
Thermodynamics

Predicts the direction of everyday spontaneous processes:

 flow of heat from warmer to cooler regions

 expansion from higher to lower pressure

 mixing from higher to lower concentrations

 chemical reaction from higher to lower activities

But what are the rates of these important processes?



Chapter 17. Transport Processes

 most systems are not at equilibrium

 how rapidly does a non-equilibrium system reach equilibrium?

 need to know rates of transport of             

 mass (Fick’s law of diffusion)

 heat (Fourier’s law of thermal conductivity)

 momentum (Newton’s law of viscosity)

 charge (Ohm’s law of electrical conductivity)

 flux Jx (quantity transported per unit area per unit time) is

proportional to a transport coefficient and a driving gradient
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Section 17.1  What is Transport?

 equilibrium: uniform temperature, pressure, and chemical   

potentials 

 but most systems have gradients in temperature, pressure,

composition, etc.

 transport refers to the flow of heat, momentum and matter to

approach thermal, mechanical and chemical equilibrium

 practical applications describing the rates of physical and

chemical processes in every branch of science and technology

 biochemical transport (e.g., O2 carried hemoglobin)

essential for multi-cellular plants and animals



Transport  Equation
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Jx =  flux density (also called the flux):  the amount of mass,  

energy, momentum, or charge flowing per unit area 

per unit time in the x-direction

 =  transport coefficient 

x

 )property(
=  gradient in a system property driving the flux

Why the minus sign in transport equations? The 

flow is “down” the gradient, such as heat flowing 

from regions of higher to lower temperature.



Section 17.2  Mass Transport by Diffusion

Diffusion: transport of matter by random molecular motions

(not by bulk flow, such as stirring or pumped flow in a pipe)
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Jx =  flux density of molecules diffusing in the x-direction

D =  diffusion coefficient
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Jx =  flux density, SI units:  m2 s1 (for molecules)

D =  diffusion coefficient, SI units:  m2 s1
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=  concentration gradient, SI units:  m4

Applies to gases, liquids and solids.
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Provides mixing on the molecular level.

Studied in every branch of science and technology. 

Applications:

 chemical kinetics. Molecules must diffuse together to react. Some

reactions rates are diffusion-limited, such as H+ + OH  H2O.

 rates of mass transfer, such as gas absorption and dissolution

 rates of nuclear fission (neutron transport in reactors)

 transmission of nerve impulses

 transport across membranes, metabolic rates

 waste management



Diffusion Coefficients at 300 K and 1 bar

D / m2 s 1

helium (g) 4.4  105

argon (g) 1.1  105

water (g) 0.28  105

water (l) 2.3  109

benzene (l) 2.2  109

n-hexane (l) 4.1  109

helium in water (l)      6.3  109

aluminum (s) 1.3  1034

Values of D range over many orders of magnitude, from as low as 1035 m2 s1

for solids up to about 104 m2 s1 for gases, with intermediate values for liquids.



Diffusion  Measurements

load  cell start diffusion

Many techniques are used.  Example: Loschmidt gas diffusion cell



diffusion for a 

timed interval

stop diffusion,

analyze upper and 

lower mixtures to

calculate D



Avoid convection (stirring) during diffusion measurements!

Not diffusion!



Put denser solutions underneath less dense solutions.

Use narrow tubes or gels to prevent convection.



Example For argon at 298 K and 1 atm:  D = 1.1  105 m2 s1.

The concentration gradient in the x-direction is 0.25 mol L1 cm1.

Calculate the flux density Jx of argon atoms.
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from Kinetic Theory

 Need to know how equilibrium velocity distributions are changed    

by non-equilibrium concentration gradients 

 Accurate calculations are complicated

 Can get a good qualitative understanding of gas diffusion using

the hard-sphere model developed in the previous Chapter

 Simplified treatments of thermal conductivity and viscosity      

can also be developed

Why important:  Theory is used to understand macroscopic  

transport processes on a molecular level.
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Where is this from?  Collision rate with a wall:  Zc = (N/V)<v>/4 = C<v>/4
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from Kinetic Theory

Net diffusion flux of molecules in the x-direction at x = 0:

Jx =  J+  J
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approximate  diffusion coefficient:

Why approximate?  Molecules collide and scatter over distances of  .
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from Kinetic Theory
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Exact diffusion coefficient for a gas of hard-sphere molecules:

The diffusion coefficient is proportional to the average speed 

and the mean free path of the molecules. As a result:

D is proportional to T1/2, m1/2, C1, and 1. Does this make sense?



Example: Calculate the diffusion coefficient of argon gas

at 298 K and 1 atm.

Data:  cross sectional area  = 0.36  1018 m2
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Section 17.3  Time Evolution of Diffusion

 a concentration gradient causes molecules to diffuse 

 given an initial concentration distribution at time t = 0, what is the

distribution of molecules at a later time t ?

 how long does it take for molecules to diffuse a given distance?

 diffusion motions are random  – is there a statistical interpretation?



A

Mass  Balance:   Important for Analyzing Diffusion Processes

A

V=Adx

N is the number of molecules in

in the volume Adx between 

positions x and x + dx.

The number of molecules

diffusing into volume Adx

from the left (x) minus the  

number of molecules diffusing 

out of the volume on the

right (x + dx) gives dN/dt .

“control” 

volume



A A

V=Adx

mass balance on the volume

Adx between x and x + dx :

Use C = N/V = N/(Adx) to get :
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Time Evolution of Concentration Gradients:

Fick’s Second Law of Diffusion

The time derivative of the concentration C(x, t) is proportional

to the second x-derivative (the “curvature”) of C(x, t).
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If the concentration changes aren’t too large, the diffusion

coefficient can be treated as a constant to get

Fick’s Second Law

of Diffusion

Why use partial

derivatives?



Time Evolution of Concentration Gradients:

Fick’s Second Law of Diffusion

Application:  Tracer Diffusion
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Suppose N0 molecules are initially located at position x = 0

at time t = 0 in a column of cross-sectional area  A. 

After diffusion for time t, where are the molecules?

Solving Fick’s Second Law                                                 gives
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Tracer Diffusion

D = 105 m2 s1

Conservation of mass:
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Section 17.4  Statistical Interpretation of Diffusion

Compare the Gaussian probability distribution of random errors
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and the concentration distribution of randomly diffusion molecules

Important Result

The randomly diffusing molecules form a Gaussian distribution 

with variance <x2> = 2Dt. Statistics strikes again!



Statistical Interpretation of Diffusion

Gaussian distribution of random errors

0 
22  

Gaussian distribution of randomly diffusing molecules

average displacement from               < x >  =  0

average squared displacement         < x2 >  =   2 = 2Dt

average error

average squared error



Application: Diffusion Coefficient Measurements 

txD 2/2 

Determine average squared displacements of molecules using: 

 radioactive isotopes

 nuclear magnetic resonance spectroscopy

 uv, visible or IR absorbance spectroscopy

 conductivity changes (for electrolytes)

etc.

Calculate diffusion coefficients:



Example: Calculate the root-mean-square displacement* of       

argon atoms at 298 K and 1 atm after diffusion for

1, 100, and 10,000 s.  Data:  D = 1.87  105 m2 s1

tDx 2ntdisplaceme  smr 2  (in one dimension)

t = 1 s m00611.0)s1()s m1087.1(2 1252  x

t = 102 s m0611.0)s100()s m1087.1(2 1252  x

t = 104 s m611.0)s10()s m1087.1(2 41252  x

_____________________________________________________________________

*Why not use the “rsm” displacement =                     ?2 x



Argon atoms diffuse

about 1 cm per second.

But wait!

Argon atoms are moving

at average speeds of

hundreds of meters

per second.

Why is diffusion so slow?

Comparison of Diffusion and Molecular Speeds



Diffusion as a Random Walk 

A useful interpretation of diffusion can be developed by treating

molecular motions as a series of steps in random directions.

Suppose a molecule is located at position x = 0 at time t = 0.

Model Every  seconds the molecule takes a step of length . Steps

in the positive- and negative x-direction are equally probable. 



Diffusion as a Random Walk 

After diffusion for time t and N = t/ diffusion steps randomly

left or right, a statistical analysis shows the probability P(x)dx

of finding the molecule between x and x + dx is 
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Diffusion as a Random Walk 

Conclusion:   A diffusing molecule taking steps of length 

every  seconds has diffusion coefficient 





2

2

D

Accounts qualitatively for the larger diffusion coefficients 

of gases (longer step length) relative to liquids.

Diffusion in solids is even smaller:  short step length and

lower step frequency (high activation energy)



Diffusion and Thermodynamics 

Similarly, the driving force for diffusion

is the negative gradient in the chemical potential. Substances

diffuse from higher to lower chemical potential.

The negative gradient of a potential energy is a force.

Example The gravitational potential energy of mass m

at height h is mgh. The gravitational force is

d(mgh)/dh = mg (negative, acting downward).
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Diffusion and Thermodynamics 

The mobility  of a molecule 

is defined as the diffusion velocity

generated per unit driving force:  

x

C

C
C

x
CCCvJ xx
















)()force driving(diff,

force driving

diffv


x

C
DJ x






diffusion flux density:

compare with Fick’s law of diffusion:

Find:















C
CD


)()factor micthermodyna()mobility(



Diffusion and Thermodynamics 

For an ideal system (activity coefficient = 1):
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Application: diffusion and sedimentation in liquids

Small, compact molecules in low-viscosity solvents have 

relatively large mobilities and diffusion coefficients.

Use diffusion measurements to determine mobilities and 

the sizes and shapes of molecules in solutions.

Stokes-Einstein equation



From hydrodynamics, the mobility

of the ball bearing is:

Drop a steel ball bearing of radius r

into a jar of honey or thick oil of viscosity .

The gravitational force on the ball bearing

(down) balanced by an equal frictional force 

in the opposite direction (up).

The ball bearing reaches a constant 

“terminal velocity” as it drops. 
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Spherical molecule of radius r in a liquid of viscosity
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Do molecules exist?

Seeing is believing.

Use a microscope to follow the random zig-zag motion 

of particles diffusing in water (Brownian motion). 

Measure the average squared displacement <x2> 

of particles of measured radius r after diffusion

for time t in a solvent of viscosity . 

r

kT

t

x
D

62

2






Calculate microscopic Boltzmann constant k from 

macroscopic diffusion measurements and Avogadro’s 

number from the molar gas constant : R/k.



We’ll consider diffusion in one-dimension only.

In general, diffusion fluxes are three-dimensional vectors

with x, y and z components.  
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Section 17.5  Thermal Conductivity

Transport of energy by the conduction of heat driven by a

temperature gradient.
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 Fourier’s Law of 

Heat Conduction

Jx =  flux density of heat in the x-direction [ J m2 s1 ]

 =  thermal conductivity  [ J K1 m1 s1 =  W K1 m1 ]
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=  temperature gradient  [ K m1 ]



Thermal Conductivities at 300 K and 1 bar

 / J K1 m1 s 1

argon (g) 0.018

air 0.026

hydrogen (g) 0.18

fiberglass insulation 0.045

water (g) 0.016

water (l) 0.61

aluminum 250

copper 400

silver 430

stainless steel                       16

graphite 25 to 500

diamond 2200

diamond (12C-enriched) 3200



Thermal Conductivity Applications

 rates of heat transfer – how fast systems warm up or cool down

 design of heat exchangers in furnaces, refrigerators, heat pumps, 

radiators, chemical reactors, …

 thermal insulation to reduce heat transfer

 performance of advanced computer chips is limited by 

how rapidly heat can be dissipated

 thermal conductivities provide information about transport of 

energy by vibrations in solids and molecular collisions in fluids

 how long does it take to bake and roast food – when’s dinner?



Thermal Conductivity  Measurement
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Heat Flow Sensor

 

T1 T2

JheatJheat

reference 

material

reference

(known)

x

Jheat = reference (T2T1)/x



Heat Flow Sensors



heat flow  Jx =   T/x

temperature

Thermal Conductivity of Gases
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E = average energy per molecule
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 Thermal Conductivities 

from Kinetic Theory

Net heat flux in the x-direction:

Jx =  J+  J
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approximate  thermal conductivity:

Why approximate?  Molecules collide and scatter over distances of  .
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 Thermal Conductivities of Gases 

from Kinetic Theory
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exact  thermal conductivity for hard spheres:

C = N/V = p/kT

For hard spheres (translational kinetic energy only)  E = 3kT/2 

and E/T = 3k/2.
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Thermal Conductivities of Gases 

from Kinetic Theory
Cv  

Give two reasons why helium has a relatively high 

thermal conductivity.

The predicted thermal 

conductivity is 

independent of pressure

for ideal gases. 

Why?

T = 300 K



Section 17.5  Viscosity

Transport of momentum caused by friction between 

layers of fluid moving at different speeds.

z

v
J x

z



 

Newton’s Law 

of Viscosity

Jz =  flux density of momentum [ kg m1 s2 =  N m2 ] in the

z-direction, perpendicular to the velocity in the x-direction

 =  viscosity  [ kg m1 s1 =  Pa s ]

z

vx




=  velocity gradient in the z-direction  [ s1 ]



Viscosity and Fluid Mechanics

 flow of fluids (liquids and gases) in tubes and pipes, 

in porous media, around objects …

 design of pumps, plumbing, turbines, chemical reactors …

 circulatory systems (atmospheric, oceanic, physiological …)

 shock waves, explosions and ballistics

 computational fluid dynamics (CFD)

 rocket science !

 aerodynamics



Example:  Gas or Liquid Flowing Between Stationary Plates

minimum vx = 0

maximum vx (centerline)

minimum vx = 0

Friction causes the fluid velocity to drop to zero at the plate surfaces.

z

x
similar to the flow

of water in a creek



Selected Viscosities at 298 K and 1 bar

 / Pa s

helium (g) 20.  106

hydrogen (g) 9.0  106

argon (g) 23.  106

carbon dioxide (g) 15.  106

air 19.  106

water (l) 8.9  104

benzene (l) 6.0  104

acetone (l) 3.1  104

mercury (l) 15.  104

motor oil (SAE 10) (l) 0.065

motor oil (SAE 40) (l) 0.32

glycerol (l) 1.2

thick tar   108

upper mantle (2000 K)  1021 (continental drift!)



Viscosities of Air and Water at Different Temperatures

temperature / oC  (air, g) / 106 Pa s        (H2O, l) / 103 Pa s

0 17.2 1.79

25 18.4 0.891

50 19.5 0.547

75 20.6 0.379

100 21.7 0.283

?



Flow of Fluid in a Tube of Radius R0

Flow rate?      Required pressure?      Flow pattern?

Welcome to 

Fluid  Mechanics !

R0



Flow of Fluid in a Tube of Radius R0

 assume steady laminar flow (no acceleration or turbulence)

 apply force balance to a cylinder of radius r and length L

x = x1

p = p1



x = x2

p = p2



face

area

 r2

side

area

2 rL

L = x2  x1



Flow of Fluid in a Tube of Radius R0

face

area

 r2

side

area

2 rL

 r2p2 r2p1

frictional force                            on side area 
r

v
rL x

d

d
)2( 

0
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d
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2

1

2 
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rLprpr x

force 

balance



Flow of Fluid in a Tube of Radius R0
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integrate from

vx = 0 at the

tube wall (r = R0)



Velocity Profile in a Tube of Radius R0
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Total Volume Flow Rate (for liquids)

Volume flow rate through a ring from r to r + dr

of area 2rdr is 2rvx(r)dr.  Integrate:

 
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


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Total Volume

Flow Rate

total volume flow rate proportional to      R0
4

 1/ (the fluidity)

 pressure gradient dp/dx

Valid for laminar flow of incompressible liquids (“liter in, liter out”).

Poiseuille Equation

for liquids



Try This A tube radius is reduced by 10 %. Show that the

pressure gradient must be increased by 52 % to maintain the same

volume flow rate.  (Important cardiovascular implications.)

Show that the average flow speed is:

Try This The volume flow rate of fluid in a tube is

average

2

0)speed flow average()area(
d

d
vR

t

V


x

pRv
v

d

d

82

2

0max
average


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Example Liquid water is pumped through a 30 cm length of

chromatography tubing (inner diameter of 0.010 inch) at a flow 

rate of 1.00 mL per minute. Calculate the pressure drop.

Data:   = 0.000891 Pa s.
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rate
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(all SI units)



Flow Rates for Gases

The volume flow rate of gases is not constant, even for steady

flows. Gases are compressible! For example, a liter in at p1

produces two liters of gas downstream at p2 if p1/p2 = 2.

x
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t

V
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Flow rate of gas molecules proportional to dp2/dx (not to dp/dx).

But for steady flow: section cross any tubeat constant 
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 Poiseuille Equation

for ideal gases

At any cross section along the tube (constant pressure p):



Section 17.6  Kinetic Theory of Gas Viscosity

Molecules jumping

back and forth produce

friction between

layers of gas flowing

at different speeds.

Slower molecules jumping

into the faster layer slow

it down. Faster molecules

jumping into the slower

layer speed it up.



Kinetic Theory of Gas Viscosity
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Kinetic Theory of Gas Viscosity

z

v
m

v
C

z

mvv
CJJJ z


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
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Total momentum flux across the plane at z = 0:

Comparison with Newton’s law
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shows the viscosity is approximately



Kinetic Theory of Gas Viscosity

Exact viscosity for a gas of hard-sphere molecules (allowing

for collisions over a mean free path):

Points to ponder. The predicted viscosity:

m
m

kT









1

16

5

16

5
a 

 is independent of the pressure! 

 increases with temperature!

 increases with molecular mass





Section 17.7  Viscosity Measurements

Many methods are used for viscosity measurements. Techniques   

based on flow rates through capillary tubes are frequently used.

Example Carbon dioxide gas flows at 293 K through a 1.00-m-long tube (inner

diameter 0.75 mm) with an inlet pressure of 1.05 atm and an outlet pressure of 

1.00 atm. The flow rate is 2.76 cm3 per second measured at 1.00 atm. 

Calculate the viscosity. 

Flow rate (molecules per second) from dV/dt measured at tube outlet (1.00 atm):
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Example (cont.)

to get
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Capillary Viscometer for Liquids

A column of liquid of density and 

height h exerts pressure  g h.

The gravitational acceleration

is g = 9.81 m s2.

The time t required for a fixed

volume of liquid (in the bulb)

to drain through a vertical 

capillary is proportional to the

liquid density and inversely 

proportional to the viscosity. 



Capillary Viscometer for Liquids

drainage time  t  1

The proportionality constant

Kviscometer is determined for each

viscometer by calibration with a 

liquid of known viscosity and  

density, such as pure water.

 = Kviscometer t



Non-Newtonian Fluids

Some fluids (certain polymer solutions, thick syrups, slurries, …) 

do not obey Newton’s viscosity equation:  the momentum flux 

is not proportional the velocity gradient.

Turbulent Flow

We’ve assumed laminar flow of gases and liquids through

tubes.  This assumption is valid at low flow rates satisfying

At higher flow rates, the fluid motion is turbulent and much

more difficult to describe.  

! Warnings !

flowlaminar for 2000
2

number Reynolds
average0




vR



Sections 17.8 and 17.9    Sedimentation and Diffusion

in Liquids

Sedimentation Experiment

Drop a steel ball bearing into a jar of honey.

The gravitational force on the ball bearing is

balanced by an equal frictional force acting

in the opposite direction (upward).

The ball bearing soon reaches a constant 

“terminal velocity” as it drops.



Stokes Law

terminal velocity = (mobility coefficient)  (applied force)

vterminal =   F 

The mobility coefficient  of an object depends on

 the size of the object

 the shape of the object

 flow pattern around the object (laminar? turbulent?)

 viscosity of the liquid

mobility coefficient for                                                

a sphere of radius r r
Λ

6

1
 (laminar flow)



Example A spherical particle (diameter 20 m, density 1750 kg m3)

settles from a suspension in water (density 1000 kg m3, viscosity

0.00089 Pa s). Calculate the terminal sedimentation velocity.

vterminal =  (mobility coefficient)   (applied force)   =   F

81.910001750()1010(
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vterminal =  0.000734  m s1 = 0.734 mm s1

(minus sign indicates downward velocity)



terminal velocity proportional to:

r2 1 particle  liquid g 

 small particles settle slowly – can be a problem

 bubbles rise! (particle  liquid <  0,   so   vterminal >  0)

 another way to measure viscosity – the falling ball method –

calculate  from  vterminal

 use a centrifuge for larger acceleration and faster sedimentation

- replace gravity acceleration g with angular acceleration 2 Rrotor

 sedimentation coefficient  s defined as the terminal velocity

divided by the acceleration:   s =  vterminal / g



Sedimentation  Equilibrium





 









Sedimentation causes the particle concentration 

to increase in the lower end of the suspension.

At equilibrium:

The downward sedimentation velocity 

equals the upward diffusion velocity 

at each point along the column.  



Sedimentation  Equilibrium



vdiffusion =  d/dx
force balance:

gravitational force + diffusion force = 0

vterminal =  meffg
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Sedimentation  Equilibrium
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Sedimentation  Equilibrium



vdiffusion =  d/dx

vterminal =  meffg

kTxgm
xCxC

/effe)0at ()(




Boltzmann distribution of particles over 

gravitational energy levels  meff gx

in a vertical column of solution:

 helped confirm the existence of molecules

(seeing is believing!)

 provided one of the first estimates k,

Avogadro number = R/k and hence the sizes

and masses of molecules

 1926 Nobel Prize in Physics for Jean Perrin

for the discovery of “the discontinuous 

structure of matter” (atoms and molecules!)



Centrifuge Rotate Samples at High Speeds

separates materials based on density differences

replaces g = 9.8 m s-1 from the earth’s gravity

with angular acceleration 2 Rrotor

much faster than gravity sedimentation

ultracentrifuges are commercially available

operating at 150,000 rpm (supersonic rotors!)

and 1,000,000 g !



 small particles suspended 

in a liquid undergo ceaseless 

jittery motion

time t = 0

Brownian  Motion

 studied by Brown

(a botanist) in the 1820s

 observed pollen grains in

water under a microscope

 perpetual motion?

 a “vital force”?

No, it’s diffusion!



time t = 0

Brownian  Motion

Stokes-Einstein equation

kTΛD 

r

kT
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6


For spherical particles,

calculate

then confirm by experiment

(Perrin again!):
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single-molecule dynamics circa 1910!



Section 17.10  Transport of Electric Charge

 flow of electrons, ions and other charged particles

 driven by a gradient in electric potential 

xx E
x

J 


 



Ohm’s Law

Jx =  flux density of electric charge  [coulomb s1 m2 = ampere m2 ]

 =  electrical conductivity [ coulomb s1 volt1 m1 = S m1 ] 

x


=  gradient in the electric potential  [ volt m1 ] 







x
Ex


electric field  [ volt m1 ]



also written as:
x

J x



  
 1

 =  electrical resistivity  =   1  [ S 1 m =  ohm m ] 

SI conductance unit  =  S  =  siemens

1 S  =  1  ohm1

=  1  ampere volt1

=  1  coulomb volt1 second1



Units

electric charge  Q

1 coulomb = 1 C = electric charge of 6.022  1023 ( 1 mol) protons

electric current  I     (= Jx  area)

1 ampere = 1 C s1

electric resistance  R     (=  / I  )

1 ohm  =  1 volt s C1 =  1 S1

electric  conductance   (=  I /  )

1 siemens =  1 S  =  1 C s1 volt1 =  1 ohm1



Conductivities and Resistivities at 293 K  (20 oC)

conductivity                       resistivity

 / S m1                                   / S 1 m

Teflon 1020 1020

quartz 1018 1018

diamond 1012 1012

glass 1015 to 1011 1011 to 1015

water (deionized) 5.5  106 1.8  105

seawater  5  0.2

mercury 1.0  106       9.8  107

aluminum 3.6  107 2.8  108

copper 5.8  107 1.7  108

silver 6.3  107 1.5  108

superconductor  0



Electrical  Conductivity

 computers, radios, cell phones, electric motors, lighting, … 

 resistive heating 

 plasma (gases composed of charged particles) processes

 ionic conduction in electrochemical cells

 static electricity and lightning

Why important?

Because circuits pumping electric charges are everywhere!

 conductivity detectors for ion analysis using HPLC

 transmission of nerve impulses and brain waves



a more familiar version of Ohm’s law:

Apply the voltage difference V = 2  1 to the ends of a

electrical conductor of length L and area A.
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A electric current I (in amperes)
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a more familiar version of Ohm’s law:

Apply the voltage difference V = 2  1 to the ends of a

electrical conductor of length L and area A.

V
L

A
I


Compare                         and   

resistance

difference voltage1
 V

R
I

electric

resistance A

L
R




R  proportional to the length L

 inversely proportional to the area A and conductivity .

units:   ohm = volt ampere1

(does this make sense?)



another version of Ohm’s law:

Apply the voltage difference V = 2  1 to the ends of a

electrical conductor of length L and area A.

)voltage()econductanc(  VI

electric

conductance L

A


  proportional to the area A and conductivity 

 inversely proportional to the length L

units:   S = ohm1 = ampere volt1

S = Siemens (SI conductance unit)



Example A 1.50 V voltage difference is applied to a 5.00-m length

of copper wire (diameter 0.250 mm) at 20 oC. Calculate the electric

current. Data:  copper conductivity  = 5.8  107 ohm1 m1

)mohm108.5()m000125.0(

m00.5
1172 


A

L
R

resistance  R =  1.76  ohm  =  1.76 S1

ampere85.0s C85.0
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

 

R
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

Watt28.1s J28.1      

 volt)50ampere)(1.85.0(

1 





I

conductance  = 1/R =  0.57 ohm 1 =  0.57 S

electric

current

power



Metals

 electronic conductors:  electrons carry the current 

 fixed number of charge carriers for each metal 

 fixed conductivity at a given temperature 

Electrolytes (e.g., aqueous NaCl)

 ionic conductors:  ions (e.g., Na+, Cl) carry the current 

 number of charge carriers increases with electrolyte concentration 

 conductivity increases with electrolyte concentration 



electrolyte concentration / mol L
1

0.0 0.2 0.4 0.6 0.8 1.0

co
n

d
u

ct
iv

it
y
  

/

 S
 m


1

0

5

10

15

20

25

30

HCl

MgCl
2

CdCl
2NaCl

acetic acid

Ionic Conductivities  of Aqueous Electrolyte Solutions at 20 oC

Why is  so large for HCl?

Why so small for acetic acid?

Why does  stop increasing

with CdCl2 concentration? 
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Molar Conductivities  /c of Aqueous Electrolyte Solutions

Useful feature:

Dividing the

conductivity

by the molar

electrolyte

concentration

allows for

changes in

the number

of charge

carriers:

so  /c is less

variable than 



platinum electrodeplatinum electrode

Electrolyte  Conductivity  Cell

 inert metal electrodes, area A and distance L apart

 A and L are not known precisely for most cells

 but A and L are constant for each cell

 cell conductance (1/R) is therefore proportional to conductivity 

 measure conductivities by calibrating each cell with a solution 

of accurately known conductivity   



Example A conductivity cell is calibrated at 25 oC with a 

0.1000 mol L1 KCl solution ( = 1.2896 S m1). The measured 

cell resistance is 45.67 ohms. Determine the cell constant L/A.

When filled with 0.0500 mol L1 LaCl3 solution, the cell resistance

is 41.35 ohm. Calculate the conductivity () and the 

molar conductivity (m =  /c) of the LaCl3 solution.  
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Strong   Electrolytes

Why “strong”? Completely dissociated to ionic species.

Example:    m(CaCl2)  =  m(Ca2+)  +  2m(Cl)

! Warning ! 

Many “strong” electrolytes are incompletely dissociated, especially

for polyvalent ions (why?) or concentrated solutions (why?).

Examples:

Aqueous MgSO4 solutions contain Mg2+ ions, SO4
2 ions, 

and neutral MgSO4 ion pairs.

Aqueous CdCl2 solutions contain Cd2+ ions, Cl ions, 

and CdCl+, CdCl2, CdCl3
 and CdCl4

2 ion complexes.



Single-Ion Properties !



Molar Conductivities of  Dilute Strong Electrolytes

 m decreases with electrolyte concentration

c the decrease in m is linear in            

c

 ions move independently in the limit c  0

ck
o

mm



2.  Relaxation  Effect

During ionic conduction, the

the oppositely charged ion 

atmosphere lags behind each ion.

The resulting electric forces 

slow down the ions, reducing

the molar conductivity.

1.  Electrophoretic Effect

Each ion is “swimming upstream” against 

the flow of solvent molecules carried along 

by the ions of opposite charge moving in 

the opposite direction.

Why does the molar conductivity decrease with ion concentration?



Weak   Electrolytes

Why “weak”?  Incompletely dissociated to ionic species.

Example aqueous acetic acid solutions contain undissociated

molecular acetic acid, hydrogen ions, and acetate ions.

CH3COOH      =     H+ +      CH3COO

(molecular)
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Weak   Electrolytes

Use non-equilibrium ionic conductivity measurements 

to determine equilibrium constants for weak acid dissociation.

CH3COOH      =     H+ +      CH3COO

(non−conducting)

extent of

dissociation
o

m

m

]acid total[

]acid ddissociate[






Why?  Acetic acid is completely dissociated in the limit c  0.



CH3COOH      =     H+ +      CH3COO

Measure:

 the molar conductivity m of aqueous acetic acid solutions

at different acetic acid concentrations c

 limiting molar conductivities of the strong electrolytes

hydrochloric acid, sodium acetate, sodium chloride

K ?

)NaCl()COONaCH()HCl()COOHCH(
o
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m
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m3

o

m 

=  0.042616  +  0.009100   0.012645  S m2 mol1

=  0.039071  S m2 mol1 (at 25 oC)

Calculate the molar conductivity of completely dissociated acetic acid:



CH3COOH      =     H+ +      CH3COO K ?
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At each acetic acid concentration, use measured conductivities

to calculate the approximate equilibrium constant:

(Why approximate? Ideal solutions and independent ion migration assumed.)

Exact K value obtained by extrapolation of Ka to infinite dilution.

In the limit c  0,  find  Ka =  K =  1.753  105

In agreement with K measurements using electrochemical cells.
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Conductometric Measurement of the Equilibrium Constant

for the Dissociation of Aqueous Acetic Acid



What are the speeds of ions moving in an electric field?

Apply the voltage difference V = 2  1 to the ends of a

solution column of length L and area A.

1 



2 


L

A electric current I+ (in amperes)
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Cation “+” at molar concentration c+m with molar conductivity +m

produces the electric current (in units of coulombs per second):



Each mole of cations carries electric charge z+F.

For example, charge 2F for one mole of Ca2+ ions.

The molar flux J+mA of cations (units:  mol s1) and the 

electric current J+QA carried by the cations (units:  C s1)

through area A are therefore related by 
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Cations drift toward the negative electrode at average speed v+.

In time t, each cation moves the distance v+t. The number of 

moles of cations passing through area A is J+mAt = c+Av+t.

distance v+t

A solution volume Av+t

AcAJ mmm v 

solution

area

Useful relations between the cation molar flux and drift speed

and cation molar flux density and drift speed:

mmm v  cJ



cation molar flux density (mol m2 s1):
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cation drift speed (m s1) in electric field  / x (V m1):
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Example Calculate the drift speed of aqueous Na+ ions

(molar conductivity +m = 0.0050 S m2 mol1)

in a 10 V/cm electric field.  
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Application:  Gel Electrophoresis

separate ions from a mixture based on ionic mobility

related:  capillary electrophoresis



What are the mobilities of ions in electrolyte solutions?

mobility  drift speed per unit applied force

The electric force acting on one mole of cations of charge z+F is
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What are the mobilities of ions in electrolyte solutions?

cation molar mobility (Drift speed per unit force per mole of cations):
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cation mobility (Drift speed per unit force per cation, larger than +m

by a factor of 6.022  1023 mol1. Why?):
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