
 

         THERMAL  RADIATION  

Why study thermal (“blackbody”) radiation?              

      Where’s the relevance? 

                         Consider: 

1. All objects emit electromagnetic 

energy as thermal radiation, a 

fundamental (but often overlooked) 

property of matter. This kind of 

radiation has important applications 

related to radiant heating and cooling, 

industrial design, remote sensing, 

infrared thermometers, and climate 

change and the “greenhouse” effect. 

 

 

 



 

 

2.     2.  Megaton-TNT-equivalent thermonuclear 

 weapons for WW III are powered by the fusion of 

 hydrogen and lithium isotopes detonated by the 

 intense thermal radiation pressure (proportional 

 to the temperature raised to the fourth power) 

 produced by kiloton-scale nuclear fission 

 explosions using uranium or plutonium.  

 

 

 

weight  350 kg 

length 2.0 m 

width 0.5 m 

500 kiloton yield 

(about 0.6 cubic  

football fields 

of TNT) 

 

 

 

                                                                          application … 

 



Ohio-Class Ballistic Missile Submarines  

                             (“Boomers”) 

The USN operates 14 Ohio-class boomers. Each boat can launch  

24 intercontinental ballistic missiles (ICBMs). Each missile carries 

8 thermonuclear warheads to hit 8 different targets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Multi-billion-dollar international research projects are being 

funded to develop controlled thermonuclear fusion reactions 

(e.g., 1H + 3H  4He) to provide virtually unlimited energy for 

humankind.  The same nuclear fusion reaction that power the sun. 

Star power on Earth! 

National Ignition Facility (in California) 

196 high-power laser beams are used to “blast” and implode metal 

capsules containing deuterium and tritium thermonuclear fuel. 

The laser radiation vaporizes and heats the metal capsule, 

generating intense thermal radiation (called cavity or holhraum 

radiation) to compress and heat the fuel for controlled fusion. 

 

 

 

 

 

 

 

 

 

 

 

 



4.  Stellar evolution depends crucially  

on thermal radiation. Radiation pressure  

keeps large stars from collapsing under  

their own weight, until they eventually run out 

of nuclear fuel and implode or explode, 

scattering huge amounts of heavy elements 

throughout the universe.  

 

 

5.  The universe is filled with cosmic  

microwave background radiation  

(CMB), equivalent to the thermal  

radiation emitted by an object at 2.8 K.  

 

This radiation is the cooled and  

expanded remnant of the primordial  

fireball at the “big bang” birth of the  

universe, billions of years ago.  

 

CMB radiation was discovered 

when microwave antennas for  

communication applications detected  

a faint “hiss” (first thought to be  

amplifier noise) coming from all  

directions in the sky.    
 

 

6.  Max Planck’s analysis of thermal radiation won a Nobel 

Prize and helped lead to the discovery of energy quantization  and 

Planck’s constant, the foundation of quantum mechanics and 

modern physics. 



7.  Absorption and emission spectra for atoms and molecules are 

not always discrete “line” spectra from transitions between well- 

defined energy levels! Thermal radiation is quantized, but the 

differences in the energy levels are so small that thermal radiation 

appears to be continuous, illustrating a connection between 

classical and quantum physics. 

 

8.  The analysis of thermal radiation, in addition to demonstrating 

energy quantization and a failure of classical physics, illustrates an 

application of the Boltzmann distribution over energy levels, 

one of the most important laws of nature, for classical or quantum 

mechanical systems. 

 

9.  One of the first problems traditionally analyzed by students of 

quantum chemistry is the “particle in a box”. The analysis of 

thermal radiation is simpler because it does not require 

Schrodinger’s equation, quantum mechanical wave functions and 

concepts of “wave-particle duality”. Classical wave equations and 

quantization are combined by matching the wavelengths of 

electromagnetic radiation to the cavity size.  

 

10.  Thermal radiation calculations illustrate how we can use a 

“distribution function” to calculate the amount of radiation 

energy in a particular frequency or wavelength range.  

 

11. The thermodynamic analysis of thermal radiation illustrates 

the breadth of thermodynamics. It applies not only to gases, 

liquids and solids, but also to non-material systems, such as 

electromagnetic radiation consisting of a “photon gas”. 



 Thermal Radiation – Background 

Electric current passing through the tungsten 

filament of an incandescent light bulb provides a 

good example of thermal radiation from a heated 

object. The electrons flowing through the metal 

meet resistance and are scattered by the vibrating 

metal atoms. As the electric current and the heating 

increase, the filament glows red, yellow, and then 

white hot, illustrating that the average frequency of the emitted 

thermal radiation increases with temperature.   

   

“Cold” objects emit radiation too. At room-temperature, thermal 

radiation is mostly infrared, as revealed by thermal imaging 

cameras. The radiation from “ultra-cold” objects at a few degrees 

K peaks at microwave frequencies. 

  

The thermal radiation emitted by objects as a function of 

temperature and frequency was a major unsolved problem for 

classical physics. 

 

The mechanism for radiation emission and absorption seemed to 

be well understood:  accelerating electric charges emit radiation. 

Heating an object causes the negatively-charged electrons and the 

positively-charged nuclei and vibrate more strongly, emitting more 

radiation, just like microscopic antennas.  The spectrum of the 

emitted radiation can be predicted for macroscopic objects using 

Maxwell’ theory of electromagnetic radiation.  

 



What is “Thermal” Radiation?  

The radiation absorbed and emitted by a heated object usually 

depends in a complicated way on the composition of the body and 

its size, shape, surface area and reflectivity. Some materials, such 

as glass, absorb very little light. Visible light (but not all radiation) 

appears to pass right through glass. For a shiny metallic surface, 

light is reflected and not strongly absorbed at all. 

“Black” materials, such as soot or fine metal powders, absorb light 

and heat radiation almost completely and get warm.  A true 

“blackbody”, by definition, absorbs all incident radiation (at 

all frequencies) and reflects none.   

This behavior can be understood in terms of the interaction of 

electromagnetic waves with charged particles, especially electrons, 

in the material, causing the charges to oscillate and absorb energy 

from the incident radiation. For glass, visible light is absorbed very 

weakly. A complete understanding of how this works needs 

quantum mechanics, but the general idea is as follows. The 

electrons in glass are able to oscillate in response to external 

oscillating electric fields, but these charges are tightly bound to 

atoms (glass is an insulator) and can only oscillate at certain 

frequencies. For ordinary glass, none of these frequencies 

correspond to those of visible light, so there is no resonance with a 

light wave, and almost no visible light energy is absorbed. 

 In contrast, electrons in metals are free to move through the entire 

solid. This is why metals are good electronic conductors. It also 

explains why metals are shiny. Free electrons at the surface of a 

metal object oscillate in response to the electrical field of an 

incoming light wave and then re-radiate the wave. The radiation 

from the oscillating electrons is the reflected light. Little of the 

incoming radiant energy is absorbed. Most of it is reflected.  



Soot (tiny particles of graphite or related carbonaceous materials), 

like metals, also conduct electric current, though less efficiently. 

Fee electrons move through soot particles, but have short mean 

free paths because of the small particle sizes, and pores and 

crevices. When soot electrons hit an obstruction, they cause 

vibrations of the atoms and release energy as heat (thermal motion 

on the atomic scale). Soot particles and other powders are therefore 

very good at absorbing radiation and converting it to heat.  

 

Absorption and Emission of Radiation  

Heated bodies radiate by processes analogous to absorption, but 

operating in reverse. Added heat causes the soot lattice to vibrate 

more vigorously, giving more energy to the electrons. The 

accelerating electrons convert kinetic energy to electromagnetic 

radiation, just like electrons in a transmitting antenna. Electrons in 

metals have very long mean free paths. Because they are less 

sensitive to lattice vibrations, they are less effective in emitting 

radiation. So good absorbers of radiation are also good emitters.  

At sufficiently high temperatures, all objects become good 

radiators. Different material heated until they glow red-hot in a fire 

look much more similar than they do at room temperature. For a 

metal, this is a result of the shorter mean free path of the electrons 

caused by interference from the more strongly vibrating lattice.  

Emissivity  e(v,T )  

The emissivity of an object,  e(v,T)dv , is defined as the amount 

of radiation energy emitted per unit area per unit time at 

frequencies in the range from v to v + dv. The emissivity of a 

blackbody at a given frequency depends only on the 

temperature, and is completely independent of its chemical 

composition.  



This important point can be demonstrated by considering a cavity 

in material A (e.g., brick) connected by a small hole with a cavity 

in a second material B (e.g., copper). At thermal equilibrium, the 

amount of radiation leaving A and entering B must equal the 

amount of radiation leaving B and entering A at all frequencies, 

eA(v,T) =  eB(v,T) = e(v,T), otherwise one part of an isolated system 

at equilibrium would spontaneously cool and another part would 

spontaneously heat up. The transfer of heat from one body to 

another at the same temperature would violate the Second Law of 

thermodynamics, and has never been observed. 

                                       Material A                         Material B 

 

 

 

 

 

Reflectivity r(v,T)    What about objects that are not black, such as 

“graybodies”? For unit area of material A in thermal equilibrium 

with unit area of material B behaving as a blackbody, the total 

radiation e(v,T)dv emitted by the black wall is incident on A. Of 

this radiation, the amount rA(v,T)eT(v,T)dv is reflected, where the 

fraction rA(v,T) is defined as the reflectivity of A at frequency v. At 

equilibrium, the energy [1  rA(v,T)]e(v,T)dv absorbed by A must 

equal the amount eA(v,T)dv radiated by A, otherwise the Second 

Law would be violated. And this relation between the emissivity 

and the reflectivity must hold over any frequency interval    

  eA(v,T)  =  [1  rA(v,T)]e(v,T) 

This general relation between reflectivity and emissivity is known 

as Kirchoff’s Law. 



Measuring Thermal Radiation Spectra  

Any object emits electromagnetic radiation. The intensity and 

frequency distribution of the radiation depend in a complicated 

way on the structure, composition and reflectivity of the body. 

Drastic simplification is obtained for objects which are perfect 

absorbers (“black bodies”) and therefore the best possible emitters.  

An excellent approximation to a blackbody can be constructed by 

drilling a small hole in the wall of a hollow object (hohlraum). 

Radiation entering the hole from outside is scattered around inside 

and eventually absorbed. None of the incident radiation is reflected 

back through the hole, so the hole behaves as a perfect blackbody.  

At thermal equilibrium, from Second Law considerations given 

above, a small hole in wall of a hollow object must also be a 

perfect blackbody radiation emitter, at all frequencies.  

Experiments indicate that the intensity of blackbody radiation 

emitted at any frequency depends only on the temperature, and is 

independent of the composition of the walls, as noted above, and 

also independent of the size or shape of the internal cavity. 

At low frequencies, the blackbody emissivity e(T,v) is proportional 

to v2, a parabolic frequency dependence, predicted using classical 

physics and Maxwell’s laws of electromagnetic radiation .  

But at increasing frequencies, measured emissivities fall well 

below the initial parabola v2, peak at vmax, then decay quite rapidly 

– almost exponentially – to zero as the frequency v increases. 

The measured spectrum of thermal radiation could not be 

explained using classical physics. 

 



Stefan’s Law 

What happens to the spectrum of thermal radiation if the 

temperature is changed? 

Stefan's Law  The total energy radiated per unit area per 

unit time from a black surface at temperature T is 

              e(v,T)dv  =   σT4 

Stefan’s constant  σ  is 5.67051 × 10–8 J s–1 m–2 K–4. Typical units 

of e(v,T)dv are Joules per second per square meter (watts per 

square meter). At room temperature ( 300 K), one square meter of 

a black surface has a radiant power of about 460 watts. This power 

increases very steeply with increasing temperature, reaching 60 

megawatts at 5700 K, the temperature of the surface of the sun.   
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This graph plots the emissivity e(v,T ) (energy emitted per unit 

surface area per unit time per unit frequency range) as a 

function of frequency. For a cavity with a small hole, radiation 

inside the cavity is pumped out at speed of light, c (2.997924  108 

m s1). When allowance is made for the fact that an opening of unit 

area is effectively less than unit area for radiation coming in at an 

angle, and half the energy is in waves moving in directions away 

from the hole, the actual rate of emission of energy through a hole 

of unit area is equal to c/4 times the energy density (i.e., energy per 

unit volume) in the cavity.  

The blue curve in the graph above is for 300 K and the red curve is 

for 600 K. To find the radiation energy density (T, v) in a given 

frequency range, we multiply the emissivity e(v,T ) by 4/c.  

                    (T, v)  =  (4/c) e(v,T ) 



Similar calculations are used in the kinetic theory of gases to 

calculate the leak rate of molecules through small holes (effusion).  

The upward shift in vmax with T is familiar. When an iron object is 

heated in a fire, the first visible radiation (at around 900 K) is deep 

red, corresponding to the lowest frequency visible light. Further 

increase in T causes the color to change to orange, yellow, and then 

white at a very high temperature, indicating that the intensity of the 

emitted light is roughly identical at of all the visible frequencies.  

The change in vmax is proportional to the absolute temperature: 

           vmax  T           Wein's  Displacement  Law 

The sun's surface temperature, for example, is about 5700 K. At 

that temperature, much of the energy is radiated as visible light. 

This is no accident. Evolution has adapted us to see most 

efficiently in the light most readily available. 

The shift with temperature in the frequency at which radiant power 

is a maximum is very important. For example, to harness solar 

energy in a greenhouse, the glass needs to allow the solar radiation 

in, but not let the heat radiation out. This is feasible because the 

two radiations are in very different frequency ranges:  ≈ 5700 K for 

average solar radiation and ≈ 300 K for infrared radiation. Many 

materials are transparent to light but opaque to infrared radiation. 

This is only possible because in vmax varies with temperature.  

Understanding BlackBody Radiation: Thermodynamics 

and the Photon Gas Analogy  

Experimental investigations of the radiation intensity as a function 

of temperature and frequency gave well-defined reproducible 

results, independent of the wall material of the oven, etc. For a 

small hole, the radiation emitted is representative of the radiation 

bouncing around inside the box, in equilibrium with the wall.  



VT T

p

V

S


























The general shape of the function e(T,v) resembles the kinetic 

energy distribution in a gas in thermal equilibrium, as analyzed by 

Maxwell and Boltzmann. But in contrast to the molecules in a gas, 

the different wavelengths of radiation do not collide with each 

other in the middle of the oven. Nevertheless, energy can shift 

from one mode to another by being absorbed by a wall, converted 

to heat, and then re-emitted at another frequency, allowing the 

different frequencies of radiation inside the oven to rapidly reach 

thermal equilibrium.  

The speed of light, though relatively large, is not infinite. At any 

given instant, a quantity of radiation emitted by the walls of a 

cavity will be “in transit”. The radiation in the cavity can be 

pictured as a “photon gas” in equilibrium with the walls.  

Thermodynamics, usually applied to material systems, can also be 

used to explore the properties of blackbody relation in equilibrium 

with the walls of a cavity. The differential expression for the 

Helmholtz function (A = U  TS, where U is the internal energy, T 

is the temperature and S the entropy) is 

               dA  =  SdT    pdV 

Because  S = (A/T)V ,  p = (A/V)T  and  (2A/VT)  =  

(2A/TV),  thermodynamics tells us that  

 

 

Expanding the size of a cavity isothermally creates a larger volume 

of the radiation gas at the same temperature, so the entropy must 

increase. It follows that the radiation exerts a pressure on the 

walls of the cavity, which increases with temperature. 
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To develop the thermodynamic equation of state for thermal 

radiation, consider a cubic box of unit volume filled with radiation. 

Let N(v) be the number of photons of frequency v at equilibrium. 

The momentum of each photon is hv/c. In this case the pressure 

exerted by radiation on the walls of the box is caused by collisions 

of the photons. Each collision imparts the momentum change hv/c 

(initial)  [hv/c (final)] = 2hv/c to a wall upon reflection. Because 

the motion of the photons is completely random, 1/6 of the photons 

are moving toward a given wall at any instant. The number of 

photons colliding per unit area of wall in one second is therefore 

N(v)c/6. The pressure is the total momentum imparted to the wall 

per unit time 
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The energy density a frequency v is u(v) = U(v)/V = N(v)hv, so we 

arrive at the result   

 

Integrating over all frequencies  
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shows that the radiation pressure equals one third of the energy 

density.  

                                                              thermal radiation pressure 

(Interestingly, a similar derivation for an ideal gas with average 

kinetic energy 3kT/2 = mv2/2 per molecule gives 

        p = NkT/V = 2u/3        ideal gas pressure   

Applying the thermodynamic equation of state  dU = TdS   pdV 
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to blackbody radiation gives  
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Rewriting this result 
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and integrating gives 

u(T) = T4 

p(T) = T4/3 

The constant  is 7.56  1016 J m3 K4. At room temperature, the 

pressure exerted by blackbody radiation is negligible, about 

0.000006 Pa or 10 trillionths of an atmosphere. In nuclear 

explosions and the interior of some stars (T  107 K), however, the 

radiation pressure can reach hundreds of millions of atmospheres! 

Combining the identity (S/V)T = (p/T)V and p(T) = T4/3 gives 

S = 4VT3/3 for the entropy of blackbody radiation. For a 

reversible adiabatic expansion (constant entropy), the volume V 

increases, so the temperature drops and the radiation cools. The 

expansion of the universe, as mentioned above, has cooled the 

radiation leftover from the Big Bang to about 2.8 K. 

 

For an ideal gas at a density of N molecules per unit volume 

traveling at average speed v, the number of molecules colliding per 



unit area of wall per unit time is Nv/4. Applying this result to a 

photon gas traveling at speed c provides the relation 

e(T,v)dv  =  (c/4)(v,T)dv 

between the radiant energy emitted per unit time per unit surface 

area and the density of radiant energy in the frequency interval 

from v to v + dv. Stefan’s constant σ for the law giving the total 

blackbody radiation energy radiated emitted per unit time per unit 

surface area e(v,T)dv  =  σT4 on and the equation u(T) = T 4 for 

the radiation energy  per unit volume are therefore related by  = 

4σ/c. 

 

Counting the Degrees of Freedom  

To make any quantitative progress in analyzing blackbody 

radiation, a clear picture of the number of degrees of freedom is 

required:  how many oscillators have frequencies in a given energy 

range? These oscillations are standing electromagnetic waves. The 

waves are contained in the oven because the electric field intensity 

drops rapidly to zero on approaching and going into the walls. 

Inside the walls electric energy is rapidly dissipated by currents or 

polarization. In fact, the boundary condition at the walls is 

analogous to the boundary condition for standing waves on an 

oscillating string fixed at both ends where the wave amplitude is 

zero.  

Consider the frequency distribution function of the possible 

different modes of vibration (that is, the different degrees of 

freedom) of a string stretched between two points a distance a 

apart. Possible values of the wavelength are 

   λ = 2a, 2a/2, 2a/3, 2a/4, …  



so the allowed frequencies (frequency = wave speed c divided by 

wavelength λ)  

 

   v  =  c/λ  =  c/2a, c/a, 3c/2a, 2c/a, … 

 

are equally spaced and c/2a apart. The spectral density, defined as 

the number of modes between v and v + Δv, is N(v)Δv for small 

values of Δv compared with the range of frequencies in the system, 

but large compared with the spacing between successive allowed 

frequencies. In this one-dimensional case, N(v) is a constant equal 

to 2a/c.  

The amplitude of oscillation as a function of time for the standing 

waves has the form 

   E(x,t)  =  A sin(2πx/λ) sin(2πvt)  

which is more conveniently written as 

           E(x,t)  =  A sin(kλ) sin(2ωt) 

where          

                                 ω  =  2πv 

                  k  =  2π/λ 
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a = 3

a = 2

a = 5

cavity width a 

 

so  

                    ω = ck 

Here ω = 2v is the radial frequency, the number of radians per 

second (rather than cycles per second) the time dependent 

component of the wave moves through. k is called the wave 

number because it counts the radians of spatial change in unit 

length (k = ω/c = 2v/v = 2/).  



Now the more complicated problem of three-dimensional standing 

electromagnetic waves in a cubical oven. The first guess, just 

generalizing the expression above, would be 

          E(x, y, z, t)  =  E0 sin(kxx) sin(kyy) sin(kzz) sin(ωt)  

This will clearly satisfy the wave equation  
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if 

    ω2 =  c2(kx
2 + ky

2 + kz
2) 

The electric field will be zero at all the walls (required for standing 

waves) if we choose the k's appropriately, that is:  sinkxa = 0, etc.  

For standing electromagnetic waves in a cavity, just as for 

propagating waves, the electric field is perpendicular to the 

direction in which the wave is moving. In other words, it is a 

transverse wave. The fact that there are two independent 

polarizations (e.g., x and y polarization for a wave moving in the z 

direction) which we must remember to count when we find the 

total number of degrees of freedom. 

It remains to find the allowed frequencies of vibration - the normal 

modes - of the electromagnetic radiation in the oven. The first step 

is to find the allowed values of the wave numbers kx, ky and kz. 

These are fixed by the boundary conditions sinkxa = 0, etc., so 

kx  = /a, 2/a, 3/a, … 

ky  = /a, 2/a, 3/a, … 

kz  = /a, 2/a, 3/a, … 



so the wave vector k

 is 
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Where l, m and n are positive integers, such as (1, 1, 1) or (5, 13, 

4). In other words, each possible standing electromagnetic wave in 

the cavity corresponds to a point in the (kx, ky, kz) space labeled by 

three positive integers. These are the intersection points of a cubic 

lattice in the integer space kx > 0, ky > 0, kz > 0.  

Each such point can be associated with a lattice element cube of 

volume 3/a3 for which the point in question is the furthest corner 

of the cube from the k-space origin. The little cubes stack together 

to fill all that part of k-space having kx > 0, ky > 0 and kz > 0.  

The frequency of vibration of the wave having wave numbers (kx, 

ky, kz) is 

         2222
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Recall that the experimental measurement of black body radiation 

from the oven detects the intensity of radiation in a given 

frequency range. It does not tell us the wave numbers of the 

radiating modes. To compare with these experimental results, we 

must choose a small frequency range and find how many possible 

sets of wave numbers correspond to modes of vibration having 

frequencies within that range.  

Notice that a fixed value of the frequency corresponds to a surface 

in k-space, in this case a sphere of radius /c. 
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The number of possible modes of radiation in the oven having 

frequencies in the range  to  +  is therefore equal to the 

number of lattice-point wave number values (kx, ky, kz) between 

two spherical surfaces centered at the origin and having radii 

between /c and ( + )/c, and only counting in the octant 

corresponding to kx > 0, ky > 0 and kz > 0. 

Now, as argued above, each lattice point can be associated with a 

small cube of volume 3/a3. Assuming we choose  >> a, there 

will be many of these small cubes between the spherical surfaces, 

and the total number of lattice points between the spheres in the 

positive octant will be just the volume of the space between the 

spheres divided by the volume of one of these cubes.  

So the number of possible modes of radiation in the oven having 

frequencies in the range  to  +  is  
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Putting this in terms of the frequency v in cycles per second,  = 

2v and inserting an extra factor of two for the two independent 

polarizations of the wave (discussed above) we find the 

distribution function for the number of modes in frequency range v 

to v + dv is given by 
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where V = a3 is the volume of the oven cavity.  

 



Equipartition of Energy  

The point of the rather tedious calculation above (finding how 

many different modes of vibration, or degrees of freedom, there are 

in an oven full of radiation) was to construct an argument parallel 

to that applied successfully to understand the properties of gases. 

The first conclusion would be that there is kT of energy, on 

average in each wave mode (not ½kT, because the standing wave is 

like an oscillator with both kinetic and potential energy).  

Using kT per mode, the radiant energy per unit volume (the energy 

density) between frequencies v and v + dv density predicted by 

classical physics is  
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This result is known as the Rayleigh-Jeans Law. 

The Rayleigh-Jeans expression for the emissivity is e(T,v)dv = 

(2v2kT/c2)dv. For low frequencies (v << kT/h or  hv/kT << 1), this 

is exactly what is observed. The amount of radiation shining out of 

the oven at low frequencies is correctly predicted by counting 

modes, as above, and allocating kT of energy to each mode.  



v/s
1

0 1e+13 2e+13 3e+13 4e+13 5e+13

e(
T

, v
)/

(J
 m

-2
)

0

1e-18

2e-18

3e-18

4e-18

5e-18

T = 600 K

T = 300 K

(Rayleigh-Jeans Law)

classical predictions

 

The Ultraviolet Catastrophe  

The problem is that as we go to higher frequencies, there are more 

and more possible degrees of freedom. According to classical 

physics, the oven should be radiating huge amounts of energy in 

the blue and ultraviolet. But it isn't. For this system, the theorem of 

equipartition of energy doesn’t appear to be working! 

The graph shows the prediction of radiation intensity from the 

classical equipartition compared (dashed curves) with the 

experimental result. It is evident that the higher frequency modes 

are not getting their "fair share" kT of energy. They are getting 

“frozen out”, evidently those at really high frequencies are getting 

almost no share in the energy at all.  



It is important at this point to go back to the curves for two 

different temperatures, and ask the question:  how is the sharing of 

energy among the modes affected by raising the temperature? For 

the lowest frequencies, doubling the temperature does indeed 

double the intensity of the radiation, exactly what we expect if the 

radiation is proportional to kT, the energy in each mode. (T = 300 

K here, by the way.) We can also see, though, that at the higher 

temperature, the observed radiation intensity stays closer to the 

classical prediction as we go to higher frequencies. This means the 

higher modes are less locked out of the energy sharing when we go 

to higher temperatures. For any given temperature, though, if we 

go to high enough frequencies, the intensity drops exponentially 

with further increase in frequency.  

 

Planck's Suggestion  

Planck suggested that the blackbody radiation curves could be 

understood if the oscillators in the walls of the oven were 

somehow constrained so that they could not emit arbitrary amounts 

of radiation, as Maxwell's equations would predict, but could only 

emit it in chunks - called quanta - of definite magnitudes. For the 

higher frequencies, he suggested, the radiation had to be emitted in 

bigger chunks. This would explain the lack of radiation in the oven 

at these higher frequencies - assuming the oscillators in the walls 

had on average energy kT, it would be very unlikely that one 

oscillating charge would by random excitation have an energy of, 

say, 5kT, so if its frequency of oscillation were high enough, it 

would almost never have enough energy to emit one quantum, so 

by Planck's theory, it would not emit any radiation at all and be 

“frozen” out. On the other hand, if the temperature were increased 

fivefold, it would often have enough energy to emit a quantum. 

 



Given that bigger chunks of energy are emitted at the higher 

frequencies, just how does the size of a chunk depend on the 

frequency of the radiation? The clue is given by the Wein 

displacement formula vmax  T. vmax is the frequency at which the 

curve “turns over” and begins to descend, moving far from the 

classically predicted parabola, which of course continues upwards. 

Thus, doubling the temperature doubles the frequency range over 

which the curve approximates the classically predicted parabola. 

(If we stiffen the requirements for approximating the classical 

curve, for example by requiring it to be within 5%, say, then we 

can see from the graph of low energy modes above that doubling 

the temperature still doubles the range over which the curves 

remain close.  

In other words, doubling the temperature apparently doubles the 

frequency range in which oscillators get approximately their full 

share kT of thermal energy. But doubling the temperature doubles 

the size of a chunk of energy that can be easily moved. This leads 

to the conclusion that if two oscillators have frequencies v and 2v, 

the one at 2v must emit energy in quanta just twice the size of 

those emitted by the one at v. The size of the energy quantum 

therefore depends linearly on the frequency 

                                             E = hv 

where h is Planck's constant (6.62608  1034 J s).  

The way this evolved historically was that at first the higher 

frequency part of the black body radiation curve was mapped out 

by experimentalists in Berlin, and Wien showed that it was well 

approximated by the formula 

    eW(v)dv    v3eAvdv 

with A a constant. This was reminiscent of the Maxwell 

distribution for gas molecules, but with v3 in place of v2. It soon 



became evident, though, that the formula was not accurate at low 

frequencies, where in fact it appeared that the distribution went as 

v2, as discussed above. Planck then wrote down a formula having 

the right behavior for both high and low frequencies 
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He did not at first have any theoretical justification for this 

formula, but it was a very accurate fit to some very precise 

experiments.  

It is easy to see how Wien's Displacement Law follows from this 

formula. The maximum radiation per unit frequency range is at the 

frequency v for which the function v3/(ehv/kT1) is a maximum. 

Solving d𝜌(T, v)/dT = 0 numerically to locate the maximum gives 

hvmax/kT = 2.82. This is the frequency range at which the radiation 

per unit frequency range is a maximum. 

The blackbody radiation distribution law can also be written in 

terms of wavelengths. Using c = v and the expression for 𝜌(T, 

v)dv gives 

5 /

8
( , )d d

( 1)hc kT

hc
T

e 


   





 

Solving d𝜌(T, )/dT = 0 numerically to locate the maximum and 

gives the wavelength at which the radiation per unit wavelength 

range is maximum:  hc/maxkT = 4.96. Because the wavelength and 

frequency are not linearly related, but in fact are inversely related, 

these two maxima are not at the same frequency or wavelength.  
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Interpreting Planck's Radiation Formula  

Factoring out N(v) = (8v2/c3), the number of modes of oscillation 

in the frequency range dv, Planck's formula tells us that the 

average energy per mode is 

1/ kThve

hv
 

At low frequencies, hv << kT and ehv/kT  1 + (hv/kT), this gives kT 

per mode, in agreement with the predictions of classical physics. 

The formula follows if we assume the oscillator can only have 

discrete (not continuous) quanta of energy: 0, hv, 2hv, 3hv, …  



If we further assume, using Boltzmann’s distribution law, that the 

probability of an oscillator at temperature T having energy E is 

proportional to eE/kT, then the probabilities of having energy 0, hv, 

2hv, … are proportional to 1, ehv/kT , e2hv/kT, …. The actual 

probabilities are given by dividing these relative probabilities by 

the sum of all of them. They are the terms of a geometric series 

1  +  ehv/kT  +  e2hv/kT  + …  =   1/(1  ehv/kT)  

and their sum is 1/(1  ehv/kT). So, to find the average energy in the 

oscillator, we take the possible energies 0, hv, 2hv, 3hv, … and 

weight each of them with their probability of occurring, that is, we 

must find 0 + hvehv/kT +2hve2hv/kT + …  and divide the sum by 1/(1 

 ehv/kT). (Done in detail in Tutorial  #1!) Planck gave a more 

complete and elegant discussion, applying Boltzmann's ideas about 

entropy to simple harmonic oscillators having only certain energies 

allowed. In fact, he effectively derived the Boltzmann distribution 

for this system. 

 

A note on blackbody spectrum calculations 

e(T, v) and e(T, ) are distribution functions. They give the 

radiation energy emitted per unit area per unit time per unit 

frequency or wavelength range. The total radiation emitted per unit 

area per unit time is calculated by integration over all possible 

frequencies 
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where  is Stefan’s constant. 

 



How is the integration performed? It is convenient to define the 

dimensionless variable y = hv/kT. Changing to this variable gives 
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A table of definite integrals may be used to evaluate 
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It follows that  
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where   = 25k4/15h3c2 = 5.67051  108 J s1 m2 K4 is Stefan’s 

constant.   

For some applications it is useful to know the amount of radiation 

emitted in a frequency range v1 to v2  
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which can be interpreted as the “area” under the e(T, v) curve from 

v1 to v2. The radiation emitted in the corresponding wavelength 

range from 1 to 2  
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is simply the equivalent “area” under the e(T, ) curve from 1 to 

2. To evaluate this area, we calculate y1 = hv1/kT =  hc/1kT and y2 

= hv2/kT =  hc/2kT and integrate over this range.  
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Analytic expressions for the integration of y3/(ey  1) are not 

available, so we must resort to numerical methods, such as the 

trapezoid rule or Simpon’s rule. The area under the y3/(ey  1) 

curve divided by the total area 4/15 gives the fraction of the total 

energy emitted: (T4) and therefore 
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To use the trapezoid rule to estimate the area under the y3/(ey  1) 

curve from y1 to y2, the interval in question is divided into N 

rectangles of width y =  (y1  y2)/N and heights (y1+y/2)3/(ey1+y/2 

 1), (y1+3y/2)3/(ey1+3y/2  1), (y1+5y/2)3/(ey1+5y/2  1), …, 

(y1+(2N1)y/2)3/(ey1+(2N1)y/2  1).   

Measuring the energy emitted by an object in a certain spectral 

range, for example, allows the temperature of the object to be 

estimated. In the design of electric light bulbs, it is important to 

maximize the energy emitted in the visible portion of the spectrum. 


