
Math Review

e.g., Newton’s 2nd Law

This is a vector equation. It is also a differential equation that often

contains partial derivatives. (More on these shortly.)

Before starting on quantum mechanics, it’s helpful to review a few basic

mathematical tools, such as:

i. vectors

ii. partial derivatives

iii. differential equations

Why are these topics important?

They are used in both classical and quantum equations

of motion
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Quick Review of Vectors

Vectors have both magnitude and direction. Vector

quantities include the velocity or acceleration of a

particle or the force acting on it.
x
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In contrast, scalar quantities have only magnitude.

In these notes, vectors will sometimes be represented in bold

F, a, etc. (or by an arrow or hat on top)

Unit Vectors

Vectors are most often represented in terms of unit vectors lying along

the axes of the coordinate system that have unit length.
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ĵ , ,x y zF F F are scalars (magnitude only)

ˆˆ ˆ, ,i j k are Cartesian unit vectors
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Dot Product (or Scalar Product)

Consider two vectors given by:

The dot product of and is defined as:

Note that a dot product is not a vector, but a scalar. For this

reason, the dot product is sometimes called the scalar product.

The dot product loosely gives an indication of

the ‘overlap’ between two vectors.

The dot product between unit vectors

is zero because they are orthogonal

(at right angles) to one another.
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Magnitude (or Norm) of a Vector

The magnitude (or norm) of a vector is defined as:

In 3 dimensions it is:

In n dimensions it is:
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Review of Partial Derivatives

Partial derivatives occur when we discuss functions of more than one

variable.
e.g. f(x,y,z) or P(n,V,T)

A partial derivative can be defined as the slope of a function with respect

to one of the variables, with all other variables held constant.

symbol for partial 

derivative

Consider the function pressure, P(n,V,T)

Experimentally we may wish to vary only one

of the variables, say temperature, to produce a

change that is independent of the other

variables (which are fixed).
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Implies y and z are held 

constant when one 

differentiates with respect 

to x.  (subscripts are 

usually omitted)

e.g. 2 3 2( , , ) 2f x y z x y xz

It is important to realize that partial derivatives are themselves

functions! Thus, they can be differentiated again.

Review of Partial Derivatives
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Mixed partial derivatives:

In general, the order does not matter, so we have

A total derivative of a function can be obtained from its partial

derivatives as:

df is called the total differential of the function f and can be thought of

as ‘what is the effect on f allowing all the variables to change’
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Example. Consider the volume of a cylinder that is a function of

the cylinder height and radius.

r

h

How does the volume change if the height is

changed but the radius is held constant?

Dh

The procedure is:

This result could probably be obtained by

inspection. But for more complicated functions, it

is not as obvious and partial derivatives are

essential.
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r

h

How does the volume change with as the radius

changes with the height fixed?

In the language of differentials, an infinitesimal change in r given

by dr results in the infinitesimal volume change dV = 2hrdr.

This is given by the partial derivative:

The volume change is 2rh multiplied by the change in the radius:
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r

h

Any change in either r or h will result in a

change in the volume. This is given by the

total differential:
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The Gradient of a function is a Vector

Example: What is the gradient of the following

function?

2 3 2( , , ) 2f x y z x y xz

The gradient operator  is often used in science and engineering.

It gives the “slope” of a function. The negative gradient of a

potential energy, for example, gives a force.

In three dimensions, the gradient operator is defined as:
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The gradient of this function 

gives the slope.

Consider the two dimensional function:
2 3( , ) 2 3f x y x y

f(x,y) is a scalar function. Associated with each point in (x,y)
space, the function f gives a scalar.

f(x,y), the gradient of f is a vector function. Associated with each

point in (x,y) space is a vector.

f(x,y)
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The gradient,, is often used in science and engineering since it gives the

‘slope’ of a multidimensional function.

2 3( , ) 2 3f x y x y

For example, if f(x,y) is a function that describes a hill, the negative

gradient of f(x,y) (downhill slope) will tell us in what direction a ball will roll if

placed at the point (x,y) on the surface f(x,y).
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What is the gradient of the function f(x,y) at the point (1,2)?

Consider the same function:

2 3( , ) 2 3f x y x y
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Application:  Optimization (Finding the Maximum) Value

of Multivariable Functions by the

Method of Steepest Ascent (or Descent)



The Laplacian Operator

One operator we will use frequently is the Laplacian operator. It is defined

in Cartesian coordinates (x, y, z) as:

The Laplacian operator,2, is often pronounced ‘del squared’ and it returns

a scalar quantity, not a vector like the gradient operator.
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Differential Equations

Definition: A Differential Equation is an equation containing a function

of one or more variables, its n-th derivatives, and independent variables.

( )
( )

df x
af x

dx

unknown function, f(x)

derivative of 

unknown function

Example:

Differential equations are used in many areas of science and

engineering, especially mathematics, physics and chemistry.

They frequently occur in both classical mechanics and quantum

mechanics.



2

2
( )d x t

m
dt

Consider the equation of motion of a body under the influence of

gravity in one dimension:

x xF ma

2

2
( )x td

mg m
dt

+x

Consider the first-order rate equation where the rate of a chemical

reaction is dependent on the concentration of one species:

[ ]
[ ]

d
k

dt

A
A

using F = mg



The Solution of a Differential Equation is a Function

The solution of a differential equation is a function rather than a number.

Solutions of differential equations are the functions, which do not contain

derivatives, that satisfy the differential equation.

2

2
( )d x t

mg m
dt

Here the solution is the function x(t)
the ‘trajectory’ of the ball.

[ ]
[ ]

d A
k A

dt

Here the solution is the concentration

[A] as a function of time [A](t)

[ ]( ) [ ] kt
oA t A e

The general solutions often contain unknown constants. When

describing a physical system, the unknown constants are determined by

initial conditions or boundary conditions.
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( ) ( )
d
f x af x

dx

( ) axf x e

( ) 0f x
trivial solution - mathematically

valid, but typically has little

physical meaning.

Differential equations will often have more than one solution. Many that

we will encounter will have a whole family of solutions (infinite in

number!).

Differential Equations Often Have Many Valid Solutions

Confirm that both are valid solutions to the differential equation

(also a constant times eax)
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Terminology of Differential equations

The order of a DE is given by the highest derivative in the equation.

For example, two and one, respectively, for:

2

2
( )d x t

g
dt

[ ]
[ ]

d A
k A

dt

Linear Differential Equations

A special kind of differential equation that we will use is the linear

differential equation. A linear DE is simply one that can be put in the

following form:

2 ( )

1 2 2 ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ... ( ) ( )
n

o n n
df x d f x d f x

A x f x A x A x A x g x
dx dx dx

An(x)’s and g(x) are functions of x and some can be constants or zero.

Notice that the function f and its derivatives are not squared, cubed, etc.,

but only appear raised to the power one (i.e., “linear” in f)



Complex Numbers

Complex numbers frequently occur in quantum mechanics and in many

branches of mathematics.

or

They naturally arise in the quadratic equation,

solutions of higher order polynomials, and solutions

to differential equations.
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Complex numbers involve the imaginary quantity “i” defined as:

1i 2 1i

We generally write complex numbers as:

z x yi

x is the REAL component and y is the IMAGINARY component of the

complex number.

Re( )x z Im( )y z



e.g.

Addition/Subtraction of Complex Numbers

Simply add/subtract the Re and Im parts separately.

(2+4i) + (6  3i) 

z = 2 + 9i

z = 3.73i

= 8 + i

z = 1.3 + 5i

= (2+6) + (4  3)i



z1= 2  i z2=  3 + 2i

z1 · z2= (2  i)( 3 + 2i)

=  6 + 3i +4i  2i2

=  6 + 3i +4i  2( 1)

=  4 + 7i

Multiplication of Complex Numbers

When we multiply two complex numbers, we simply multiply them like

binomials and use the fact that i2 =  1.



1 2z i 2 3 2z i

1
1 2

2
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( 3 2 )

i
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Division of Complex Numbers

Division of complex numbers is simple:

We can simply leave it as:



Complex Conjugate of Complex Numbers

The complex conjugate is used frequently in quantum mechanics.

The complex conjugate of a complex number is obtained by

replacing all instances of i with –i.

The short-hand notation the complex conjugate of a number z is z*.

For example if:

z = x + yi

z* = x  yi
the complex conjugate is:

e.g. z = 2 – 3i z* = 2 + 3i

What is the complex conjugate of z = 54?



A number multiplied by its complex conjugate is ALWAYS a real, positive

number!

z · z*  = A A is real and positive

z · z*  = x2 + y2

z = 2 – 3i

z · z*  = (2  3i)(2+3i) = (2)2 + ( 3)2

= 4 + 6i – 6i – 9i2

= 4 – (9)(–1) = 13

e.g.

We’ll see that z·z* is related to the ‘magnitude’ of a complex number.



In the division of complex numbers, we can use the complex conjugate

to simplify our answers by multiplying the numerator and denominator by

the complex conjugate of the denominator.
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Complex numbers can be represented as a point in a 2-D coordinate

system.

By convention, the real part is plotted along the horizontal (x) axis and

the imaginary part of z is plotted along the y-axis.

The above figure is a representation of the complex-plane.

Notice that the above representation of z is that of a vector, with a

magnitude given by:

Im(z)

Re(z)

(x,y) 

z = (x + yi)

(0,0) 
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It is often very useful to express the complex number in polar form.

Im(z)

Re(z)

(0,0) 

r



2 2( )r z x y

z

 is the angle z makes with the real (x) axis.  is often called the phase

factor.

It can be shown that we can alternatively express a complex number in

what is termed exponential form:
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A very useful relationship linking the two representations of complex

numbers is Euler’s formula:

cos sinie i

(       )z x yi

cos sinie iGiven

2 ?iea) what is

?ieb) what is
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We will often be working with the exponential form of complex numbers.
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sin(2 )
d
i x

dx

Differentiation and Integration with complex numbers

Calculus of functions with ‘i’ is simple - we just treat ‘i’ as a constant.

ixd
x e

dx

Complex Functions

Many of the functions we will work with will contain complex numbers.

( ) ixf x x ee.g.

One just has to treat ‘i’ as a constant and use the algebra rules

presented above.

a) b)

c)

 
dx

xd i
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Some Differential Equations Have Oscillatory Solutions

For a possible solution of the ordinary differential equation

try

Then

and 

Substituting y(x) = eαx back in the original differential equation:

So         α2 + 1 = 0

xxy e)( 



Possible values of eαx are 

eix and   eix

This gives solutions to the differential equation of the form 

(c1 and c2 are constants)

Oscillatory ??? Yes, using
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gives

and 

Standing 

Waves

c3cos(x)

c4sin(x)
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Traveling (Time-Dependent) Waves

x/cm
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y(
x
, 
t)
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              v = 0.1 cm s
1

t = 0              t =  1 s              t = 2 s            

sine wave moving to the right at speed v

y(x, t) = sin[2x vt)]



It obeys the one-dimensional wave equation

Wave equation in three dimensions:

The wave velocity is v.
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Complex functions are important in quantum mechanics.  Examples:

a) Solving the time-dependent Schrodinger equation gives

wave function

probability distribution function

b)  The 2p orbitals for the hydrogen atom are
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