The Quantum Mechanical Treatment of the Hydrogen Atom

Motivation:

Hydrogen atom orbitals and energy levels form the basis of an
understanding of larger molecules.

In fact, the results of the quantum mechanical treatment of the
hydrogen atom permeate through our modern description of
chemistry.

covalent bonding  molecular orbitals hybridization

For example, we often speak of the
n-bond in a C-C double bond as a
result of the interaction between two p
orbitals on each carbon.

III,"I,

The orbitals we so often speak of come from the quantum
mechanical treatment of the hydrogen atom.
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The Hydrogen Atom — The Physical Model

The hydrogen atom is a two-particle system /’ €
consisting of a proton and an electron. Q r

We will treat the proton and electron as point masses that interact

via Coulomb’s Law given by (in Sl units): How does this

eZ 1 potential compare
V(r)=-— — to harmonic
Arey ¥ oscillator?
I' is the distance between the electron and nucleus. "}?’

e is the charge of the electron:
e=1.602x10"° C

g, IS the vacuum permittivity constant and in S| units has a value of:
£, =8.854188x107** C%.s% -kg™t-m™>



The quantum mechanical Hamiltonian for this system is:

O
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This Is a two-particle system, and just like the Harmonic Oscillator and
Rigid Rotor problem, we can separate the Hamiltonian into a center of
mass coordinate and a relative coordinate system:

Htotal — HCM + Hint

A h* 2 . .
HCM =— VCM translational motion of the center of mass
2(mID +m )

A e, e’ 1
Hint =——V" = — relative or internal motion

21 Argy ¥

__Mem,
where uis the reduced mass Me +Mp
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This Hamiltonian is separable, with the solution of the center of mass
Hamiltonian being that of the free particle, we have previously

examined.

We want to find the wave functions that govern the internal motion of
the system.

Vo

Hin = Ey

These solutions are the hydrogen atom wave functions that we are
Interested in.



The Hamiltonian operator for the internal energy of the hydrogen atom is:

2 2
I'A|int:|:|:_h_vz_ =
@ Argy ¥
el \
- \

Kinetic energy of

internal motion potential energy,

Coulomb’s law.

In many textbooks, you will often see the hydrogen-atom Hamiltonian
written with m,, the mass of the electron, instead of .

G g €1
by

Who is correct? Are these other textbooks &
Incorrect? 4




SchrOdinger’s equations for the H atom is Best Solved
In Polar Spherical Coordinates

This problem has the same spherical symmetry as the 3-D rigid rotor,
so this suggests that it would be easier to solve our problem in polar

spherical coordinates.

v —>y(r,0,9)

What do we need to do to convert
our Hamiltonian into polar
spherical coordinates?




Polar Spherical Coordinates

The Laplacian operator in polar spherical coordinates is:

2
T Y S N A T
reor\  or resin“ 0 o¢

(there is no need to memorize the above, but you
should know how to work with it and what it means)

The Integration Element

In Cartesian coordinates the integration over all
space involves the following integration element: VSm Qd(p

dr=dx dy dz

The equivalent integration element in polar
spherical coordinates is given by:

rd@

o\

dz=r?sin@ dr do dg




Hy (r,0,4) = Ey(r,0,4)

In polar spherical coordinates the Schrodinger equation becomes:

_________________________________________________________________________________________________________________________________________

[ w(106 ,6 1 o8 . 0o 1 %) e 1 |
| r“—+ SIn6— + - ~ |y =Ey !
§ 2u\ r?or  or r°sing 06 00 r2sin@ o¢° ) dney v §

Unlike the rigid rotor, I is not fixed because the electron is free to move
closer or farther away from the nucleus.

Therefore, we cannot simplify the Laplacian further. This is unfortunately
the Schrédinger equation we have to work with!

The Hamiltonian is not separable, but if we multiply both sides of the
SE by 2,ur2, It becomes pseudo-separable.
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depends only on ¢ and &4

The above is pseudo-separable, so we can collect angular components
(Band ¢) on one side and radial components on the other side.

Collecting sides gives:

radial dependence angular dependence
(depends on) (depends on ¢ and 6)
- — = N o — N

2.2 2
p2 0 20V | 2ure 1+2yr2E v =—h* 1 Ol L 9 %
or or dre, T sin@ 06 00 sin? 0 04°

This suggests that we can write our total hydrogen atom wave function
as a product of a radial and angular functions.



The Hydrogen Atom Wave Function can be Written as a
Product of Radial and Angular Components

w(r,0,0) =R(r)- A0, ¢)

Using this form of the wave function and substituting into the last
equation on the previous slide and rearranging gives:

2.2 2 2
pel20 2mre L o e |r=lt| L Ogng 1 9 A
R\ or or A4ng, r Alsingod 00 sin?0 04°

Because the |Ihs depends only on the variable I, and the rhs depends only
on the angular variables #and ¢, each side must be equal to a constant.

2.2
L2020 20 L 5 e R = A= lhs
R(r) or or Arg, r

2 2
rhs=1=— f _1 0 sin @ 0 + L 0 A(6, @)
AG,$)\ sin6 06 960  sin? 0 0¢°




The Angular Part of the Hydrogen Atom Wave Function

Let's first examine the angular part of the hydrogen atom Schriédinger
equation:

h? 1 0 . 0 1 02
= _ sinf—+
A0,8)| SN0 30~ 80  sin? g o4

] A0,9)

Multiplying both sides by A gives:

2
_hz[ 1 0,0 1 0

SinH(%?SI ag+8m2€a¢2]A(‘9’¢):/1A(9,¢)

N _
—

|:2

The above is simply an eigenvalue equation, where the operator is the L2
operator. ~
L"A(0,¢) = AA(0, ¢)

Haven’t we already solved these already? What is A?



Spherical Harmonics Make up the Angular Component of
the Total Hydrogen Atom Wave Function

The spherical harmonics are eigenfunctions of the L2 operator, recall:
(=0,1, 2...
m=0,%£1 £2,.. /¢

LY 1 (6, 8) = B L(L +1) -Y (8, 6)

Comparing the above and our angular Schrddinger equation

L“ A0, ) = AA(O, p)
tells us that:

AO,9) =Ym(0,4)  A=h(((+])

So the angular component of the total wave function of the hydrogen
atom are the spherical harmonics:

y(r,0,¢) =R(r)Y, ,(6,9)



This is why the angular plots of the spherical

harmonics looked like our familiar s, p and d
orbitals.

Some of them don't, like the donut below (to be
discussed shortly).

We have solved for the angular part of

. the total hydrogen atom wave function,
now we need to solve for the radial
component.



Solving for the Radial Component of the H-Atom Wave Function

From a few slides back, we had an expression for the radial wave
function R(r), -

1 0 0 2urce-1l

el [ RS o —+2yr2E R(r)=A

R(r) or or drzg, r

From the solution of the angular part, we know that rearranging

equation and dividing through by 2 gives: 2= hzg(g +1)
BP0 20 € 1 B+ 1

- R(r)=ER(r
ur?or or Ame,r 2u  r? ") ")

This is known as the radial Schrédinger equation for the hydrogen
atom. This is the only new equation we have to solve for to get our total
wave function for the hydrogen atom.

Again, we will not explicitly solve this equation. The solutions will simply
be presented and analyzed.



Radial Wave Functions of the Hydrogen Atom

The solution of the radial Schrodinger equation gives what the radial
wave function that depends on a new quantum number, N.

n=1 2, 3...
R”f(r)z 0,1 2.n-1

Notice the new restriction on the quantum number ¢ (why?) and that that
radial wave function does not depend on the quantum number m.

The general form of the radial wave function is:

exponential decay
function:

e—r/na0

polynomial

| normalization
R, () = o

constant

All hydrogen atom wave functions decay exponentially away from the
nucleus.



Normalized Radial Functions of the Hydrogen Atom

n=1 2,3...
an(r) (=0,1 2..n-1

3/2
Ryo = 2(ij o8 Bohr radius a, = g,h?/mue?
A

= 0.0529 nm
n=>2
1 (1 3/2 i 1o 1 1 5/2 I
—r/2a, —r/2a
Ron = — | — 1—-—)e R,, = re 0
20 ﬁ[aoj ( 2ao) 21 Z\E(aoj
n=23




Plots of Radial Wave Functions
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The Energy of the Hydrogen Atom

2 2 2
h : @(r EJR(F)‘F e, & 1 _RSL(0+]) 1 R(F) =0
2ur< or or [ Arcgy ¥ 20 r?

The energy of the hydrogen atom can be derived by solving the radial
Schrédinger equation. It is given by:

4
pe 1 _ e 1 n=12 3.

________________________________________________________________________________________________

The total energy of the hydrogen atom depends only on the quantum
number N, and not on the other two quantum numbers, € and m.

NOTE that E is the total energy (kinetic + electrical potential energy)
of the hydrogen atom, not just the ‘radial energy’.



Experimental Verification of the Hydrogen-Atom Solution

One of the most powerful experimental verifications of the gquantum
mechanical description of the hydrogen atom involves the emission

spectra of hydrogen atoms. Selection rule for H-atom electronic
transitions:

| e £ e £E E
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Lyman Balmer  Paschen

>|< >l
Ultraviolet Visible Infrared

The energy levels are essentially 5

in exact agreement with the AE 3 e 1 1
discrete line spectra of atomic nny

8rs.a nZ n?
hydrogen. oo 1



energy

The Ground State Energy and the lonization Enerqgy

I

N

™~

The numerical value of the ground state energy
(13.59670 eV) is given by:

e’ 1

"3 2 =-1311.9 kJ/mol
7648,

E]_:

The Ionization energy is the energy required to
remove an electron from the ground state of an
atom.

Experimentally, the hydrogen atom ionization energy
is —1311.9 kJ/mol.

This is another powerful way the quantum
mechanical description of the hydrogen atom can be
confirmed experimentally.

-1311.9 kJ/mol
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1
- n=1 2, 3...
87,9, n2

The hydrogen atom energy levels are depicted to the
right.

Notice that the energies are all negative, and as
n increases, the energy tends to zero.

Does this make sense? ?
I

energy

n=
n=3
n=2



Lagoon Nebula using the VLT (very large telescope) in Chile




Trifid Nebula

Red: H alpha
(n=3ton=2)

Blue: scattered
light

Dark brown:
dust




Rosette Nebula using the VLT




Total Wave Functions for “Hyvdrogen-Like” Atoms
(One-Electron Systems: H, He*, Li?*, Be®*, ...)

The total wave function of the hydrogen atom is the product of the
radial wave function R(r) and the spherical harmonic Y (@, 6):

anm (r! 91 ¢) = Rné(r)YKm(gi ¢)

2,
1,

3..
2.. (n—1)
+1,

N 1,
{ =0,
m =0, +2...+L

Notice that there are three distinct qguantum numbers that characterize
the state of a hydrogen atom.

We, therefore label the total wave function with these three quantum
numbers, N, £ and M, usually in this order.

v,.,—> nh=1/=0,m=0
Wi —> N=3,(=2,m=-1



Energy

Degeneracies of the Hydrogen-Like Atom States
~ H(Z = 1), He* (Z = 2), Li2*(Z = 3), Be3*(Z = 4), ...

W30 V310 W31 W31-1 W320 W31 Waza1 VW32 Wi

—_— uet 1 e’ 1
Voo Woto Wom Worq |En(HEOM,Z :1):_85§h2 n2 :_85030 n2
The energy levels are highly degenerate because the
energy depends only on the quantum number nN.
-~ .~ n=1,2,3,...
E(z)=--#£e 1 __ze 1 £=0,1,2...(n-1)
8g,h” n 8g,3, N m=0, +1, £2...%¢

Considering all possible combinations of £ and m

consistent with N, we find that the degree of
degeneracy, (, of hydrogen atoms is:

- Y100
g=n




Complete Hydrogen Atom Wave Functions

wave functions ¥ (I, 6,9)
forn=1,2,and 3
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Probability distribution functions

V* m(r,6,0) W, (1, 6,0) resinadrd &d ¢

for n=1,2,3
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Show that the hydrogen atom wave function ¥,,, is normalized. {
bé

Show that the hydrogen atom wave function ¥,,, is orthogonal to
the ¥,,, wave function.

a

0

Wioo = ﬁ 7

3/2 ?
1 (1) —r/a, /
e

Y - 1 (1) 28, o kg



The One-Electron Wave Function

The hydrogen atom wave functions were derived by considering the
two-body (proton + electron) system as an effective “one-body” system.

Due to the large mass difference of the proton and electron, the

hydrogen atom Hamiltonian and wave functions essentially describe the

motion of the electron. Why? ?@
{:f
7
A One-Electron Wave Function is Called an Orbital

The hydrogen atom wave functions are often called orbitals, a term

frequently used in chemistry. Formally an orbital has the following
definition:

An orbital is the wave function describing a
single electron. In other words, an orbital is
a one-electron wave function.




What do Hydrogen Atom Wave Functions ‘Look’ Like?

The hydrogen atom wave functions are 3-dimensional functions of space.
In other words, associated with every point in space, is a value of that
wave function. There are many different ways to visualize wave
functions.

3D-Isosurface Plots

4 |W210|2
When a chemist thinks of a 3-D representation of a
orbital, such as a y,,, or 2p, orbital, they usually
have a 3-D isosurface plot in mind. H

Shown to the right is the isosurface plot of the
density of the v, orbital:

An isosurface plot is 3-dimensional surface of which L
the function has the same value. Thus, associated =

with each isosurface plot, should be a value of that B
surface. p =0.02 a.u.




The size of an Orbital in an Isosurface plot is Arbitrary

How ‘big’ the orbitals are when we visualize them depends on what
iIsosurface value we choose.

Due to the exponential decay
of all H-atom wave functions,
the larger the isosurface value,
the ‘smaller’ the orbital is
depicted in an isosurface plot.

4.0

| Wiool*

2.0

large isosurface.---.
value

small isosurface 1

i L | ——

value 0 05 10 15 20 25 30
e

When wave functions are plotted, the color
represents the sign of the wave function.

We will discuss complex-valued wave functions
later.




|w100|2 Isosurface plots of the densities
of ghe Nn=1, 2and 3 orbitals
? 4 )
|'//200|2 |l//210|2 2 ?
: |l//21i1|
2
|l//3oo|2 |'7”31o|2 |W31¢1|2 ?
?
|l//320|2 : |l//32ﬂ|2 |W32i2|2 ?




Spectroscopic Designation of States

What about our familiar s, p and d orbitals? There is a relation between

the quantum numbers ¢ and the s, p, d labels we give the atomic
orbitals.

t= 0 1 2 3 4 5
s p d f g h

Ignoring the quantum number M for the time being, we have:

Vis= o N=1,6=0 Was= Yy N=3,0=0
Wos= Yoo N=2,(=0 Wap= s N=3,0=1
Wop= Wy N=2,0=1 Waa= Yg N=3,0=2

Notice that we are not specifying the X, Y, Z , X°-y? etc. states yet.



Real and Directed Orbitals

In chemistry, we often speak about the s, p,, p,, p, and the five
d orbitals, d,,, d,,, d,,, d,2 and d,2 2.

Nl

How are these orbitals, that we often use to explain chemical bonding,
related to the atomic hydrogen orbitals? To illustrate this point, consider

the N = 2 states, where we would expect to have:

O ? D Ce

WZS WZ P l//2 C)y WZ Py Are they
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Equivalent?

Wooo W20 VWou1 VWoia



Consider the y,,, wave function:

3/2

1 5|1/ 23

1
Wa00 = N a, a,

There is no angular dependence, meaning that
this is a perfectly spherical function.

Indeed, the N =2, £ = 0, m = 0 wave function is

the familiar 2s orbital. B
Wo00 =W¥os

What about the y,,, wave function which is
given as:

. 5/2 /o {?7
j re "/ 4% cosg I

1
l//21o—4 /—zﬂ[ao




An isosurface plot of the ,,, wave function shown to
the right shows that this is indeed our familiar 2p,
orbital. (Here, positive is “red”, negative is “blue”.)

. 5/2 o
j re /4% o509

1
Y2p, _4\/§£a0

(Z=rcosd

What about the y,,,; wave function? Is this one of the 2p, or 2p,

orbitals? 1 1 5/2 _
( j re T/ 280 gin getid
aO

Yol = B\F

This is a complex function with both real and imaginary components,
making it a bit difficult to plot.

We know however that the square of the wave function is always
positive, so let’s try plotting this:

‘Wzm‘z “f



This means that:

5

2 1 (1) 2-rla, .2

Z2H :6472(8. j r’e” "0 sin’g
0

We will get the same result for the 21-1 orbital!

5
|l//21—1|2 - [ = j 12 3o sin2 g

Z
When we plot this we get a donut isosurface plot!
So what are all of the 2p,, 2p,, and other
orbitals we are familiar with? ,
|l//21i1|

Are they donuts?

Are they complex?



Real and Directed Orbitals are Linear Combinations of
the Complex Set We have Derived

The orbitals we use in chemistry are purely real functions that are
constructed as a linear combination of the wave functions we have

derived.
” ¥,y = (SU211+5U211)
. Y2p, =" 2(5”211 P911)

- - @
Show this for the 2p, orbital. ,;;-7
7

&
Show that the 2p, orbital as defined above is normalized. ,37



The Energies of the Real and Directed Orbitals

Do the real and directed orbitals still satisfy the Schrodinger equation
for the hydrogen atom and what are their energies?

Consider the 2p, orbital which is a linear combination of the 211

and 21-1 orbitals. ©

1
Pop, == (P211-¥211) g

iv2

Indeed, any linear combination of degenerate wave functions is also a
solution to the Schrodinger equation with the same energy.

Show this for the following linear combination: #7

SU — ASUZOO +BSU21O + CSU211




2p, orbital directed along the x axis:

_ i ( + )
W ) ox \/E Worr TWo

— 8\/127 a(:fl’z re""**(sin@e” +sinfe™)
1 1 - i

= 5r re""**[sin@ (cosg +ising+cosg—ising)]
1 1

re""** sin@ cos¢

Az a”



2p, orbital directed along the y axis:

_i( — )
WZpy |\/§ Wori = ¥Woiu

11
8iv2r a”

1 1 . . .
= re""**|sin @ (Cos @ +1iSin @ —Ccos ¢@ + i sin
GiTon o [sin & (cos ¢ $ —COS ¢ #)]

e ""**(sin @e"” —sin fe™)

11
47 &

re""** sin @ sin ¢



Is the 2p, orbital normalized?

x dr = Vo TWou )* Vo T¥ois d
JWprl/Ipr 4 I( \/E \/E ¢
1 -
B E .[ (Wzn T WZl—l) (l//211 + Vo )d t
1 . . - - -
B E -[ (W211 Vo T Vi Woru T Wos Vo T Wori Wors )jf

B % I (l//21l*l//211 + WZH*WZH* )j ¢

1
=—(1+1

5 {1+1)
=1



Any linear combination of degenerate wave functions
has the same energy.

Hy =H(Ay,,+By,+Cy,.)
I_AIA WZOO + I_AIB WZlO + I_AIC Wle
A

Hy,,+BHy,, +CHy,,
— AEZWZOO —I_ BEZWZlO —I_ CEZWle

=E,(Ay,,+By, +Cy,, )
— EZW



The Real and Directed d-Orbitals

The d-orbitals that we often use In transition metal chemistry are also
normalized linear combinations of the complex functions we have
derived.

What about the n = 3, £ = 2, m = 0 hydrogen atom orbital which is a
purely real function?

(3r cos? 6 —r?)

~—

et

712
1 j o1 /38

1
V320 = 8167 (ao

Z =1 Ccosd

So our familiar d,z orbital is shorthand for a 3z° — r? orbital.

The other d orbitals we are familiar with are linear combinations of the
remaining four M = 1 and M = £2 functions.



Linear combinations used to construct nd orbitals:

d 2 = Whoo = an(r) i(BCOS2 9_1)
N’ \ 167

1 /15 .
dnxz — ﬁ(WnZl_Fl//nZ—l): an(r) ESIHHCOSQCOS¢

Ay = %(wnm—wm): an(r>,/Esin0cos9sin¢
|

n(x _y?) \/_ (l//n22 T Yoo 2) R Z(r)” Sln > 0cos 2¢
/ . 9 .
dnxy = ﬁ (l//n22 _WnZ—Z) — an(r) @ Sin QSII'] 2¢



The familiar d-orbitals are the ‘real and directed’ d-orbitals.
Here, “positive” is blue and “negative” is yellow.




The real and directed 4f orbitals



Energy

v

Anqular Momentum of the Hydrogen Atom

The hydrogen atom energy levels are
n2-fold degenerate.

n=2, (=01 m=-10,1

g =n

_ What is different about the states
n=1/=0,m=0 If the energies are the same?

Each of the states has a different angular momentum. In other words,
these states each have different values for L? and L,.

Recall that the total hydrogen atom wave function is a product of the
radial wave function and the spherical harmonics.

Vo (1 6,0) =R, (N)Y,.(6,9)



The spherical harmonics are eigenfunctions of the L2 and L, operators:
(Y (6, 4) = h*0(L+1)-Y i (6, 9)
L,Ym (6, 9) =mm-Y,,,(6,9)

Because the L? and L, operators act only on &and ¢,

. 2 ~ .0
4 = —n? _1 g siné g + 1 9 L, =-1n—
Sind a0~ 36 sin? 9 o¢?

We know that the hydrogen atom wave functions are eigenfunctions of
the L2 and L, operators. Also, we know that each of the hydrogen atom
states has a definite square of the angular momentum and z-

component of the angular momentum.
Show this g

@
a

I



The Quantum Numbers £ and m Define the Anqular Momentum of
the Hydrogen Atom State

The quantum number ¢ defines the square of the magnitude of the
angular momentum vector of the state:

L[ =20+

The quantum number M defines the Z-component of the angular
momentum vector of the state:

L, =A2m

Because the angular momentum of the hydrogen atom is due to the
angular motion of the electron, it is often referred to as the orbital
angular momentum.

Sketch the angular momentum vectors of the
hydrogen atom in a 1s and 2p, orbitals. a



The H-Atom Quantum Numbers have Common Names

n The principle quantum number, specifies the energy of the
hydrogen atom.
e 1

E=- >
87mEya, N

n=1 2, 3...

f{ The angular momentum quantum number, (sometimes called
the azimuthal quantum number), specifies the magnitude of the
orbital angular momentum of the state.

" =2+ r=012..(n-1)

M The magnetic momentum quantum number, specifies the
Z-component of the angular momentum

L, =72m m=0,1t1,+2.. £/



The Spatial and Nodal Structure of the Hydrogen Atom Orbitals

Motivation

When using atomic orbitals to discuss molecular bonding, the spatial
and nodal structure of the wave functions is important

For example, the overlap between orbitals on different atoms, either
constructive, destructive or zero overlap, is highly dependent upon the
nodal structure of the orbitals involved.

We will discuss this in terms of the purely real and directed orbitals.
Recall both sets of orbitals are equivalent, and can be obtained from
one another by rotation.

Nodes of the Wave Function

Recall that nodes are where the wave function changes sign and has
zero value. l

e
o/




Radial and Anqular Nodes

The number of nodes is determined by the quantum numbers n and <.
The total number of nodes is given by:

total number of nodes=n-1

So the ground state hydrogen atom wave function y/;,, has no nodes.
Check this!

The nodes can be categorized as radial and angular nodes arising from
each component of the total hydrogen atom wave function, R and Y.

number of radial nodes=nNn—-¢ -1

number of angular nodes = ¢




Anqular Nodes

The real and directed orbitals have nodal planes (or equivalent) where
the wave function changes sign. The number of angular nodes is given

by the quantum number €.

{ = 0, the ‘s’ orbitals

The s orbitals have no angular dependence, and are spherical wave
functions and therefore have no angular nodes.

{ = 1, the ‘p’ orbitals

The p orbitals have one angular plane, each.
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{ = 2, the ‘d’ orbitals

The d orbitals have two angular planes each.

A Z A Z
Ay d d,,

Xy

N

Where are the two angular nodes of the d,2 orbital? j‘;"
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Radial Nodes
Plots of the radial wave function show that the number of radial nodes is

given by:

-1

number of radial nodes=n-—-¢

Below are plotted the 1s, 2s, 3s and 4s radial wave functions.
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The radial nodes give isosurface plots of the electron density that are

layered like an onion.
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The nodes of the radial wave functions give the higher angular
momentum wave functions a similar structure.
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Sketched below are 2-D slices of the isosurface plots of the wave
function.
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Notice the alternation of the sign of the layers and the larger spatial
extent as N varies from 2 to 4.



The same layered structure exists for the 4d and 5d orbitals!
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The reason we don’t sketch or represent the inner orbitals when
discussing bonding is because it is only the outer ‘layer’ that participates
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In the interaction.
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