
Quantum Mechanical Treatment of Rotational Motion

We have examined translational (the free

particle) and vibrational (harmonic oscillator)

motion. The latter serves as a useful model

for the analysis of infrared spectra.

Rotational motion also provides a good introduction to chemical problems

that have polar and spherical symmetry.

This will also lead to a discuss of angular momentum, an important topic

in quantum chemistry.

We will now examine the quantum

mechanical treatment of rotational motion.

Microwave spectroscopy can be used to

measure the rotational states of molecules.



The 2-D Rigid Rotor or Particle on a Ring

The 2-dimensional rigid rotor can be used to describe the rotational

motion of a diatomic molecule constrained to rotate around one axis.

e.g. A rotating H2 molecule adsorbed

onto a surface.

We can show that the 2-D rigid rotor is

mathematically equivalent to a single particle

constrained to move on a ring.
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The term rigid in this context means that the

distance r (the bond length) is fixed. In other

words, we are making the approximation that the

molecule is not vibrating or stretching.

r

The rigid rotor model is a good approximation because, although

molecules vibrate at room temperature, the vibrational amplitude is

small compared to the bond lengths.



Reduction of the Dimensionality of the Problem

Recall with the Harmonic Oscillator, we

reduced the two-body problem in 1-D into an

effective one-body problem.
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Our current problem is similar, but now in

2-dimensions.

r m

We actually separated the problem into

vibrational motion and the translational motion

of the center of mass of the molecule.

We can separate the problem into the center

of mass motion and rotation about the center

of mass.
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Using the definition of the moment of inertia, it is straightforward to show

that rotation of a rigid rotor of length r composed of two masses about

the center of mass is equivalent to:

rotation of a single mass of m, with a radius equal to r.

Where m is the reduced mass we have encountered before:
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We have again reduced our two-body problem into an effective

one-body problem.
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For our effective single-particle, what is the dimensionality of our

problem?

Other Coordinate Systems can be More Convenient 

In this case, the Cartesian coordinate system may not be the best to use.

Instead, let’s use a coordinate system that takes advantage of the

natural symmetry of the problem, namely the radial symmetry.

r

We’ll see, if we use the polar coordinate system, our 2-dimensional

problem will reduce into a 1-dimensional problem (a lot easier!).

What is the Hamiltonian of our problem?



The Polar Coordinate System

It is easy enough to convert the coordinates x

and y to r and f using the expressions above.

Our wave function then becomes:
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However, we must also convert our Hamiltonian into these

coordinates.
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We can equivalently express any point in

2 dimensions with polar coordinates.
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This is not trivial!



The difficulty with transforming our Hamiltonian into polar coordinates

lies in the Laplacian operator.

The Laplacian Can Be Expressed In A Variety Of Coordinate Systems
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We must convert these second derivatives in terms of r and f.

Repeated application of the chain rule along with the equations that

link (x,y) to (r,f):
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give the Laplacian operator in polar coordinates:
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what does this mean?
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Thus, our Hamiltonian in polar coordinates becomes:

Our Schrödinger equation in polar coordinates is:
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Our wave function is a function of r, which is

fixed, so it is not a variable. It is a constant in

this problem.

We assume the particle is free to rotate so the potential is zero.

Our 2-D Rotor is Rigid (Fixed r)
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Our Schrödinger equation for this problem is therefore:

Multiplying the wave function in on the left side gives:
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not depend on r)

2 2

2 2
( ) ( )

2
E

r
 f  f

m f


 



So our two dimensional rotation reduces to a one-dimensional

Schrödinger equation:

where r is a constant (the rotor is assumed to be rigid).
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Rearranging to our standard DE form gives:

Define the constant m as
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This DE is the same one that we get for the 1-D particle in a box or

free particle!
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Recall:

We already know the general solutions of this problem, so

what’s different?

The symbol ‘m’ is 

used here by 

convention, and 

does not represent 

the mass.

Particle-in-a-

box DE
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The general solution to the above differential equation is:

The difference between this problem, the 1-D particle in a box and the

free particle are the boundary conditions.
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Our wave function has to match up at 0
and 2, so our boundary condition is:
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The Angular Momentum is a Characteristic Property of the Rotor

Before we solve for the Schrödinger equation, let’s use some principles

that we learned earlier to simplify the problem.

Recall that the energy is always a property that characterizes the state

of a conservative system.

In other words, the energy of a system is always definite.

We also said that other properties can characterize the state of a

particular steady-state system.

The angular momentum of the rigid rotor is a characteristic

property.

Recall that if a physical property characterizes the system, the wave

function must be an eigenfunction of the operator corresponding to that

property.

WHY?
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Recall that the general solution of the Schrödinger equation was:

Because the angular momentum is a characteristic property of the rigid

rotor, the wave function must be an eigenfunction of the angular

momentum operator, which is given by:

Use this to help us simplify our solution to the Schrödinger

equation.
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Doesn’t equal a constant times f unless A or B is zero!



Using the restriction that the wave function must be an eigenfunction

of the linear momentum operator, we get the general form:

...3,2,1,0     m

It can be easily shown that, in order to satisfy the cyclic boundary

conditions, m must be given by
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with the wave function

How can we determine the constant A ?

If we can solve for the constant A, then we have our complete wave

function.

notice the ‘±’ is

“gone”( it’s now

included in m).
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Our complete wave function for our 2-D rigid rotor is given by:

The energy of the rotor is easily derived from the Schrodinger

equation:

What about the energy of these states?
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m = 0, ±1, ±2, ±3 …
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Labeling the wave functions and energies by their quantum number m
gives:

• The energy levels are quantized.

• The energy levels are all doubly degenerate

except for the ground state.
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• The wave functions are all complex

functions (except for m = 0)

• The zero point energy for this system is

zero.
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Because the potential energy is zero, V(f) = 0, all of the energy must be

kinetic energy.

r

And the motion is all rotational, so all of the energy is rotational kinetic

energy.

So the rotational speed is also quantized. In other words, the particle

or rotor can only rotate at specific (discrete) speeds. This is again is in

contrast to classical rotational motion (continuous speeds).
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Can you explain why the energy levels are doubly

degenerate?
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The ground state with m = 0, corresponds to

the rotor not rotating at all.

As m increases in magnitude, the system is

rotating faster.

The sign of the quantum number m
corresponds to the direction of rotation.

How can we verify the above statements?

What do the wave functions “look like”?
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Consider a property, a, whose corresponding operator is given by A. If

A is happens to be an eigenfunction of the wave function of a state,

then the variance in the measurement of that property is zero. In other

words, the property ‘a’ of that state is definite.

Recall what we learned earlier:
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Moreover, the value that will be measured is the eigenvalue ‘a’

such that:
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The 3-Dimensional Rigid Rotor

We now examine full 3-dimensional rotation. We will again consider the

situation where our rotor is rigid. In other words, the bond distance is

fixed.

It can again be shown that full 3-D rotation of a two body system about

the center of mass is equivalent to the rotation of a single effective body

with mass m.
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Assuming the rotation is unhindered (free) so that the potential is zero,

the Schrödinger equation is simply:

Once again, Cartesian coordinates are not the most convenient

representation. Here it is best to use polar spherical coordinates.
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Polar Spherical Coordinates

 r0
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2π0  f

We can specify any point in 3-D space with

the coordinates r, f,  as easily as we

can with the Cartesian x, y, z coordinates.

r = distance from the origin

( , , ) ( , , )x y z r  f

 = angle line r makes with z-axis

f = angle about x-axis
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Polar Spherical Coordinates
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Polar Spherical Coordinates

The Laplacian operator in polar spherical coordinates is not trivial to

derive from
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(there is no need to memorize the above, but you 

should know how to work with it and what it means)
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Again we have to repeatedly apply the chain rule to the second

derivatives in terms of x, y, and z to convert the Laplacian to r,  and f.



In Cartesian coordinates, an infinitesimal change in

dx, dy, dz maps out a cube whose volume is given

by:

  dV d dx dy dz 
y

x

z

dz

dy
dx

In polar spherical coordinates, when we change r, , and f by an

infinitesimal amount, it does not map out a perfect cube.

The Differential Volume Element or the Integration Element

Indeed, the infinitesimal volume mapped out depends on r and .
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The integration element in polar spherical

coordinates is given by:
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Back to our 3-Dimensional Rigid Rotor
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The Schrödinger equation for this problem is:
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Recall that r is fixed.

This term is zero because our radius is fixed, and the wave function is a

function of f and , but not r.
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The Schrödinger equation for the 3-D rigid rotor problem becomes:
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Notice that the second term contains both  and f, so in this form, the

problem is not separable and we cannot use that very nice theorem.

However, if we multiply both sides of the equation, by sin2, the problem

does become pseudo-separable.
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This suggests that there exists a solution of the form:
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The above is a product of two independent functions, one dependent

only on f and the other only on .
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If we substitute this into our Schrödinger equation we have:

We should be able to now collect all of the f’s on one side and all of the

’s on the other side. If we can do this, then we can apply our standard

method of separation of variables.
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Let’s solve for the f term first. It looks easier!
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Moving the 1/ to the right side gives:
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Doesn’t this look familiar?
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Recall the Schrödinger equation from the 2-D rotor we just solved:

It is identical except that we have a constant  instead of the energy, E:
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Our function (f) must satisfy the same boundary condition that
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So we know that our 2-D rigid rotor wave functions will satisfy this

eigenvalue equation: 1
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rather the constant .



2 2

2 2

1 ( )
 constant

( )2 r

 f


 fm f


  



2
2

2

1
sin sin ( ) sin  same constant

( )2
E

r
     

   m

 
   

 

Recall that we had

Now that we have an expression for this constant , we have an

equation for which we can solve for the function () .
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Our total rigid rotor wave function will then be:
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We now have to solve the above differential equation for ().

Rearranging gives:

This differential equation is not easy to solve! Just like harmonic

oscillator, it involves a power series solution.

Again, we will not solve this DE explicitly. Instead, the solutions will only

be presented we will check their validity.



2 2

2 2

1
sin ( ) ( )

sin2 sin

m
E

r
    

  m 

  
      

   
1/ 2

| |( )!2 1
( ) 1 cos

2 ( )!

m mm
P

m
  

 
   

 

...2,1,0   

  ,...2 ,1 ,0m

The first term is just a normalization constant.

The solution to the above differential equation that we derived is:

and m are the quantum numbers. Notice that there are restrictions

placed on m based on the value of . This actually results naturally

from the solution of the differential equation.

These quantum numbers are not completely independent of one

another because our problem was only pseudo-separable.
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The P(cos)’s are called the associated Legendre Polynomials.

Notice P(cos) is a function of the function cos. The first few of these

polynomials are:  | | cosmP 

0
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Although P is a function of cos, some of the polynomials contain sin.

The reason for this is that these particular polynomials involve the

derivative of cos, which is sin.
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The Wave Functions of the 3-D Rigid Rotor are 

Called Spherical Harmonics

0),( fmY

Recall that the total wave function of our original Schrödinger equation

was the product of f and .
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For historical reasons, the wave functions are called Spherical

Harmonics and are given the symbol Y. (They were used to describe

the vibration of elastic spheres.)
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Why spherical harmonics? What do they look like? 

First, consider vibrations in one dimension. 

Example A   vibrating string of length L is described 

by functions such as        

sin(nxx/L)



Next, consider vibrations in two dimensions.

Example A  vibrating  rectangular  membrane

of length L and width W.

Described by functions such as  

sin(nx x/L) sin(ny  y/W)



Spherical Harmonics describe vibration in 3 dimensions

Example A  vibrating spherical membrane

Many possibilities !

Red indicates positive displacement. White is negative displacement.

*

*from tessera, a square piece of mosaic tile



Spherical Harmonics can be visualized by considering     

nodal lines where                         

latitudinal nodes                              longitudinal nodes
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Much wider significance of spherical harmonics:

Just as sine and cosine functions provide an orthogonal basis 

set of functions for one-dimensional systems

spherical harmonics provide an orthogonal basis set of 

functions for spherical systems

in convenient angular coordinates.

Can you suggest why spherical harmonics are very widely 

used in geology, astronomy, acoustics, quantum chemistry, …
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The first few wave functions of the 3-D rigid rotor are:
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There is no need to memorize these functions, but you should be know

how to work with them and be familiar with their interpretation.



The 3-D Rigid Rotor Wave Functions are Orthonormal

Because the spherical harmonics are also the wave functions of the 3-D

rigid rotor, and satisfy the corresponding Schrödinger equation, we would

expect the spherical harmonics to be orthonormal.

Recall that the orthonormalization condition is given generically as:

[dii = 1, dik if i ≠ k (Kronecker’s delta)]
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Explicitly, show that the Y00 spherical harmonic is normalized and

orthogonal to Y11.
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0,  1,  2...

0,  1,  2,... m    

Notice that the total energy does not depend on the quantum number m

• Zero-point energy is zero, just like the 2-D rotor.

We will discuss the physical interpretation of this shortly.

• Energy levels increase with

• Degeneracies.
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The 3-D Rigid Rotor Energy Levels

As with the wave functions, we simply present the energies obtained

from solving the rigid-rotor Schrödinger equation:
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degeneracy:



What do the Wave Functions Look Like?

The visualization of the spherical harmonics is

complicated by the fact that the functions have

imaginary components and because of the

3-dimensionality of the problem.
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The complex nature of the wave functions means that we must plot the

real or imaginary parts of the wave function separately, or plot the square

of the wave function.

 Re ( , )mY  f  Im ( , )mY  f
2

( , )mY  f

One obvious way to visual the spherical harmonics is to plot the function

on the surface of the sphere.

Recall we have an effective one-particle on the sphere and the square of

the wave function will give the probability of finding the particle at that

point on the sphere.



What do the probability distribution functions of the following

spherical harmonics look like?

x

y

z



f

r

00

1

4
Y




1/ 2

10

3
cos

4
Y 



 
  

   0

2π0  f

One way to interpret the spherical harmonics are as standing waves on

the surface of a sphere.

It turns out that the above is not a common visualization of the spherical

harmonics because one has to use a different intensity of shading to

represent different probabilities.



= 1 m=0

= 1   m=1 = 2   m=0 = 2   m=2

= 3   m=0 = 3   m=3 = 4   m=3

Plots of the real component of the

spherical harmonics on the ‘flattened’

spheres:

 Re ( , )mY  f

What do the different colors represent?

  

  





Another way to represent the spherical harmonic functions is to plot the

magnitude of the probability density as a distance from the origin.

The greater the probability density for any  and f, the longer the

distance from the origin.

2
2

00

1

4
Y




2
1/ 2

2
10

3
cos

4
Y 



 
  

 

Let’s do this for the  dependence of the following spherical

harmonics.
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Consider the  dependence of:
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Real and Imaginary Components

xy

z

 1 1Re Y   1 1Im Y 

 2 1Re Y   2 1Im Y   2 2Re Y   2 2Im Y 

Notice that the real and imaginary components of each function are

orthogonal to one another.



Angular Momentum Characterizes the Rigid Rotor States

For the 2-D rigid rotor, the angular momentum defined the state. In other

words, each 2-D rotor state had a definite angular momentum.

One would expect this to be the same for the 3-D rigid rotor. This is

indeed the case and we will see that the spherical harmonics are

eigenfunctions of the angular momentum operators.

It turns out that the spherical harmonics are closely connected to our

quantum mechanical interpretation of angular momentum.

Angular momentum is very important when discussing molecules

because much of the motion of electrons in molecules is angular in

nature.

We will now examine this relationship, to help us interpret the rigid rotor

wave functions.



Linear Motion and Angular Motion

linear angular
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Recall the analogy between classical linear motion

and classical angular motion:
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Classical Angular Momentum

The classical definition of angular momentum in Cartesian

coordinates is
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Angular momentum is a 3-D vector quantity.

Using the right-hand-rule:
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The faster the system is spinning, the greater

the magnitude of the angular momentum.
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Angular momentum  can be expressed in terms of its components

The components, Lx, Ly, and Lz are scalar quantities.

The Magnitude of the Angular Momentum
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|L| is the length of the angular momentum vector.

L

L


x

y

z

zL
xL

yL
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Quantum Mechanical Angular Momentum

Because angular momentum is a physical observable, it will be

represented by a quantum mechanical linear Hermitian operator.

To obtain the quantum mechanical operator for angular momentum,

we use the postulate telling us to express classical expressions in

Cartesian coordinates and then make the following substitutions.

ˆx xp p i
x


  



xxx  ˆ

ˆz zp p i
z


  


ˆz zp p i

z


  



yyy  ˆ zzz  ˆ

ˆ
yL i z x

x z

  
   

  

ˆ
xL i y z

z y

  
   

  

ˆ
zL i x y

y x

  
   

  

The angular momentum operators in Cartesian coordinates are:



ˆ sin cot cosxL i f  f
 f

  
   

  

ˆ cot cot sinyL i f  f
 f

  
   

  

ˆ
zL i

f


 



2
2 2

2 2

1 1ˆ sin
sin sin

L 
    f

   
       

In polar spherical coordinates, the angular momentum operators (after

lengthy derivations!) are:

And the L2 operator is:



Angular Momentum Observables In Quantum Mechanics

For any measurement of the observable associated with the

operator A, the only values that will ever be observed are the

eigenvalues an, which satisfy:

Recall postulate 3.

ˆ
n n nA af f

2
2 2

2 2

1 1ˆ sin
sin sin

L 
    f

   
       

Consider the square of the angular momentum.  What are the 

eigenfunctions of the L2 operator?
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The L2 operator is almost identical to the Hamiltonian operator for the 3-D 

rigid rotor given by:

They differ only by a constant, and therefore for the 3-D rigid rotor:

Let’s find the eigenfunctions of the square of the angular momentum 

operator,

From the above, what do you think are eigenfunctions of the L2

operator? What are the eigenvalues?
2

2
( 1)

2
mE

rm
 The following expression will be useful:



2 2( 1)L   ℓ = 0, 1, 2, 3….

Spherical Harmonics are Eigenfunctions of the L2 operator

2 2ˆ ( , ) ( 1) ( , )m mL Y Y f  f  

From the 3rd postulate, we find that the allowed values of the magnitude 

of the angular momentum are:

So, angular momentum is quantized.

0

2

6

12

Classically, angular momentum can take any value.

But in reality, it is a quantized property.

If we could make very precise measurements, we

would find we could only accelerate the rotation of a

ball in steps, not smoothly and continuously!

( 1)L  



Precise Values of the Three Components of Angular Momentum 

Cannot Be Measured Simultaneously

Surprisingly, the angular momentum vector cannot be specified precisely.

The reason for this is that the operators Lx, Ly and Lz do not commute.

ˆ ˆ ˆ[ , ]x y zL L i L ˆ ˆ ˆ[ , ]y z xL L i L ˆ ˆ ˆ[ , ]z x yL L i L

Each of the x, y and z components of the angular momentum, do however,

commute with the square of the angular momentum operator:

2ˆ ˆ[ , ] 0zL L 2ˆ ˆ[ , ] 0xL L 
2ˆ ˆ[ , ] 0yL L 

So, we can precisely determine the magnitude of the angular

momentum and only one of its components simultaneously.
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Commuting Operators and the Uncertainty Principle
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( 1)L  

The magnitude of the angular 

momentum vector is given by:

Suppose we choose to determine L2 and the z component of the angular

momentum vector:

If we specify the z-component

of the angular momentum,

then the x and y components

will be uncertain.

This uncertainty is represented

in this picture as a

“cone of uncertainty”

zL

z-axis

L


y
x

z



Spherical Harmonics are Also Eigenfunctions of the Lz Operator

We can simultaneously specify only one of the components of the angular

momentum vector, and so it is by convention we specify the z-component

of the angular momentum. (NOTE: there is nothing special about the

z-component of the angular momentum vector. It is traditional to use it.)

ˆ
zL i

f


 


The Lz operator is given by:

The spherical Harmonics are also eigenfunctions of the Lz operator.

What are the eigenvalues of the spherical harmonics with the Lz

operator?

( , )mY  f
...2,1,0   

    ,...2,1,0m

ˆ ?z mL Y 



Consequently, the only values of the z-component of the angular

momentum that will be observed are:

NOTE: Only integer values of h-bar for the measurement of the angular

momentum are allowed.

zL m m = 0, ±1, ±2, . . .

This is true for the measurement of the angular momentum for any system,

not just for observations of the rigid rotor.



If we want to measure a property of a given state, the expectation value

gives the average that we will measure:

*

all space

ˆa A d   

In general there will be a spread in our measurements, and the above

only gives the average.

The spread in the measurement can be quantified by the variance:

22 2

a a a  

 
22

* *ˆ ˆA d A d       

In the above, A is the operator corresponding to the property of interest,

Y is the wave function of the given system we are interested in

measuring.

Expectation Values and Variances



Â a 

If the wave function of the state of interest, Y, happens to be an

eigenfunction of the operator A, then there is no spread in the

measurement of that property.

22 2 0a a a   If then

Moreover, the value that will be measured is the eigenvalue ‘a’ such that:

* * *

all space all space all space

ˆa A d a d a d a             

When Y is an Eigenfunction of A, the Variance is Zero

For that system, the property, ‘a’, has a definite value that can be used

to characterize the system.

normalized



Back to the 3-D Rigid Rotor

Because the 3D rigid rotor wave functions are eigenfunctions of the L2 and

Lz operators, we know that L2 and Lz characterize the states of the rigid

rotor.
In other words, each 3D rigid rotor state will have a unique combination of

L2 and Lz that defines the state.
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2 2( 1)L  

zL m

For a rigid rotor, sketch the possible angular momentum vectors that
are consistent with an = 0, 1 and 2 states.











Consider an = 2 state.  6)12(2 L

There are 5 allowed states with m = 2, 1, 0, +1, +2

It is important to realize that a state can only

have one value of and m at one time.

From this depiction of the quantized

angular momentum, we see the m quantum

number defines the orientation of the

angular momentum vector. This is some-

times referred to as space quantization.

z
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Rotational Excited States of a Diatomic Molecule 

are Significantly Populated at Room Temperature

We can estimate the relative population of the rotational energy states by

using the Boltzmann distribution law:

/N g E kTi i e
N gj j



Ni/Nj is the ratio of the molecules in the ith and jth

rotational states. The gi’s are the degeneracies of

these states. k is Boltzmann’s constant and T is the

temperature.

E E Ei j  

2

2
( 1)

2
(2 1)

0

N r kT
e

N

m
 

 

The ratio of the number of molecules in the th rotational state and the

ground rotational state is therefore (remember the degeneracy of the

rotational states):

Y00

Y10 Y1+1 Y1-1





Rotational Spectra

2

2
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2
mE

rm
 

0,  1,  2...

0,  1,  2,... m    

The energy levels of the 3-D rigid rotor are given by:

Rotational Spectra Selection Rules

Not all transitions are allowed. Using the results of time-dependent

perturbation theory, it can be shown that transitions are allowed only if

the following integral is non-zero:

 ' 'm mfor a  transition

2
* *

' ' ' '

0 0

ˆ ˆ  sin  m m m mY Y d Y Y d d

 

m  m   f  

where m is the dipole moment operator (not the effective mass). re


m̂



1   1m  

Using the 3-D rigid rotor wave functions, these integrals are only non-

zero when:

These are the selection rules for rotational transitions.

and, for diatomics, there must be a permanent dipole moment.

Because the energy depends only on the quantum number we have

for the absorption transition (molecular energy increasing):

2 2

2 2
( 1)( 2) ( 1)

2 2
E

r rm m
     

2

2
( 1)E

rm
  

1E E 

notice the transition energy

depends on the quantum number

of the initial state





For a typical diatomic molecule:

m = 10-25 to 10-26 kg r = 10-10 m

If we use these values in the above equation for the transition energy,

starting from = 0, we find that the absorption frequencies of pure

rotational spectra are 2 x 1010 to 1011 Hz

hv
r

E  )1(
2

2





m

This is in the microwave region of the EM spectrum and the study of

rotational transitions in molecules is called microwave spectroscopy.

Practical application:

Microwave ovens actually excite the rotational states of water molecules.





In the field of microwave spectroscopy, it is conventional to use the

symbols J and M for the quantum numbers and m, respectively:

J m M

Microwave Spectroscopy has its Own Naming Conventions

Recall the definition of the moment of inertia:

2
i i

i

I m r  distance of the ith

particle from the origin.

For a diatomic molecule, the moment of inertia is:

2I rm

2

( 1)E
I

  

So the transition energy is usually written as:

2

2
( 1)E

rm
  

(We won’t use this notation, but be aware of it.)

m
r
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It is also common practice to write the transition energy in terms of wave

numbers (cm-1) and a rotational constant of the molecule, B.

transition energy 

in wave numbers, 

cm-1

rotational constant of the 

molecule in cm1

(unique for every molecule)

0       ' 1   B
~

2~ 

1       ' 2   B
~

4~ 

2       ' 3   B
~

6~ 

3       ' 4   B
~

8~ 
     

transition involved frequency of peak



The rigid rotor model predicts that the microwave spectrum of a diatomic

molecule should consist of a series of equally spaced lines with a

separation of B
~

2

The intensity of the lines is given by the thermal distribution of the

rotational states.

B
~

2 B
~

4 B
~

6 B
~

8 B
~
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~
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~

14

B
~

2

~

10 
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Rotational spectra can be a used to determine accurate bond lengths.

The pure rotational spectra of H35Cl is composed of a series of lines

separated by 20.9 cm-1. What is the bond length?

( 0.129 nm)

Several unstable species can be recognized spectroscopically by their

pure rotational spectrum. Compute the rotational spacings, 2B, for the

OH radical (r = 0.97 Å) and for the OD radical.

2B for OH· is 37.5 cm-1 2B for OD· is 20.0 cm-1

So these two isotopomers can be distinguished by their pure rotational

spectra.



Combined Rotational-Vibrational Spectra

Recall from our harmonic oscillator model of diatomic vibrations, we had

the following selection rules:

1n  

Because the ground-vibrational state is mostly occupied and since the

harmonic oscillator model predicts equally spaced energy levels, we

predict one strong IR peak that we call the fundamental frequency:

1/ 2

1n n

k
E E E 

m


 
      

 

For example, for H35Cl the harmonic oscillator model predicts a

fundamental vibrational frequency at 2886 cm-1 with a force constant of

k = 482 N/m.

With low resolution IR spectra, this is indeed what we observe, a single

strong absorption peak. But wait! With high-resolution spectrometers, the

band can be resolved into contributions from many individual transitions.



Notice the equally spaced peaks on either side of the fundamental

frequency.

High Resolution IR spectrum of HCl)cm(~ 1

Why? The vibrational energy level transitions are accompanied by

changes in the rotational energy levels! The selection rules for the

combined transitions are also ‘combined’:

2

( 1)vib rotE E E
I

       

1    &     1n     

The energy change associated with the allowed transitions is therefore:

B
~

2

28003000



n=0

n=1

n=2

1
0

2
3

4

1
0

2
3
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Because many rotationally excited

states are occupied at room

temperature, there will be both

 = +1 and  = 1 transitions

starting from various levels .

vibE  

10  nn     

At room temperature, it is mostly

the ground vibrational state that

is populated, therefore, most

vibrational transitions will be:

vib rotE E E    

Thus, the total energy of the transitions can smaller or larger than that for

the fundamental vibrational frequency.





 




28003000

The shape of each of the branches is again due to the thermal populations

of the rotational energy levels governed by Boltzmann’s law.

)(~ 1cm

stransition   1stransition   1

R branch P branch

Shoulders are due to natural abundance of H37Cl, which has larger

reduced mass than H35Cl, and therefore a shift in the fundamental

vibrational frequency.



This is an actual spectrum of HCl

taken with the departmental FT-IR

instrument.

The isotopic splitting is barely visible

on this compressed scale.


