Chapter 9. Ideal and Real Solutions

Chem 231 Last term, thermodynamics of pure substances and ideal gas mixtures. But what about liquid mixtures? They are "everywhere", very important, and often strongly nonideal.

Solutions

- mixtures of two or more different chemical components
- form a single phase
- uniform chemical and physical properties on the microscopic scale
- a solution can be a: \bullet gas (e.g., air $-\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Ar}, \mathrm{CO}_{2}, \ldots$)
- liquid (e.g., NaCl dissolved in water)
- solid (e.g., brass - a copper/zinc alloy)

Ideal Gas Solutions

- simplest of all solutions, but very important
- no molecular interactions
- from Chem 231:

$$
\begin{aligned}
& \Delta S_{\text {mix }}=-n_{\mathrm{A}} R \ln x_{\mathrm{A}}-n_{\mathrm{B}} R \ln x_{\mathrm{B}}>0 \\
& \Delta G_{\text {mix }}=n_{\mathrm{A}} R T \ln x_{\mathrm{A}}+n_{\mathrm{B}} R T \ln x_{\mathrm{B}}<0
\end{aligned}
$$

- ideal gases always mix

Liquid Solutions

- even more important than gas solutions
- rarely ideal
- example: oil and water do not mix. Why?
- in addition to p, V, T, composition variables are required, such as mole fraction $\left(x_{i}\right)$, molality $\left(m_{i}\right)$, molarity $\left(c_{i}\right)$

Chapter 9 - Liquid Solutions

Why study solution thermodynamics? To help understand:

- vapor pressures of solutions (and fractional distillation)
- solubilities (and purification by re-crystallization)
- freezing point depression (why salt melts ice)
- osmotic pressure (how desalination works)
- solid-liquid-vapor phase diagrams
- properties of nonideal solutions
- multicomponent phase rule $\boldsymbol{F}=\boldsymbol{C}+\mathbf{2}-\boldsymbol{P}$
- chemical reaction equilibrium in liquid solutions

Section 9.1 Defining Ideal Solutions

Ideal Solution of Gases A and B

- no interactions between molecules A and B
- a poor approximation for liquid solutions of A and B
- A and B molecules attract each other to form liquid solutions

Ideal Solution of Liquids \mathbf{A} and B

- equal interactions between molecules A and B
- a reasonable approximation "similar" A and B molecules
- examples: benzene + toluene or $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$

Vapor Pressures of Ideal Liquid Solutions: Raoult's Law

Liquid A + B Mixtures

If A and B molecules have similar:

- sizes
- A-A, A-B and B-B interactions
expect the vapor pressures of A and B to be proportional to the mole fractions of A and B. (Why?)

Get:

$$
\boldsymbol{p}_{\mathrm{A}}=\boldsymbol{x}_{\mathrm{A}} \boldsymbol{p}_{\mathrm{A}}^{*}
$$

$$
p_{\mathrm{B}}=x_{\mathrm{B}} p_{\mathrm{B}}^{*}
$$

