
Chapter 18. Chemical Kinetics

Summary

 rates of chemical reactions and rate laws

 integrated rate equations

 temperature dependence of reaction rates

 reaction mechanisms

 sequential and parallel reactions

 numerical methods for chemical kinetic equations

 diffusion-controlled reactions

 measuring rates of ultra-fast reactions



Sections 18.1 to 18.6:   Reaction Rates and Rate Laws

 a negative Gibbs energy change GT,p indicates A, B, … will

spontaneously react to form products C, D, …

very useful, but:

 GT,p (and thermodynamics) provides no information

about the rate of the reaction  (why?)

 in general, there is no relation between the stoichiometric

aA + bB + …   cC + dD + … equation and the rate equation

for chemical reactions  (why?)

aA +  bB +  …    cC +  dD +  … GT,p

(a review)



Reaction Rates 

Stoichiometry relates the changes in the mole numbers:

aA +  bB +  …    cC +  dD +  … 
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Dividing by the volume

ni / V =  [i]

gives the molar concentration changes of reactants and products:
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Example Use the equation for the decomposition of acetaldehyde 

to relate the reaction rate to the acetaldehye pressure.

CH3COH(g)    CH4(g)   +   CO(g)

Assuming ideal gas behavior:
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Rate Laws 

The rates of chemical reactions depend on many factors: 

the temperature, pressure, concentrations of the reactants, 

and the presence of a catalyst.

Reaction rates in homogenous (one-phase) systems are described 

by empirical rate laws, such as

 ]B[]A[ratereaction k

k = rate constant

[A] = concentration of chemical A, [B] = concentration of chemical B, …

 = reaction order for  chemical A,  = reaction order for chemical B, …



Relationship between rate law, order and rate constant k



Temperature Dependence of Rate Constants

Significant !

Rate constants depend exponentially on the temperature.
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k(T) = rate constant at temperature T

A = rate constant in the limit T 

Eact = molar activation energy



Temperature Dependence of Rate Constants
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Why? Boltzmann’s distribution gives

the fraction of molecules   

with enough energy to react

at a given temperature

Eact



Arrhenius Plot:  lnk against  1/T

slope = Eact/R



Example The rate constant for a chemical reaction doubles for

every 20 degree temperature increase near room 

temperature. Estimate the activation energy.

Use: TA =  290 K                kA

kB/kA =  2

TB =  310 K                kB
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Zero-Order Reactions 

Rare for homogenous systems! Can occur for reactions limited by 

a fixed number of catalytic sites or light intensity (photochemical 

reactions). Integrating this rate law gives [A] as a function of time:
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First-Order Reactions 

Very important! One of the most common types of chemical 

kinetics. Integrating the first-order rate law gives:
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First-Order Reaction Kinetics   

Notice  [A]  +  [B]  is constant.

Why?

k1



First-Order Reaction Kinetics 

[A]/[A]0 vs.  time t

(curved plots)

ln([A]/[A]0)  vs.  time t

(linear plots, slope  k1)

A   B
k1



Second-Order Reactions 

Bimolecular reaction of A.  Also very important! 
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Second-Order Reactions 

A  +  A    B        (Type I)
k2

[A]/[A]0 vs.  time t  (curved) ([A]/[A]0)
1 vs.  time t  (linear)

slope = k2



Second-Order Reactions 

Bimolecular reaction of A and B. Math a bit trickier! From the

reaction stoichiometry, notice:  [A] – [A]0 =  [B] – [B]0. Use the

abbreviation a = [A]0 – [B]0 to give [B] =  [A] – a and

]B][A[ratereaction 2k

A  +  B    P         (Type II)
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“Simple” Reaction Kinetics

A   P

A + A   P

A + B   P

A  I  P

A

P1

P2

The differential equations

describing the reaction rates

can be solved analytically 

(i.e., integrated) to calculate

concentrations of reactants and

products as functions of time.



Nice, but what about real-world reactions?

C2H6  2 CH3


Example Thermal “cracking” of ethane (from natural gas and 

petroleum) for the industrial production of ethylene, 

about 108 tonnes per year worth about $1011. 

A few of the important reaction steps:

CH3
 +  C2H6  CH4 +  C2H5



C2H5
  C2H4 +  H

H +  C2H6  C2H5
 +  H2

H +  C2H5
  C2H6

initiation

propagation

termination
Analytical solution 

of the rate equations:

Mission Impossible



Numerical Methods for Solving Reaction Rate Equations 

Chemical reactions of practical significance frequently involve 

many reactions with many different reactants and products. 

The differential equations describing these reactions are very

complicated to solve analytically, or have no analytical solutions. 

What to do?  Give up?

Never !

Applied math and numerical methods to the rescue …



From first-year calculus: 

Practical application to chemical kinetics:
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Given the concentrations of reactants and products 

at time t, use the reaction equations to calculate the 

concentrations at time t + t, then repeat (iterate).



Numerical Methods for Chemical Kinetics

Example A reacts to form intermediate I

which reacts to form  product P
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Numerical Methods for Chemical Kinetics

Example A reacts to form intermediate I

which reacts to form  product P
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Numerical Methods for Chemical Kinetics

A            I            P 
kI kP

KI = .10                         ! set rate constant KI

KP = .05                         ! set rate constant KP

T = .0

DT = .01                         ! set time increment DT

TMAX = 100.                      ! stop calculations at time TMAX

A = 1.                           ! set initial A concentration

I = .0                           ! set initial I concentrations

P = .0                           ! set initial P concentrations

JMAX = TMAX/DT

!

FOR J = 1 to JMAX                ! take JMAX time steps DT

A = A – (KI*A*DT)

I = I + (KI*A*DT) - (KP*I*DT)

P = P + (KP*I*DT)

T = T + DT

PRINT “time, [A], [I], [P]: “, T, A, I, P

NEXT J

!

END
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Reaction Mechanisms 

A sequence of single-step elementary reactions, adding up to 

convert reactants to products in a stoichiometric reaction.

The molecularity (unimolecular or bimolecular) is the 

number of molecules involved in an elementary reaction.

A    P

A  +  A    P

A  +  B    P

unimolecular

bimolecular

bimolecular

(Trimolecular elementary reactions are rarely important. Why?)



Reaction Mechanisms 

In general, there is no relationship between a stoichiometric

chemical reaction and the reaction rate law.

In contrast, the rate law for an elementary reaction is obtained 

directly from elementary reaction equation:

A    P

A  +  A    P

A  +  B    P

d[P]/dt =  k1[A]

d[P]/dt =  k2[A]2

d[P]/dt =  k2[A][B]



Reaction Mechanisms 

!  Warning  !

 determining reaction mechanisms can be very difficult (but 

very interesting chemical detective work!)

 many reaction intermediates are short-lived (< 1 ns), present  

only in trace amounts (< 1 ppb) and not easily detected

 more than one mechanism can be consistent with kinetic data 

 a variety of experimental techniques may be required,

such as uv, vis, IR, or mass spectroscopy or isotope substitution



Reaction Mechanisms 

An embarrassing case study, the hydrogen-iodine reaction:

H2(g)  +  I2(g)    2HI(g)

Experiments give the rate law

]I][H[
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The mechanism is “obviously” the elementary bimolecular  

reaction step H2 +  I2  2HI to form hydrogen iodide. 

This mechanism is found in hundreds of chemistry textbooks, 

even in an acceptance speech given by a Nobel Laureate. 



Reaction Mechanisms 

But wait! Another mechanism for the classic reaction

H2(g)  +  I2(g)   2HI(g)

was suggested by kineticist Max Bodenstein in 1898:

Recent experiments using flash photolysis and other techniques

(not available in 1898) showed Bodenstein’s mechanism is correct! 

I2(g)   2I(g) 

H2(g)  +  I(g)    H2I(g)

H2I(g)  +  I(g)    2HI(g)

fast

fast

slow

(Show the bimolecular and Bodenstien mechanisms lead to the same rate law.)



Section 18.7  Sequential First-Order Reactions

A reacts to form intermediate I which reacts to form product P.
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with initial conditions [A]0 >  0,  [I]0 =  0,   [P]0 =  0  gives

A  I  P
kA kI
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Solving the differential equations for the sequential reactions
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A  I  P
kA kI

Notice      [A]t +  [I]t +   [P]t =  [A]0 why?

Sequential reactions:

Intermediate concentration [I] passes through a maximum value.



A  I  P
kA kI

Maximum concentration of intermediate I at tmax:

Sequential reactions:
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A  I  P
kA

kA
A  I

Rate-Determining Step 1
kI

kA <<  kI
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A  I  P
kA

kI

I  P

Rate-Determining Step 2
kI

kA >>  kI
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Limiting  Cases

kA <<  kI

[P]t
[P]t

[A]t [I]t

kA >>  kI

(only traces of intermediate I present)                 (reactant A used up very quickly)            

A  I  P
slow           fast

A  I  P
fast          slow  



A  I  P
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Steady-State
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Section 18.8    Parallel First-Order Reactions
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Parallel First-Order Reactions
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Parallel First-Order Reactions

A 

kB

kC

B

C

kB =  0.10 s1

kC =  0.05 s1



Parallel First-Order Reaction Yields i
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Parallel First-Order Reaction Yields

C for product C: 
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Benzyl penicillin (BP)

reacts to form products

P1, P2 and P3 with

k1 = 0.00070  s1

k2 = 0.0041  s1

k3 = 0.0057  s1

yield for the formation of P1:

(6.7 %)



Section 18.10    Reversible Reactions

A
kf

B
kb

Irreversible (“one-way” ) reactions have been studied 

up to now. Back reactions assumed to be negligible.  

But for many systems, depending on the energetics,

both forward and back reactions are significant.

Rate constants for reversible reactions are used to calculate

equilibrium constants, linking kinetics and thermodynamics.



Reversible Reactions   Why? 

A
kf

B
kb

Forward and back reactions 

can both be important if their

activation energies are similar.

Eact,b

Eact,f



Reversible Reaction, an Example

A
kf

B
kb

]B[]A[
d

]A[d
bf kk

t


]B[]A[
d

]B[d
bf kk

t


Including both forward and back reactions:



Reversible Reaction

A
kf

B
kb

A and B are loaded into a container

and react to reach equilibrium.

The concentrations of A and B reach

constant values as t . Makes sense. 

Okay, but the equilibrium [B]/[A] ratio 

is constant, independent of the initial 

A and B concentrations. Why !



Reversible Reactions

A
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B
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Forward and back reactions at equilibrium:

=  0

=  0

(no changes in the concentrations of A or B)



Reversible Reactions

A
kf

B
kb

eqbeqf ]B[]A[ kk 

mequilibriu

b

f

eq

eq

[A]

]B[
K

k

k


Forward and back reaction rates equal at equilibrium:

=  0

Significance:   Rate constants for chemical reactions can be used

to calculate thermodynamic equilibrium constants

 Chemical equilibrium is dynamic



Example The rate constants for the reversible dissociation of water

H2O(l)               H+(aq)   +   OH(aq)

are   kf = 2.5  105 s1 and  kb = 1.4  1011 L mol 1 s1 at 25 oC.

Calculate the equilibrium constant. 
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The equilibrium constant for the dissociation of water

H2O(l)               H+(aq)   +   OH(aq)

at 25 oC is                                                                    from kinetics.
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But wait!   Everyone knows Kw =  1.0   1014 mol L1 at 25 oC!

What’s the difference? Thermodynamic equilibrium constant Kw

uses Raoult’s law for H2O and Henry’s law for H+ and OH ions: 
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Example H+(aq)   +   OH(aq) H2O(l)           

Use kb = 1.4  1011 L mol 1 s1 at 25 oC to calculate the half life of

the reaction for initial conditions [H+]0 =  [OH]0 =  0.50 mol L1. 


kb

In this case  [H+]t =  [OH]t and 2
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14 trillionths of a second!  This is a fast reaction !



Nitric  Acid  Production

Step 1 4 NH3 +   5 O2 =    4 NO   +   6 H2O 

Step 2 2 NO   +   O2 =    2 NO2 (interesting kinetics!)

Step 3 3 NO2 +   H2O    =    2 HNO3 +   NO

Another example of fast forward and backward reactions:



Step 2 2 NO   +   O2 =    2 NO2

Experiments give the empirical rate equation:

A tri-molecular elementary  reaction ?

Experiments also show rate constant k decreases with temperature.

A negative activation  energy ?

What’s going on?

22
2

d[NO ]
[NO] [O ]

d
k

t




dt
= k2[N2O2][O2]

d[NO2]

First:    NO  +  NO    N2O2 fast and reversible
k1f

k1b

slow
Then:         N2O2 +  O2  2 NO2 

k2

dt
= k2 [NO]2[O2]

d[NO2]

k1b

k1f 
Overall: 2NO + O2  2 NO2

k1b

k1f
= [NO]2[N2O2]



forward rate = backward rate

k1f[NO]2 =  k1b[N2O2]     gives

= k [NO]2[O2]

Step 2 2 NO   +   O2 =    2 NO2



dt
= k [NO]2[O2]

d[NO2]

experimental rate law: 

A  tri-molecular NO + NO + O2  2NO2 mechanism

involving an impossible three-body collision?

NO!   … Two bimolecular and one unimolecular elementary 

reactions with rate constants kf, kb, k2 give

apparent rate constant k = k2k1f /k2b

Step 2 2 NO   +   O2 =    2 NO2



Rate constant k decreases with temperature. 

A negative activation energy ?

Step 2 2 NO   +   O2 =    2 NO2

act /
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E RT
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E RTEk T k
A E

T RT RT


  <   0  ?

experimental rate law: 

dt
= k [NO]2[O2]

d[NO2]



Why? k is a composite of three “true” rate constants k1f, k2f, k2.

Step 2 2 NO   +   O2 =    2 NO2

rate law with apparent rate constant k that decreases with T

dt
= k [NO]2[O2]

d[NO2]

1f
2 eq 2

1b

k
k k K k

k
 

NO   +    NO  N2O2 N2O2 +    O2  2 NO2

k1f

k1b

k2

k drops as T is raised because k is proportional to  k1f/k2b, the equilibrium 

constant Keq for the exothermic (bond forming) NO + NO  =  N2O2 reaction.

Keq (and therefore k) decreases strongly with T. From thermodynamics,

recall the Van’t Hoff equation:

2

eqd ln / d /K T H RT  0H 



Fast Reactions – Require Special Measurement Techniques

Stopped-Flow Methods

Reactants A and B are held in solution syringes. Operating the syringes 

rapidly mixes the solutions in a T-junction. The reaction is monitored by

measuring changes absorbance downstream from the mixing junction. 

(Why? Fast reactions can occur before the reactants are completely mixed,

producing reactant concentrations that are not well defined.) 

suitable for reaction times

as short as   0.001 s



Ok, but what about really fast reactions?

Relaxation-Perturbation Methods*

Reactants and products are suddenly removed (“perturbed”) from equilibrium

by a short laser pulse, optical flash, shock wave or electrical discharge.

[ e.g.,  H+(aq)  +  OH(aq)   H2O(l) in trillionths of a second ]

*1967 Chemistry Nobel Prize for Manfred Eigen for studies of fast reactions.

suitable for reaction times

as short as  1015 s !





+ 1000 volt pulse

probe 

beam

test 

solution

The return of reactant and  

product concentrations to 

the new equilibrium values is 

measured by spectrophotometry

with fast data acquisition.  



Relaxation-Perturbation Methods

Example 1 A             B

kf

kb
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A and B are initially in equilibrium, with equal forward

back reaction rates:



Relaxation-Perturbation Method for  A  B 

At time t = 0, the temperature jumps from T to T + T, 

changing the equilibrium constant from K(T) to K(T + T).

The concentrations of A and B are now displaced from their

new equilibrium values, by (t) and  – (t) respectively.
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At time t = 0,  A and B are slightly “perturbed” from their  

equilibrium concentrations, then react to regain equilibrium.
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Relaxation-Perturbation Methods

Example 2 Self-Ionization of Water  (Section 18.12)

H2O(liquid)              H+(aq)  +  OH(aq)
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initial equilibrium (t < 0):



Self-Ionization of Water

At time t = 0, the temperature jumps from T to T + T, 

changing the equilibrium constant from K(T) to K(T + T).

The concentration of H2O and concentrations of H+ and OH are

displaced from equilibrium by (t) and  – (t) respectively.
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Self-Ionization of Water

H2O              H+ +   OH

kf

kb
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Important: Near equilibrium, the first-order forward reaction 

and second-order back reaction simplify to give

“psuedo-first-order” kinetics with rate constant 1/
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Self-Ionization of Water

Calculate the relaxation time  by measuring changes 

in the ionic conductivity after the temperature jump.



H2O(liquid)              H+(aq)  +  OH(aq)
kf

kb
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At 25 oC, thermodynamics gives the equilibrium constant

and kinetic experiments give the relaxation time
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Solve for           kf =  2.5  105 s1

kb =  1.4  1011 L mol1 s1



Diffusion-Controlled Reactions (Section 18.15)

Why are some reactions (such as H+ +  OH  H2O) so fast? 

The molecules (or ions) react immediately as soon as they 

diffuse into contact.

Fick’s law can be used to calculate rate constant k2 for the

diffusion-controlled bimolecular reactions.

A   +   B     products

In terms of the diffusion coefficients and sizes of the reactant

molecules.

k2



Diffusion-Controlled Reactions

The rate of the reaction

A   +   B     products

is controlled by the flux of B molecules into a sphere of radius r

centered on molecule A. Using 4 r2 for the surface area of the 

sphere, the number of B molecules entering per unit time is
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Integrating over r and using the bulk concentration [B] as r :
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Diffusion-Controlled Reactions

If the reaction

A   +   B     products

is diffusion-controlled, the concentration of B is zero at

r = rA + rB = rAB, the collision diameter of A and B molecules.

k2
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This is the reaction rate for one A molecule. Multiplying by the 

number of A molecules nANav (moles of A times Avogadro’s number)

and dividing the volume gives the reaction rate per unit volume:
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Diffusion-Controlled Reactions

So far, the rate of the reaction

A   +   B     products

has been analyzed in terms of B molecules diffusing toward A

molecules. But A molecules are diffusing too! Including the 

diffusion coefficient of the A molecules gives the reaction rate

k2

]B][A[)(4]B][A[ ABBAav2 rDDNk  

The predicted bimolecular rate constant for diffusion-controlled 

reactions is

ABBAav2 )(4 rDDNk  



Diffusion-Controlled Reaction – an Example

H+(aq)   +   OH(aq)     H2O(l)

Data at 25 oC: DH+ =  9.3  109 m2 s1

k2

The predicted bimolecular rate constant is

ABBAav2 )(4 rDDNk  

DOH =  5.3  109 m2 s1

rHOH =  0.22  109 m

=  4 (6.02  1023 mol1) (9.3 + 5.3) (109 m2 s1) (0.22  109 m)

=  2.4  107 m3 mol1 s1

k2 = 2.4  1010 L mol1 s1



Diffusion-Controlled Reaction – an Example

H+(aq)   +   OH(aq)     H2O(l)
k2

The predicted bimolecular rate constant at 25 oC is

k2 = 2.4  1010 L mol1 s1

The measured bimolecular rate constant is

k2 = 11.4  1010 L mol1 s1

Why is the measured rate constant larger? What feature of H+

and OH is not included in the model used used to predict k2?


