
3-Dimensional and Multi-Dimensional Systems

We’ve looked at one-dimensional problems, or at least problems that

could be reduced to ‘effective’ one-dimensional problems (the harmonic

oscillator).

Most problems of interest occur in three-dimensional

space and involve multi-dimensional spaces. For

example, molecules are 3-dimensional structures.

Before we look at those systems, we will examine

some general techniques for solving multi-

dimensional problems.
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The Useful Theorem of Separability

The separability theorem can help us to solve multi-dimensional

Schrödinger equations.

Consider a two-dimensional system where the wave function is a function

of two coordinates:

),( yx

This wave function is the solution to the Schrödinger equation:

),(),(ˆ
tot yxEyxH  

is the Hamiltonian and Etot is the energy. We’ll see shortly why we

subscript this energy with ‘tot’ for total energy.

We’ll first discuss two-dimensional systems, but this is easily extended to

multidimensional problems.
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If (not always possible!) we can write the total Hamiltonian as a sum of

independent terms that act on separate variables only, such as:

yx HHH ˆˆˆ 

xĤ

where

depends on or acts only on x

yĤ depends on or acts only on y

then we can write the wave function (x,y) as a product of independent

wave functions that each depend only on one of the independent variables:

)()(),( yxyx yx  

the Hamiltonian is 

separable

Let’s look at some examples of separable Hamiltonians and product

wave functions.



)()(),( yxyx yx  

Not only can we write the wave function as a product wave function,

)()(ˆ xExH xxxx  

)()(ˆ yEyH yyyy  

each of these product wave functions are solutions to their own

corresponding one-dimensional Schrödinger equations:

They combine to be a solution of the total Schrödinger equation:

)()()()(ˆ
tot yxEyxH yxyx  

proof will not be given, but we will demonstrate it is valid.

yx EEE tot

where



How do we use the Separability Theorem?

yx HHH ˆˆˆ 

If we can separate the Hamiltonian:

then we can solve for the total wave function (x,y) by simply solving the

one-dimensional Schrödinger equations:

)()(ˆ xExH xxxx  

)()(ˆ yEyH yyyy  

)()(),( yxyx yx  

The total wave function is the product of the independent wave functions

yx EEE tot

and the total energy is the sum of the individual energies!



Examples:

If the individual wave functions are x and y normalized, is the total

product wave function also normalized?

Each of the wave functions x and y must satisfy the normal conditions

of being well behaved, including being normalized.

)()(ˆ xExH xxxx  

)()(ˆ yEyH yyyy  

So, for separable Hamiltonians, we can simplify the two-dimensional

problem into two separate one-dimensional problems.

Show that the product wave function is an eigenfunction of the total

Hamiltonian with eigenvalue Etot=Ex+Ey.



The Theorem is General to Multi-Dimensional Problems

nqqqq HHHHH ˆ...ˆˆˆˆ
321



)(...)()()()...,,( 332211321 nnn qqqqqqqq    

and to Various Combinations of Independent Variables:

ntot EEEEE  ...321

zxy HHH ˆˆˆ 

)(),(),,( zyxzyx zxy  

zxy EEE tot

The resulting Schrödinger equations are called separable.



Particle in a 3-Dimensional Box

Consider a rectangular box whose

dimensions are A times B times C.
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Before we solve the 3-D problem, first let’s review the 1-D particle in

a box problem:

The particle in a box is easily generalized to

three dimensions.

L

V =  V = V = 0

x=0 x=L

Outside the box, we required the wave function to be zero (infinite

potential there), and then we solved for the wave function inside of

the ‘box’.
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A Particle in a 3-Dimensional Box

Again, we simply apply the principles and postulates we have used

previously.

So we need to simply solve the Schrödinger equation for this

problem.

),,(),,(ˆ zyxEzyxH 

Explicitly, what is the Hamiltonian in 3-dimensions?

Consider a rectangular box whose

dimensions are ABC and whose origin is at

one corner of the box as shown.

As for the 1-D box, the potential energy is

V(x,y,z) = 0 inside the box and infinite

outside of the box.
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(0,0,0)

Voutside = 

Vinside = 0
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0  x  A

0  y  B

0  z  C

Inside the box only

for all y and z0),,0( zy

The boundary conditions are:

for all x and z0),0,( zx

for all x and y0)0,,( yx

With these boundary conditions, all we have to do is now solve this

multidimensional Schrödinger equation.
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Are we missing any boundary conditions?
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Therefore, we can use the theorem, and write our total wave function

as a product of three independent wave functions:

)()()(),,( zyxzyx zyx  

zyx  

This can be written as:

where:



Now we just have to solve the individual one-dimensional

Schrödinger equations.
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(0) 0   ( ) 0y y B  
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Each of these three sets of equations and boundary conditions are

identical to the one-dimensional particle-in-a-box Schrödinger

equation that we have already solved with a length L.

boundary conditions
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For the original one-dimensional particle in a box of length L we had:

So, for our 3-D problem, we have:
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Notice that we have three independent quantum numbers: nx, ny, nz.
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Notice we have three quantum numbers, one for each degree of

freedom of the system. The states and energies are typically

specified with these indices.
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Using the separability theorem, we can simply write the total wave

function and energies as:

e.g.



Visualization of the Wave Functions

Visualizing a 3-D function is difficult since it would require

a 4-dimensional plot.

However, 2-D slices of the wave function can be plotted.
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Degeneracy

Definition: Two or more wave functions (of the same system) are

degenerate if they have the same energy. It is

important to realize that the wave functions and states

are distinct. They just have the same energy.

If the 3-D box has equal sides, such that A = B = C = L, then some

of the states of the 3-D particle in a box will be degenerate.
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If A = B = C = L ( a cube), then the energy is given by:
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For example, the first excited state, has a three-fold degeneracy:
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There are three distinct states that have the same energy. In other

words, there are three different wave functions that happen to have

the same energy.
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Energy Levels for a Particle in a Cubic Box
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The ground state of the particle in a cubic box is non-degenerate,

meaning there is only one state with that energy. Zero-point energy:
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The first excited state, has a three-fold degeneracy, meaning that

there are three distinct states with the same energy.

Note: These wave functions have the same energy, but they are still

orthogonal to one another.

It is a general principle in quantum mechanics that degeneracies are

the result of the underlying symmetry of a physical system.



We can demonstrate this if we consider the wave functions of the

particle in a 2-D particle in a box which we can plot.
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The 21 and 12 states are degenerate such that E21= E12.
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Plotted below are the wave functions of these states. Notice the

symmetry.



3-D Particle In a Box Serves as a Model For an Ideal Gas

The 3-D particle in a box serves as a model for an ideal gas in a

container.

Why an ideal gas?

The 3-D particle in a box can be used to treat and discuss the

translational motion of molecules in a container within the ideal gas

approximation.

Used in the derivation of the Maxwell Boltzmann Distribution Law for

molecular speeds or kinetic energies.



3-Dimensional Harmonic Oscillator

We can also extend the Harmonic Oscillator to 3-dimensions, by

assuming that the potential has the form:

2 2 21 1 1
( , , )

2 2 2
x y zV x y z k x k y k z  

The resulting Hamiltonian is separable, as you can see.

Using the 1-D harmonic oscillator wave functions and energies, we

can immediately write down the solutions. (First done by Einstein.)

The 3-D harmonic oscillator can serve

as a simple model for a molecule

embedded in a solid or an atomic

crystal.


