x, t)=\frac{N_{0}}{2 A \sqrt{\pi D t}} \mathrm{e}^{-x^{2} / 4 D t}
$$

Important Result

The randomly diffusing molecules form a Gaussian distribution with variance $\left\langle x^{2}\right\rangle=2 D t$. Statistics strikes again!

Statistical Interpretation of Diffusion

Gaussian distribution of random errors

average error

$$
\begin{aligned}
\langle\varepsilon> & =0 \\
<\varepsilon^{2}> & =\sigma^{2}
\end{aligned}
$$

Gaussian distribution of randomly diffusing molecules
average displacement from

$$
\langle x\rangle=0
$$

average squared displacement

$$
\left\langle x^{2}\right\rangle=\sigma^{2}=2 D t
$$

Application: Diffusion Coefficient Measurements

Determine average squared displacements of molecules using:

- radioactive isotopes
- nuclear magnetic resonance spectroscopy
- uv, visible or IR absorbance spectroscopy
- conductivity changes (for electrolytes) etc.

Calculate diffusion coefficients:

$$
D=\left\langle x^{2}\right\rangle / 2 t
$$

Example: Calculate the root-mean-square displacement* of argon atoms at 298 K and 1 atm after diffusion for 1,100 , and 10,000 s. Data: $D=1.87 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
rms displacement $=\sqrt{\left\langle x^{2}\right\rangle}=\sqrt{2 D t}$ (in one dimension)
$t=1 \mathrm{~s} \quad \sqrt{\left\langle x^{2}\right\rangle}=\sqrt{2\left(1.87 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)(1 \mathrm{~s})}=0.00611 \mathrm{~m}$
$t=10^{2} \mathrm{~s} \quad \sqrt{\left\langle x^{2}\right\rangle}=\sqrt{2\left(1.87 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)(100 \mathrm{~s})}=0.0611 \mathrm{~m}$
$t=10^{4} \mathrm{~s} \quad \sqrt{\left\langle x^{2}\right\rangle}=\sqrt{2\left(1.87 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)\left(10^{4} \mathrm{~s}\right)}=0.611 \mathrm{~m}$
*Why not use the "rsm" displacement $=\sqrt{\langle x\rangle^{2}}$?

Comparison of Diffusion and Molecular Speeds

Diffusion as a Random Walk

A useful interpretation of diffusion can be developed by treating molecular motions as a series of steps in random directions.

Suppose a molecule is located at position $x=0$ at time $t=0$.
Model Every τ seconds the molecule takes a step of length λ. Steps in the positive- and negative x-direction are equally probable.

Diffusion as a Random Walk

After diffusion for time t and $N=t / \tau$ diffusion steps randomly left or right, a statistical analysis shows the probability $P(x) \mathrm{d} x$ of finding the molecule between x and $x+\mathrm{d} x$ is

$$
P(x) \mathrm{d} x=\frac{1}{\sqrt{2 \pi N \lambda^{2}}} \mathrm{e}^{-x^{2} / 2 N \lambda^{2}}=\frac{1}{\sqrt{2 \pi t \lambda^{2} / \tau}} \mathrm{e}^{-x^{2} \tau / 2 \lambda^{2} t}
$$

Compare this result with the concentration distribution calculated by solving Fick's law of diffusion

$$
C(x, t)=\frac{N_{0}}{2 A \sqrt{\pi D t}} \mathrm{e}^{-x^{2} / 4 D t}
$$

Diffusion as a Random Walk

Conclusion: A diffusing molecule taking steps of length λ every τ seconds has diffusion coefficient

$$
D=\frac{\lambda^{2}}{2 \tau}
$$

Accounts qualitatively for the larger diffusion coefficients of gases (longer step length) relative to liquids.

Diffusion in solids is even smaller: short step length and lower step frequency (high activation energy)

Diffusion and Thermodynamics

The negative gradient of a potential energy is a force.
Example The gravitational potential energy of mass m at height h is $m g h$. The gravitational force is $-\mathrm{d}(m g h) / \mathrm{d} h=-m g$ (negative, acting downward).

Similarly, the driving force for diffusion

$$
-\frac{\partial \mu}{\partial x}=-\frac{\partial \mu}{\partial C} \frac{\partial C}{\partial x}
$$

is the negative gradient in the chemical potential. Substances diffuse from higher to lower chemical potential.

Diffusion and Thermodynamics

The mobility Λ of a molecule is defined as the diffusion velocity generated per unit driving force:

$$
\Lambda=\frac{v_{\text {diff }}}{\text { driving force }}
$$

diffusion flux density:
$J_{x}=C v_{x, \text { diff }}=C \Lambda \times($ driving force $)=C \Lambda \times\left(-\frac{\partial \mu}{\partial x}\right)=-\Lambda C \frac{\partial \mu}{\partial C} \frac{\partial C}{\partial x}$
compare with Fick's law of diffusion:

$$
J_{x}=-D \frac{\partial C}{\partial x}
$$

Find:

$$
D=(\text { mobility }) \times(\text { thermody namic factor })=(\Lambda) \times\left(C \frac{\partial \mu}{\partial C}\right)
$$

Diffusion and Thermodynamics

$D=\Lambda C \frac{\partial \mu}{\partial C}$
For an ideal system (activity coefficient $=1$):
$D=\Lambda C \frac{\partial\left(\mu^{\mathrm{o}}+k T \ln C\right)}{\partial C}=k T \Lambda \quad$ Stokes-Einstein equation
Application: diffusion and sedimentation in liquids
Small, compact molecules in low-viscosity solvents have relatively large mobilities and diffusion coefficients.

Use diffusion measurements to determine mobilities and the sizes and shapes of molecules in solutions.

Drop a steel ball bearing of radius r into a jar of honey or thick oil of viscosity η.
The gravitational force on the ball bearing
 (down) balanced by an equal frictional force in the opposite direction (up).
The ball bearing reaches a constant "terminal velocity" as it drops.

From hydrodynamics, the mobility of the ball bearing is:

$$
\Lambda=\frac{1}{6 \pi r \eta}
$$

Spherical molecule of radius r in a liquid of viscosity η

$$
\text { mobility } \quad \Lambda=\frac{1}{6 \pi r \eta}
$$

$\begin{aligned} \text { diffusion } \\ \text { coefficient }\end{aligned} \quad D=k T \Lambda=\frac{k T}{6 \pi r \eta}$

Do molecules exist?

Seeing is believing.

Use a microscope to follow the random zig-zag motion of particles diffusing in water (Brownian motion).

Measure the average squared displacement $\left\langle x^{2}\right\rangle$ of particles of measured radius r after diffusion for time t in a solvent of viscosity η.

$$
D=\frac{\left\langle x^{2}\right\rangle}{2 t}=\frac{k T}{6 \pi r \eta}
$$

Calculate microscopic Boltzmann constant k from macroscopic diffusion measurements and Avogadro's number from the molar gas constant : R/k.

We'll consider diffusion in one-dimension only.
In general, diffusion fluxes are three-dimensional vectors with x, y and z components.

$$
\begin{aligned}
\vec{J} & =J_{x} \hat{i}+J_{y} \hat{j}+J_{z} \hat{k} \\
\vec{J} & =D \vec{\nabla} C
\end{aligned}
$$

$\frac{\partial C(x, y, z)}{\partial t}=D\left(\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}}+\frac{\partial^{2} C}{\partial z^{2}}\right)=D \nabla^{2} C(x, y, z)$
rms displacement $=\sqrt{\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle+\left\langle z^{2}\right\rangle}=\sqrt{6 D t}$

Section 17.5 Thermal Conductivity

Transport of energy by the conduction of heat driven by a temperature gradient.

> Fourier's Law of
> Heat Conduction

$$
J_{x}=-\kappa \frac{\partial T}{\partial x}
$$

$J_{x}=$ flux density of heat in the x-direction [$\left.\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right]$
$\kappa=$ thermal conductivity $\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}=\mathrm{W} \mathrm{K}^{-1} \mathrm{~m}^{-1}\right]$
$\frac{\partial T}{\partial x}=$ temperature gradient $\left[\mathrm{K} \mathrm{m}^{-1}\right]$

Thermal Conductivities at 300 K and 1 bar

	$\mathbf{K} / \mathbf{J} \mathbf{K}^{\mathbf{- 1}} \mathbf{m}^{\mathbf{1}} \mathbf{S}^{\mathbf{1}}$
argon (g)	0.018
air	0.026
hydrogen (g)	0.18
fiberglass insulation	0.045
water (g)	0.016
water (l)	0.61
aluminum	250
copper	400
silver	430
stainless steel	16
graphite	25 to 500
diamond	2200
diamond (12C-enriched)	3200

Thermal Conductivity - Applications

- rates of heat transfer - how fast systems warm up or cool down
- design of heat exchangers in furnaces, refrigerators, heat pumps, radiators, chemical reactors, ...
- thermal insulation to reduce heat transfer
- performance of advanced computer chips is limited by how rapidly heat can be dissipated
- how long does it take to bake and roast food - when's dinner?
- thermal conductivities provide information about transport of energy by vibrations in solids and molecular collisions in fluids

Thermal Conductivity - Measurement

$$
J_{\text {heat }}=-\kappa_{\text {reference }} \frac{T_{2}-T_{1}}{\Delta x_{\text {reference }}}=-\kappa_{\text {sample }} \frac{T_{3}-T_{2}}{\Delta x_{\text {sample }}} \quad \kappa_{\text {sample }}=\kappa_{\text {reference }} \frac{T_{2}-T_{1}}{T_{3}-T_{2}} \frac{\Delta x_{\text {sample }}}{\Delta x_{\text {reference }}}
$$

Heat Flow Sensor

$$
J_{\text {heat }}=-\mathcal{K}_{\text {reference }}\left(T_{2}-T_{1}\right) / \Delta x
$$

Heat Flow Sensors

Thermal Conductivity of Gases

heat flow $J_{x}=-\kappa \partial T / \partial x$

temperature

$$
J_{+}=\left[E(x=0)-\lambda \frac{\partial E}{\partial x}\right] C \frac{<v>}{4}
$$

$$
J_{-}=\left[E(x=0)+\lambda \frac{\partial E}{\partial x}\right] C \frac{<v>}{4}
$$

$E=$ average energy per molecule

Thermal Conductivities from Kinetic Theory

Net heat flux in the x-direction:

$$
\begin{aligned}
& J_{x}=J_{+}-J_{-} \\
& \approx\left[E(x=0)-\lambda \frac{\partial E}{\partial x}\right] C \frac{\langle v>}{4}-\left[E(x=0)+\lambda \frac{\partial E}{\partial x}\right] C \frac{\langle v>}{4} \\
& =-\lambda \frac{\langle v\rangle}{2} C \frac{\partial E}{\partial x} \\
& \begin{array}{l}
=-\lambda \frac{\langle v\rangle}{2} C \frac{\partial E}{\partial T} \frac{\partial T}{\partial x} \\
=-\kappa \frac{\partial T}{\partial x}
\end{array} \\
& \text { approximate thermal conductivity: } \\
& \kappa_{\mathrm{a}} \approx \frac{1}{2} \lambda<v>C \frac{\partial E}{\partial T}
\end{aligned}
$$

Why approximate? Molecules collide and scatter over distances of λ.

Thermal Conductivities of Gases from Kinetic Theory

$C=N / V=p / k T$
For hard spheres (translational kinetic energy only) $E=3 \mathrm{kT} / 2$ and $\partial E / \partial T=3 k / 2$.

$$
\kappa_{\mathrm{a}} \approx \frac{1}{2} \lambda<v>C \frac{\partial E}{\partial T}=\sqrt{\frac{k T}{\pi m}} \frac{1}{\sigma} \frac{3}{2} k
$$

exact thermal conductivity for hard spheres:

$$
\kappa=\frac{25 \pi}{32} \sqrt{\frac{k T}{\pi m}} \frac{1}{\sigma} \frac{3}{2} k
$$

Thermal Conductivities of Gases from Kinetic Theory

Give two reasons why helium has a relatively high thermal conductivity.

The predicted thermal conductivity is independent of pressure for ideal gases.

Why?

Section 17.5 Viscosity

Transport of momentum caused by friction between

 layers of fluid moving at different speeds.
Newton's Law of Viscosity

$$
J_{z}=-\eta \frac{\partial v_{x}}{\partial z}
$$

$J_{z}=$ flux density of momentum $\left[\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}=\mathrm{N} \mathrm{m}^{-2}\right]$ in the z-direction, perpendicular to the velocity in the x-direction
$\eta=$ viscosity $\left[\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}=\mathrm{Pas}\right]$
$\frac{\partial v_{x}}{\partial z}=$ velocity gradient in the z-direction $\left[\mathrm{s}^{-1}\right]$

Viscosity and Fluid Mechanics

- flow of fluids (liquids and gases) in tubes and pipes, in porous media, around objects ...
- design of pumps, plumbing, turbines, chemical reactors ...
- circulatory systems (atmospheric, oceanic, physiological ...)
- shock waves, explosions and ballistics
- computational fluid dynamics (CFD)
- aerodynamics
- rocket science!

Example: Gas or Liquid Flowing Between Stationary Plates

Friction causes the fluid velocity to drop to zero at the plate surfaces.

Selected Viscosities at 298 K and 1 bar

$\eta /$ Pas

helium (g)	$20 . \times 10^{-6}$
hydrogen (g)	9.0×10^{-6}
argon (g)	$23 . \times 10^{-6}$
carbon dioxide (g)	$15 . \times 10^{-6}$
air	$19 . \times 10^{-6}$
water (l)	8.9×10^{-4}
benzene (l)	6.0×10^{-4}
acetone (l)	3.1×10^{-4}
mercury (l)	$15 . \times 10^{-4}$
motor oil (SAE 10) (l)	0.065
motor oil (SAE 40) (l)	0.32
glycerol (l)	1.2
thick tar	$\approx 10^{8}$
upper mantle $(2000 \mathrm{~K})$	$\approx 10^{21} \quad($ continental drift!)

temperature $/{ }^{\circ} \mathrm{C} \quad \eta(\mathrm{air}, \mathrm{g}) / 10^{-6} \mathrm{~Pa} \mathrm{~s} \quad \eta\left(\mathrm{H}_{2} \mathrm{O}, l\right) / 10^{-3} \mathrm{~Pa} \mathrm{~s}$

0	17.2	1.79
25	18.4	0.891
50	19.5	0.547
75	20.6	0.379
100	21.7	0.283

Flow of Fluid in a Tube of Radius $\boldsymbol{R}_{\mathbf{0}}$

Flow rate? Required pressure? Flow pattern?

Flow of Fluid in a Tube of Radius $\boldsymbol{R}_{\mathbf{0}}$

- assume steady laminar flow (no acceleration or turbulence)
- apply force balance to a cylinder of radius r and length L

Flow of Fluid in a Tube of Radius $\boldsymbol{R}_{\mathbf{0}}$

$$
\pi r^{2} p_{1}-\pi r^{2} p_{2}+(2 \pi r L) \eta \frac{\mathrm{d} v_{x}}{\mathrm{~d} r}=0
$$

force
frictional force $(2 \pi r L) \eta \frac{\mathrm{d} \nu_{x}}{\mathrm{~d} r}$ on side area

Flow of Fluid in a Tube of Radius $\boldsymbol{R}_{\mathbf{0}}$

$$
\pi r^{2} p_{1}-\pi r^{2} p_{2}+(2 \pi r L) \eta \frac{\mathrm{d} v_{x}}{\mathrm{~d} r}=0
$$

divide by $4 \pi r^{2} L \eta$

$$
\frac{1}{2 r} \frac{\mathrm{~d} v_{x}}{\mathrm{~d} r}=\frac{1}{4 \eta} \frac{p_{2}-p_{1}}{L}
$$

use $2 r \mathrm{~d} r=\mathrm{d} r^{2}$ to get

$$
\frac{\mathrm{d} v_{x}}{\mathrm{~d} r^{2}}=\frac{1}{4 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}
$$

integrate from

Velocity Profile in a Tube of Radius $\boldsymbol{R}_{\mathbf{0}}$

$$
v_{x}(r)=\frac{1}{4 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}\left(r^{2}-R_{0}^{2}\right)=v_{\max }\left(1-\frac{r^{2}}{R_{0}^{2}}\right)
$$

parabolic velocity profile

maximum velocity (at the tube centerline):

$$
v_{\max }=v_{x}(r=0)=-\frac{R_{0}^{2}}{4 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}
$$

Total Volume Flow Rate (for liquids)

Volume flow rate through a ring from r to $r+\mathrm{d} r$ of area $2 \pi r \mathrm{~d} r$ is $2 \pi r \nu_{x}(r) \mathrm{d} r$. Integrate:

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\int_{0}^{R_{0}} 2 \pi r v_{x}(r) \mathrm{d} r=\frac{2 \pi}{4 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x} \int_{0}^{R_{0}} r\left(r^{2}-R_{0}^{2}\right) \mathrm{d} r
$$

Total Volume Flow Rate

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=-\frac{\pi R_{0}^{4}}{8 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}
$$

Poiseuille Equation for liquids
total volume flow rate proportional to

- $R_{0}{ }^{4}$
- $1 / \eta$ (the fluidity)
- pressure gradient $-\mathrm{d} p / \mathrm{d} x$

Valid for laminar flow of incompressible liquids ("liter in, liter out").

Try This A tube radius is reduced by 10%. Show that the pressure gradient must be increased by 52% to maintain the same volume flow rate. (Important cardiovascular implications.)

Try This The volume flow rate of fluid in a tube is

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=(\text { area }) \times(\text { average flow speed })=\pi R_{0}^{2} v_{\text {average }}
$$

Show that the average flow speed is:

$$
v_{\mathrm{average}}=\frac{v_{\max }}{2}=-\frac{R_{0}^{2}}{8 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}
$$

Example Liquid water is pumped through a 30 cm length of chromatography tubing (inner diameter of 0.010 inch) at a flow rate of 1.00 mL per minute. Calculate the pressure drop.
Data: $\eta=0.000891$ Pa s.

$$
\begin{aligned}
& \underset{\text { rate }}{\text { flow }} \quad \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1.00 \mathrm{~cm}^{3}}{60 \mathrm{~s}} \frac{10^{-6} \mathrm{~m}^{3}}{\mathrm{~cm}^{3}}=1.67 \times 10^{-8} \mathrm{~m}^{3} \mathrm{~s}^{-1} \\
& \text { tube radius } \quad R_{0}=\frac{0.010 \text { inch }}{2} \frac{2.54 \mathrm{~cm}}{\text { inch }} \frac{0.01 \mathrm{~m}}{\mathrm{~cm}}=1.27 \times 10^{-4} \mathrm{~m} \\
& \frac{\mathrm{~d} p}{\mathrm{~d} x}=-\frac{8 \eta}{\pi R_{0}^{4}} \frac{\mathrm{~d} V}{\mathrm{~d} t}=-\frac{8(0.000891)}{\pi(0.000127)^{4}}\left(1.67 \times 10^{-8}\right)=-1.45 \times 10^{-5} \frac{\mathrm{~Pa}}{\mathrm{~m}} \\
& \frac{\mathrm{~d} p}{\mathrm{~d} x}=-1.45 \times 10^{-5} \frac{\mathrm{~Pa}}{\mathrm{~m}}=\frac{p_{2}-p_{1}}{x_{2}-x_{1}}=\frac{p_{2}-p_{1}}{0.30 \mathrm{~m}} \\
& p_{2}-p_{1}=-44,000 \mathrm{~Pa}=-0.44 \mathrm{bar}
\end{aligned}
$$

Flow Rates for Gases

The volume flow rate of gases is not constant, even for steady flows. Gases are compressible! For example, a liter in at p_{1} produces two liters of gas downstream at p_{2} if $p_{1} / p_{2}=2$.
But for steady flow: $\frac{\mathrm{d} N}{\mathrm{~d} t}=$ constant at any tube cross section
At any cross section along the tube (constant pressure p):

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{\mathrm{d}(p V / k T)}{\mathrm{d} t}=\frac{p}{k T} \frac{\mathrm{~d} V}{\mathrm{~d} t}=-\frac{p}{k T} \frac{\pi R_{0}^{4}}{8 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}=-\frac{1}{k T} \frac{\pi R_{0}^{4}}{16 \eta} \frac{\mathrm{~d} p^{2}}{\mathrm{~d} x}
$$

Flow rate of gas molecules proportional to $\mathbf{d} p^{2} / \mathbf{d} x$ (not to $\mathrm{d} p / \mathrm{d} x$).

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=-\frac{1}{k T} \frac{\pi R_{0}^{4}}{16 \eta} \frac{\mathrm{~d} p^{2}}{\mathrm{~d} x}=-\frac{1}{k T} \frac{\pi R_{0}^{4}}{16 \eta} \frac{p_{2}^{2}-p_{1}^{2}}{x_{2}-x_{1}}
$$

Poiseuille Equation for ideal gases

Section 17.6 Kinetic Theory of Gas Viscosity

Molecules jumping back and forth produce friction between layers of gas flowing at different speeds.

Slower molecules jumping into the faster layer slow it down. Faster molecules jumping into the slower layer speed it up.

Kinetic Theory of Gas Viscosity

$$
J_{+}=C \frac{\langle v>}{4}\left[m v(z=0)-\lambda \frac{\partial(m v)}{\partial z}\right]
$$

$$
J_{-}=C \frac{\langle v>}{4}\left[m v(z=0)+\lambda \frac{\partial(m v)}{\partial z}\right]
$$

Kinetic Theory of Gas Viscosity

Total momentum flux across the plane at $z=0$:

$$
J_{z}=J_{+}-J_{-}=-C \frac{\langle v\rangle}{2} \lambda \frac{\partial(m v)}{\partial z}=-C \frac{\langle v\rangle}{2} m \lambda \frac{\partial v}{\partial z}
$$

Comparison with Newton's law

$$
J_{z}=-\eta \frac{\partial v}{\partial z}
$$

shows the viscosity is approximately

$$
\eta_{\mathrm{a}}=C \frac{\langle v\rangle}{2} m \lambda=\sqrt{\frac{k T}{\pi m}} \frac{1}{\sigma} m
$$

Kinetic Theory of Gas Viscosity

Exact viscosity for a gas of hard-sphere molecules (allowing for collisions over a mean free path):

$$
\eta=\frac{5 \pi}{16} \eta_{\mathrm{a}}=\frac{5 \pi}{16} \sqrt{\frac{k T}{\pi m}} \frac{1}{\sigma} m
$$

Points to ponder. The predicted viscosity:

- is independent of the pressure!
- increases with temperature!
- increases with molecular mass

Section 17.7 Viscosity Measurements

Many methods are used for viscosity measurements. Techniques based on flow rates through capillary tubes are frequently used.

Example Carbon dioxide gas flows at 293 K through a $1.00-\mathrm{m}$-long tube (inner diameter 0.75 mm) with an inlet pressure of 1.05 atm and an outlet pressure of 1.00 atm . The flow rate is $2.76 \mathrm{~cm}^{3}$ per second measured at 1.00 atm . Calculate the viscosity.

Flow rate (molecules per second) from $\mathrm{d} V / \mathrm{d} t$ measured at tube outlet (1.00 atm):

$$
\begin{aligned}
\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{\mathrm{d}(p V / k T)}{\mathrm{d} t}=\frac{p}{k T} \frac{\mathrm{~d} V}{\mathrm{~d} t} & =\frac{101325 \mathrm{~Pa}}{\left(1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)(293 \mathrm{~K})}\left(2.76 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~s}^{-1}\right) \\
\frac{\mathrm{d} N}{\mathrm{~d} t} & =6.91 \times 10^{19} \mathrm{~s}^{-1}
\end{aligned}
$$

Example (cont.)

Rearrange $\quad \frac{\mathrm{d} N}{\mathrm{~d} t}=-\frac{1}{k T} \frac{\pi R_{0}^{4}}{16 \eta} \frac{\mathrm{~d} p^{2}}{\mathrm{~d} x} \quad$ (for gases)
to get $\eta=-\frac{1}{k T} \frac{\pi R_{0}^{4}}{16} \frac{\mathrm{~d} p^{2}}{\mathrm{~d} x} \frac{1}{\mathrm{~d} N / \mathrm{d} t}=-\frac{1}{k T} \frac{\pi R_{0}^{4}}{16} \frac{p_{2}^{2}-p_{1}^{2}}{x_{2}-x_{1}} \frac{1}{\mathrm{~d} N / \mathrm{d} t}$
$\eta=-\frac{1}{\left(1.381 \times 10^{-23}\right)(293)} \frac{\pi(0.00075 / 2)^{4}}{16} \frac{\left[101325^{2}-(1.05 \times 101325)^{2}\right]}{1.00} \frac{1}{6.91 \times 10^{19}}$
(all SI units)

$$
\eta=1.46 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}
$$

Capillary Viscometer for Liquids

A column of liquid of density ρ and height h exerts pressure $\rho g h$.

The gravitational acceleration is $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$.

The time t required for a fixed volume of liquid (in the bulb) to drain through a vertical capillary is proportional to the liquid density and inversely proportional to the viscosity.

Capillary Viscometer for Liquids

drainage time $t \propto \eta \rho^{-1}$

$$
\eta=K_{\text {viscometer }} \rho t
$$

The proportionality constant $K_{\text {viscometer }}$ is determined for each viscometer by calibration with a liquid of known viscosity and density, such as pure water.

! Warnings !

Non-Newtonian Fluids

Some fluids (certain polymer solutions, thick syrups, slurries, ...) do not obey Newton's viscosity equation: the momentum flux is not proportional the velocity gradient.

Turbulent Flow

We've assumed laminar flow of gases and liquids through tubes. This assumption is valid at low flow rates satisfying

$$
\text { Reynolds number } \frac{2 R_{0} \rho v_{\text {verage }}}{\eta}<2000 \text { for laminar flow }
$$

At higher flow rates, the fluid motion is turbulent and much more difficult to describe.

Sections 17.8 and 17.9 Sedimentation and Diffusion in Liquids

Sedimentation Experiment

Drop a steel ball bearing into a jar of honey.
The gravitational force on the ball bearing is balanced by an equal frictional force acting in the opposite direction (upward).

The ball bearing soon reaches a constant "terminal velocity" as it drops.

Stokes Law

terminal velocity $=($ mobility coefficient $) \times($ applied force $)$

$$
v_{\text {terminal }}=\Lambda F
$$

The mobility coefficient Λ of an object depends on

- the size of the object
- the shape of the object
- flow pattern around the object (laminar? turbulent?)
- viscosity of the liquid

mobility coefficient for a sphere of radius r	$\Lambda=\frac{1}{6 \pi \eta r}$	(laminar flow)

Example A spherical particle (diameter $20 \mu \mathrm{~m}$, density $1750 \mathrm{~kg} \mathrm{~m}^{-3}$) settles from a suspension in water (density $1000 \mathrm{~kg} \mathrm{~m}^{-3}$, viscosity 0.00089 Pa s). Calculate the terminal sedimentation velocity.

$$
\begin{aligned}
v_{\text {terminal }} & =(\text { mobility coefficient }) \times(\text { applied force })=\Lambda F \\
& =\Lambda \times(\text { gravity force }- \text { buoyancy force })=-\Lambda m_{\text {effective }} g
\end{aligned}
$$

$$
=-\frac{1}{6 \pi \eta r}\left[\left(\frac{4}{3} \pi r^{3}\right)\left(\rho_{\text {particle }}-\rho_{\text {water }}\right)\right] g
$$

$$
=-\frac{1}{6 \pi(0.00089)\left(10 \times 10^{-6}\right)}\left[\left(\frac{4}{3} \pi\left(10 \times 10^{-6}\right)^{3}(1750-1000)\right] 9.81\right.
$$

$$
v_{\text {terminal }}=-0.000734 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
=-0.734 \mathrm{~mm} \mathrm{~s}^{-1}
$$

(minus sign indicates downward velocity)

terminal velocity proportional to:

$$
r^{2} \quad \eta^{-1} \quad \rho_{\text {particle }}-\rho_{\text {liquid }} \quad g
$$

- another way to measure viscosity - the falling ball method calculate η from $v_{\text {terminal }}$
- bubbles rise! $\left(\rho_{\text {particle }}-\rho_{\text {liquid }}<0\right.$, so $\left.\boldsymbol{v}_{\text {terminal }}>\mathbf{0}\right)$
- small particles settle slowly - can be a problem
- sedimentation coefficient \boldsymbol{s} defined as the terminal velocity divided by the acceleration: $\boldsymbol{s}=\boldsymbol{v}_{\text {terminal }} / \mathbf{g}$
- use a centrifuge for larger acceleration and faster sedimentation - replace gravity acceleration g with angular acceleration $\omega^{2} R_{\text {rotor }}$

Sedimentation Equilibrium

Sedimentation causes the particle concentration to increase in the lower end of the suspension.

At equilibrium:

The downward sedimentation velocity equals the upward diffusion velocity at each point along the column.

Sedimentation Equilibrium

$$
\left.\begin{array}{rl}
\text { force balance: } \\
\text { gravitational force + diffusion force }=0
\end{array}\right] \begin{aligned}
-m_{\mathrm{eff}} g-\frac{\mathrm{d} \mu}{\mathrm{~d} x} & =0 \\
-m_{\mathrm{eff}} g-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mu^{\mathrm{o}}+k T \ln C\right) & =0 \\
-m_{\mathrm{eff}} g-k T \frac{\mathrm{~d} \ln C}{\mathrm{~d} x} & =0 \\
\mathrm{~d} \ln C & =-\frac{m_{\mathrm{eff}} g}{k T} \mathrm{~d} x \\
\ln C(x)-\ln C(x=0) & =-\frac{m_{\mathrm{eff}} g}{k T} x
\end{aligned}
$$

Sedimentation Equilibrium

Sedimentation Equilibrium

- helped confirm the existence of molecules (seeing is believing!)
- provided one of the first estimates k, Avogadro number $=R / k$ and hence the sizes and masses of molecules
- 1926 Nobel Prize in Physics for Jean Perrin for the discovery of "the discontinuous structure of matter" (atoms and molecules!)

Centrifuge Rotate Samples at High Speeds

separates materials based on density differences
replaces $g=9.8 \mathrm{~m} \mathrm{~s}^{-1}$ from the earth's gravity with angular acceleration $\omega^{2} R_{\text {rotor }}$
much faster than gravity sedimentation
ultracentrifuges are commercially available operating at $\mathbf{1 5 0 , 0 0 0} \mathbf{r p m}$ (supersonic rotors!) and $1,000,000 \mathrm{~g}$!

Brownian Motion

- small particles suspended in a liquid undergo ceaseless jittery motion
- studied by Brown (a botanist) in the 1820s
- observed pollen grains in water under a microscope
- perpetual motion?
- a "vital force"?

No, it's diffusion!

Brownian Motion

Stokes-Einstein equation

$$
D=k T \Lambda
$$

For spherical particles, calculate

$$
D=\frac{k T}{6 \pi \eta r}
$$

then confirm by experiment (Perrin again!):

$$
<x^{2}>+\left\langle y^{2}>=4 D t=4 \frac{k T}{6 \pi \eta r} t\right.
$$

single-molecule dynamics circa 1910!

Section 17.10 Transport of Electric Charge

- flow of electrons, ions and other charged particles
- driven by a gradient in electric potential

$$
\text { Ohm's Law } J_{x}=-\kappa \frac{\partial \phi}{\partial x}=\kappa E_{x}
$$

$J_{x}=$ flux density of electric charge $\left[\right.$ coulomb s ${ }^{-1} \mathrm{~m}^{-2}=$ ampere m^{-2}]
$\boldsymbol{\kappa}=$ electrical conductivity [coulomb s ${ }^{-1}$ volt $^{-1} \mathrm{~m}^{-1}=\mathrm{S} \mathrm{m}^{-1}$]
$\frac{\partial \phi}{\partial x}=$ gradient in the electric potential [volt m^{-1}]
$E_{x}=-\frac{\partial \phi}{\partial x}=$ electric field [volt m^{-1}]
also written as:

$$
J_{x}=-\rho^{-1} \frac{\partial \phi}{\partial x}
$$

$\rho=$ electrical resistivity $=\kappa^{-1}\left[\mathrm{~S}^{-1} \mathrm{~m}=\right.$ ohm m $]$

SI conductance unit $=\mathrm{S}=$ siemens

$$
\begin{aligned}
& 1 \mathrm{~S}=1 \mathrm{ohm}^{-1} \\
&=1 \mathrm{ampere}^{\text {volt }} \\
& \\
&=1 \text { coulomb volt }^{-1} \text { second }^{-1}
\end{aligned}
$$

Units

electric charge Q
1 coulomb $=1 \mathrm{C}=$ electric charge of $6.022 \times 10^{23}(1 \mathrm{~mol})$ protons
electric current $I \quad\left(=J_{x} \times\right.$ area)
1 ampere $=1 \mathrm{C} \mathrm{s}^{-1}$
electric conductance $\Lambda \quad(=|I / \Delta \phi|)$
1 siemens $=1 \mathrm{~S}=1 \mathrm{C} \mathrm{s}^{-1}$ volt $^{-1}=1 \mathrm{ohm}^{-1}$
electric resistance $R \quad(=|\Delta \phi / I|)$
$1 \mathrm{ohm}=1$ volt s $\mathrm{C}^{-1}=1 \mathrm{~S}^{-1}$

Conductivities and Resistivities at $293 \mathrm{~K}\left(20{ }^{\circ} \mathrm{C}\right)$

	conductivity $\kappa / S \mathbf{~ m}^{-1}$	resistivity $\rho / \mathbf{S}^{-1} \mathbf{~ m}$
	10^{-20}	10^{20}
Teflon	10^{-18}	10^{18}
quartz	10^{-12}	10^{12}
diamond	10^{-15} to 10^{-11}	10^{11} to 10^{15}
glass	5.5×10^{-6}	1.8×10^{5}
water (deionized)	≈ 5	≈ 0.2
seawater	1.0×10^{6}	9.8×10^{-7}
mercury	3.6×10^{7}	2.8×10^{-8}
aluminum	5.8×10^{7}	1.7×10^{-8}
copper	6.3×10^{7}	1.5×10^{-8}
silver	∞	$\mathbf{0}$

Electrical Conductivity

Why important?

Because circuits pumping electric charges are everywhere!

- computers, radios, cell phones, electric motors, lighting, ...
- resistive heating
- ionic conduction in electrochemical cells
- plasma (gases composed of charged particles) processes
- static electricity and lightning
- conductivity detectors for ion analysis using HPLC
- transmission of nerve impulses and brain waves

a more familiar version of Ohm's law:

Apply the voltage difference $V=\phi_{2}-\phi_{1}$ to the ends of a electrical conductor of length L and area A.

$$
I=J_{x} A=-\kappa A \frac{\partial \phi}{\partial x}=-\kappa A \frac{\phi_{2}-\phi_{1}}{L}=-\frac{\kappa A}{L} V
$$

a more familiar version of Ohm's law:

Apply the voltage difference $V=\phi_{2}-\phi_{1}$ to the ends of a electrical conductor of length L and area A.

Compare $I=-\frac{\kappa A}{L} V$ and $I=-\frac{1}{R} V=-\frac{\text { voltage difference }}{\text { resistance }}$

$$
R=\frac{L}{\kappa A}
$$

$$
\text { units: ohm }=\text { volt } \text { ampere }^{-1}
$$

\boldsymbol{R} - proportional to the length L

- inversely proportional to the area A and conductivity κ. (does this make sense?)

another version of Ohm's law:

Apply the voltage difference $V=\phi_{2}-\phi_{1}$ to the ends of a electrical conductor of length L and area A.
$I=-\Lambda V=-($ conductance $) \times($ voltage $)$
electric
conductance

$$
\Lambda=\frac{\kappa A}{L} \quad \text { units: } \mathrm{S}=\mathrm{ohm}^{-1}=\text { ampere volt }^{-1}
$$

$\mathrm{S}=$ Siemens \quad (SI conductance unit)
Λ

- proportional to the area A and conductivity κ
- inversely proportional to the length L

Example A 1.50 V voltage difference is applied to a $5.00-\mathrm{m}$ length of copper wire (diameter 0.250 mm) at $20^{\circ} \mathrm{C}$. Calculate the electric current. Data: copper conductivity $\kappa=5.8 \times 10^{7} \mathrm{ohm}^{-1} \mathrm{~m}^{-1}$

$$
R=\frac{L}{A \kappa}=\frac{5.00 \mathrm{~m}}{\pi(0.000125 \mathrm{~m})^{2}\left(5.8 \times 10^{7} \mathrm{ohm}^{-1} \mathrm{~m}^{-1}\right)}
$$

resistance $\quad R=1.76 \mathrm{ohm}=1.76 \mathrm{~S}^{-1}$
conductance $\quad \Lambda=1 / R=0.57 \mathrm{ohm}^{-1}=0.57 \mathrm{~S}$
electric

$$
I=\frac{\Delta \phi}{R}=\frac{1.50 \mathrm{volt}}{1.76 \mathrm{ohm}}=0.85 \mathrm{C} \mathrm{~s}^{-1}=0.85 \mathrm{ampere}
$$

power $I \Delta \phi=(0.85$ ampere $)(1.50$ volt $)$

$$
=1.28 \mathrm{~J} \mathrm{~s}^{-1}=1.28 \mathrm{Watt}
$$

Metals

- electronic conductors: electrons carry the current
- fixed number of charge carriers for each metal
- fixed conductivity at a given temperature

Electrolytes (e.g., aqueous $\mathbf{N a C l}$)

- ionic conductors: ions (e.g., $\mathrm{Na}^{+}, \mathrm{Cl}^{-}$) carry the current
- number of charge carriers increases with electrolyte concentration
- conductivity increases with electrolyte concentration

Ionic Conductivities $\boldsymbol{\kappa}$ of Aqueous Electrolyte Solutions at $20{ }^{\circ} \mathrm{C}$

Molar Conductivities κ / \mathcal{C} of Aqueous Electrolyte Solutions

Electrolyte Conductivity Cell

- inert metal electrodes, area A and distance L apart
- A and L are not known precisely for most cells

platinum electrode
platinum electrode
- but A and L are constant for each cell
- cell conductance $(1 / R)$ is therefore proportional to conductivity κ
- measure conductivities by calibrating each cell with a solution of accurately known conductivity

Example A conductivity cell is calibrated at $25^{\circ} \mathrm{C}$ with a $0.1000 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ solution ($\kappa=1.2896 \mathrm{~S} \mathrm{~m}^{-1}$). The measured cell resistance is 45.67 ohms. Determine the cell constant L / A.

$$
\begin{aligned}
R & =\frac{L}{A \kappa} \\
\frac{L}{A} & =R \kappa=(45.67 \mathrm{~S})\left(1.2896 \mathrm{~S} \mathrm{~m}^{-1}\right)=58.89 \mathrm{~m}^{-1}
\end{aligned}
$$

When filled with $0.0500 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{LaCl}_{3}$ solution, the cell resistance is 41.35 ohm . Calculate the conductivity (κ) and the molar conductivity ($\Lambda_{\mathrm{m}}=\kappa / c$) of the LaCl_{3} solution.

$$
\begin{aligned}
\kappa & =\frac{L}{A} \frac{1}{R}=\left(58.89 \mathrm{~m}^{-1}\right) \frac{1}{41.35 \mathrm{ohm}}=1.424 \mathrm{~S} \mathrm{~m}^{-1} \\
\Lambda_{\mathrm{m}} & =\frac{\kappa}{c}=\frac{1.424 \mathrm{~S} \mathrm{~m}^{-1}}{0.0500 \mathrm{~mol} \mathrm{~L}^{-1}} \frac{0.001 \mathrm{~m}^{3}}{\mathrm{~L}}=0.02848 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$

Strong Electrolytes

Why "strong"? Completely dissociated to ionic species.
Example:

$$
\Lambda_{\mathrm{m}}\left(\mathrm{CaCl}_{2}\right)=\Lambda_{\mathrm{m}}\left(\mathrm{Ca}^{2+}\right)+2 \Lambda_{\mathrm{m}}\left(\mathrm{Cl}^{-}\right)
$$

! Warning !

Many "strong" electrolytes are incompletely dissociated, especially for polyvalent ions (why?) or concentrated solutions (why?).

Examples:

Aqueous MgSO_{4} solutions contain Mg^{2+} ions, $\mathrm{SO}_{4}{ }^{2-}$ ions, and neutral MgSO_{4} ion pairs.

Aqueous CdCl_{2} solutions contain Cd^{2+} ions, Cl^{-}ions, and $\mathrm{CdCl}^{+}, \mathrm{CdCl}_{2}, \mathrm{CdCl}_{3}{ }^{-}$and $\mathrm{CdCl}_{4}{ }^{2-}$ ion complexes.

TABLE 34.2 Ionic Equivalent Conductance Values for Representative lons

Ion	$\boldsymbol{\lambda}\left(\mathbf{S ~ m}^{\mathbf{2}} \mathbf{~ m o l}^{\mathbf{- 1}}\right)$	Ion	$\boldsymbol{\lambda}\left(\mathbf{S ~ m}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{1}}\right)$
H^{+}	0.0350	OH^{-}	0.0199
Na^{+}	0.0050	Cl^{-}	0.0076
$\mathrm{~K}^{+}$	0.0074	Br^{-}	0.0078
Mg^{2+}	0.0106	$\mathrm{~F}^{-}$	0.0054
Cu^{2+}	0.0107	NO_{3}^{-}	0.0071
Ca^{2+}	0.0119	CO_{3}^{2-}	0.0139

Single-Ion Properties !

Molar Conductivities of Dilute Strong Electrolytes

Why does the molar conductivity decrease with ion concentration?

1. Electrophoretic Effect

Each ion is "swimming upstream" against the flow of solvent molecules carried along by the ions of opposite charge moving in the opposite direction.

2. Relaxation Effect

During ionic conduction, the the oppositely charged ion atmosphere lags behind each ion.

The resulting electric forces slow down the ions, reducing the molar conductivity.

Weak Electrolytes

Why "weak"? Incompletely dissociated to ionic species.
Example aqueous acetic acid solutions contain undissociated molecular acetic acid, hydrogen ions, and acetate ions.
(molecular)

$\mathbf{C H}_{3} \mathbf{C O O H}=\mathbf{H}^{+}+\mathbf{C H}_{3} \mathbf{C O O}^{-}$

concentrations: $(1-\alpha) c \quad \alpha c \quad \alpha c$

$$
\begin{gathered}
\begin{array}{c}
\text { extent of } \\
\text { dissociation }
\end{array}
\end{gathered} \alpha=\frac{\text { [dissociated acid] }}{[\text { total acid }]}=\frac{c_{\mathrm{CH} 30 \mathrm{O}-}}{c}=\frac{c_{\mathrm{H}+}}{c}
$$

equilibrium constant

$$
K=\frac{a_{\mathrm{H}+} a_{\mathrm{CH} 3 \mathrm{OO}-}}{a_{\mathrm{CH} 3 \mathrm{COOH}}} \approx \frac{c_{\mathrm{H}+} c_{\mathrm{CH} 3 \mathrm{OO}-}}{c_{\mathrm{CH} 3 \mathrm{COOH}}}=\frac{\alpha c \alpha c}{(1-\alpha) c}
$$

Weak Electrolytes

Use non-equilibrium ionic conductivity measurements to determine equilibrium constants for weak acid dissociation.

```
CH3}\mathbf{COOH}=\mp@subsup{\mathbf{H}}{}{+}+\mp@subsup{\textrm{CH}}{3}{}\mp@subsup{\textrm{COO}}{}{-
(non-conducting)
```

extent of
dissociation

$$
\alpha=\frac{\text { [dissociated acid] }}{[\text { total acid }]} \approx \frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}{ }^{\circ}}
$$

Why? Acetic acid is completely dissociated in the limit $c \rightarrow 0$.

$\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

Measure:

- the molar conductivity Λ_{m} of aqueous acetic acid solutions at different acetic acid concentrations c
- limiting molar conductivities of the strong electrolytes hydrochloric acid, sodium acetate, sodium chloride

Calculate the molar conductivity of completely dissociated acetic acid:

$$
\begin{aligned}
\Lambda_{\mathrm{m}}{ }^{\circ}\left(\mathrm{CH}_{3} \mathrm{COOH}\right) & =\Lambda_{\mathrm{m}}{ }^{0}(\mathrm{HCl})+\Lambda_{\mathrm{m}}^{0}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)-\Lambda_{\mathrm{m}}^{0}(\mathrm{NaCl}) \\
& =0.042616+0.009100-0.012645 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \\
& =0.039071 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \quad\left(\text { at } 25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

At each acetic acid concentration, use measured conductivities to calculate the approximate equilibrium constant:

$$
K_{\mathrm{a}} \approx \frac{\alpha^{2} c}{(1-\alpha)} \approx \frac{\left(\Lambda / \Lambda_{\mathrm{m}}{ }^{\circ}\right)^{2} c}{\left[1-\left(\Lambda / \Lambda_{\mathrm{m}}{ }^{\circ}\right)\right]}
$$

(Why approximate? Ideal solutions and independent ion migration assumed.)
Exact K value obtained by extrapolation of K_{a} to infinite dilution.
In the limit $c \rightarrow 0$, find $K_{\mathrm{a}}=K=1.753 \times 10^{-5}$

In agreement with K measurements using electrochemical cells.

Conductometric Measurement of the Equilibrium Constant

 for the Dissociation of Aqueous Acetic Acid

What are the speeds of ions moving in an electric field?

Apply the voltage difference $V=\phi_{2}-\phi_{1}$ to the ends of a solution column of length L and area A.

Cation " + " at molar concentration c_{+m} with molar conductivity λ_{+m} produces the electric current (in units of coulombs per second):

$$
I_{+}=J_{+Q} A=-\kappa_{+} \frac{\partial \phi}{\partial x} A=-c_{+\mathrm{m}} \lambda_{+\mathrm{m}} \frac{\phi_{2}-\phi_{1}}{L} A
$$

Each mole of cations carries electric charge $z_{+} F$.
For example, charge $2 F$ for one mole of Ca^{2+} ions.
The molar flux $J_{+\mathrm{m}} A$ of cations (units: $\mathrm{mol} \mathrm{s}^{-1}$) and the electric current $J_{+Q} A$ carried by the cations (units: $\mathrm{C} \mathrm{s}^{-1}$) through area A are therefore related by

$$
J_{+\mathrm{m}} A=\frac{J_{+Q}}{z_{+} F} A=-\frac{c_{+\mathrm{m}} \lambda_{+\mathrm{m}}}{z_{+} F} \frac{\partial \phi}{\partial x} A
$$

Cations drift toward the negative electrode at average speed v_{+}.
In time t, each cation moves the distance $\mathrm{v}_{+} t$. The number of moles of cations passing through area A is $J_{+\mathrm{m}} A t=c_{+} A \mathrm{v}_{+} t$.

Useful relations between the cation molar flux and drift speed

$$
J_{+\mathrm{m}} A=c_{+\mathrm{m}} \mathrm{v}_{+\mathrm{m}} A
$$

and cation molar flux density and drift speed:

$$
J_{+\mathrm{m}}=c_{+\mathrm{m}} \mathrm{v}_{+\mathrm{m}}
$$

cation molar flux density ($\mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}$):

$$
J_{+\mathrm{m}}=c_{+\mathrm{m}} \mathrm{v}_{+\mathrm{m}}=\frac{1}{z_{+} F}\left(J_{+Q}\right)=\frac{1}{z_{+} F}\left(-c_{+\mathrm{m}} \lambda_{+\mathrm{m}} \frac{\partial \phi}{\partial x}\right)
$$

cation drift speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ in electric field $-\partial \phi / \partial x\left(\mathrm{~V} \mathrm{~m}^{-1}\right)$:

$$
\mathrm{v}_{+}=\frac{\lambda_{+\mathrm{m}}}{z_{+} F}\left(-\frac{\partial \phi}{\partial x}\right)
$$

cation electric mobility (cation drift speed per unit electric field):

$$
u_{+}=\frac{\lambda_{+\mathrm{m}}}{z_{+} F}
$$

Calculate the drift speed of aqueous $\mathbf{N a}^{+}$ions (molar conductivity $\lambda_{+\mathrm{m}}=0.0050 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$) in a $10 \mathrm{~V} / \mathrm{cm}$ electric field.
electric mobility of the Na^{+}ions:

$$
u_{+}=\frac{\lambda_{+\mathrm{m}}}{z_{+} F}=\frac{0.0050 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}}{(1) 96485 \mathrm{C} \mathrm{~mol}^{-1}}=5.2 \times 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}
$$

drift speed of the Na^{+}ions:

$$
\begin{aligned}
\mathrm{v}_{+}=u_{+} \frac{\partial \phi}{\partial x} & =\left(5.2 \times 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}\right)\left(10 \mathrm{~V} \mathrm{~cm}^{-1}\right)\left(100 \mathrm{~cm} \mathrm{~m}^{-1}\right) \\
& =5.2 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1} \\
& =19 \mathrm{~cm} \text { hour }^{-1}
\end{aligned}
$$

Application: Gel Electrophoresis

separate ions from a mixture based on ionic mobility

related: capillary electrophoresis

What are the mobilities of ions in electrolyte solutions?

mobility \equiv drift speed per unit applied force

The electric force acting on one mole of cations of charge $z_{+} F$ is

$$
f_{\mathrm{m}}=-z_{+} F \frac{\partial \phi}{\partial x}
$$

Find:

$$
\mathrm{v}_{+}=\frac{\lambda_{+\mathrm{m}}}{z_{+} F}\left(-\frac{\partial \phi}{\partial x}\right)=\frac{\lambda_{+\mathrm{m}}}{\left(z_{+} F\right)^{2}}\left(-z_{+} F \frac{\partial \phi}{\partial x}\right)=\frac{\lambda_{+\mathrm{m}}}{\left(z_{+} F\right)^{2}} f_{\mathrm{m}}
$$

What are the mobilities of ions in electrolyte solutions?

cation molar mobility (Drift speed per unit force per mole of cations):

$$
\Lambda_{+\mathrm{m}}=\frac{\lambda_{+\mathrm{m}}}{\left(z_{+} F\right)^{2}}
$$

cation mobility (Drift speed per unit force per cation, larger than $\Lambda_{+\mathrm{m}}$ by a factor of $6.022 \times 10^{23} \mathrm{~mol}^{-1}$. Why?):

$$
\Lambda_{+}=N_{\text {Avogadro }} \Lambda_{+\mathrm{m}}=\frac{N_{\text {Avogadro }} \lambda_{+\mathrm{m}}}{\left(z_{+} F\right)^{2}} \approx \frac{1}{6 \pi \eta r}
$$

