
Classical mechanics adequately describes the macroscopic world.

For example. hockey pucks, cars, satellites

It fails miserably for microscopic systems, such as electrons.

Then why study classical mechanics in a quantum

chemistry course?

Quantum theory is much more understandable based on knowledge

of older classical mechanics.

For example, many fundamental concepts and principles of quantum

mechanics are directly obtained from analogous classical ideas. In

some limiting cases, such as very small energy-level spacing,

quantum and classical descriptions are mathematically identical.

BUT … Some quantum mechanical concepts

have no classical analogues.

Classical Mechanics



a) Newton’s 2nd law forms the foundation of classical mechanics.

b) Classical equations of motion derived from classical mechanics.

For example, the “Hamiltonian operator” occurs in the famous

Schrödinger equation of quantum mechanics. The reason it is called

the Hamiltonian operator is because of its analogy to classical

mechanics.

Useful classical ideas to cover:

c) Hamilton’s formulation of classical mechanics. It turns out that

Hamilton’s formulation has useful analogs in quantum mechanics.



Mechanics

Mechanics is the analysis of the motion of objects.

Equations of motion

Differential equations that prescribe the motion of a particle or

system are called the equations of motion.

Newton’s Second Law

Equation of motion that relates the external force on a body to the

change in motion it causes the body.

external or applied

force on a body.

Acceleration of the

particle caused by

the application of the

force.

mass of the body or

particle.
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are vectors with magnitude + direction.

often represented in bold type, F, a

m scalar with magnitude only.

= position vector

t = time

Dot notation for time derivatives.
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Newton’s Equation of motion

x xF ma (in one-dimension)
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If we know F, then Newton’s equation of motion can be used to solve for

x as a function of time, x(t).

The function x(t) then tells us everything we need to know about the

object’s motion in time and space.

Newton’s equation of motion is a differential equation, which can be

solved for x(t).
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Classical Linear Momentum

Recall the definition of linear momentum (as opposed to angular

momentum)

Once we know x(t), we can also specify the momentum, px(t).

In classical mechanics we can exactly specify the position and

momentum of a system.

Oddly enough, we can’t do this in quantum mechanics.

(more on this later)

in 1-Dimension:
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Classical Kinetic Energy

Recall that the classical definition of kinetic energy is given by:

We will use the symbol T for the kinetic energy.

More generally, the kinetic energy is defined in terms of the linear

momentum as:

scalar or dot-product

for one particle
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The total kinetic energy for a many particle system is given by the sum:

where the index i runs

over all of the particles.

If the kinetic energy of a system made up of one particle is given by:

The above is true whether the particles interact or not.
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Conservative Systems and Potential Energy

Many problems in chemistry and physics involve “conservative

systems” where the total energy is constant in time.

These are systems in which the potential energy, V, of a system of

particles depends only on the positions of the particles.

the potential energy of the system in Cartesians is:

The potential energy of the system depends only on the position of the particles.

example:

Consider a system of two isolated charged particles. There will be an

electrostatic interaction given by:
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Conservative Forces

The potential V is a function of 

the positions only V(x,y,z)

In a conservative system, where the potential depends only upon the

position of the particles, we have a very important relationship:

Why is this important?

Recall if we know F, then we can solve the equations of motion.

A force which satisfies the above is called a “conservative force”

‘del’ is the gradient of the

potential, V

The gradient gives the rate of change of the potential with respect to

the position of the particle.

recall:
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Gradient with more than one Particle
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What if we have a system of more than one particle, like our

system of two charged particles (where k = 1/40 )

then
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Back to Conservative Forces

For conservative systems we can derive the force from the potential

as:

Let’s examine this a little more closely from a physical/qualitative

point of view.

With our interpretation of the gradient, we are saying that with

conservative systems, the value of the force is dependent upon the

slope of the potential.
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Consider a particle in a uniform potential in the ‘x’ direction.

x

V

There will be no force on the particle due to the potential V(x),

because there is no ‘favoured’ position.

In the above example, the potential V is constant, so:

And there is no force on the particle due to the potential.
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Now consider a potential that is not constant:

x

V

In this case, by moving to smaller x, the potential will decrease. As a

result of the potential there will be a force that pushes the particle

toward a position of lower potential.

The stronger the steeper the potential, the larger the gradient and

the stronger the force.

V(x) = Ax + B
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We can show that the total energy (kinetic plus potential energy) of a

conserved system is a constant of motion or invariant in time for a

one dimensional system.

( )
0

d T V

dt

Many problems in chemistry and physics involve conservative

systems where the total energy is constant in time. Let’s define the

total energy of particle to be the sum of its kinetic and potential

energy:
E = T + V

Conservation of Total Energy



Conservative Systems - Summary

In this course we will usually be dealing with “conservative systems”

where the total energy is constant in time.

Here, the potential energy of the system depends only on the

position of the particles. (It is not time-dependant or dependent on

the velocity of the particles.)

When the potential depends only on the position of the particles, we

have the following important relationship:

With an expression for the force, F, we can use this to complete

Newton’s Second Law and solve for the motion of the system.
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Hamilton’s Formulation of Classical Mechanics

The “Hamiltonian” formulation of classical mechanics is useful for

discussing quantum mechanics.

Practical difficulties can arise with applying Newton’s equation of

motion:

These are vector quantities that depend on the choice of coordinate

system, so Newton’s equations change when the coordinate system

changes.

For example, representation of the acceleration vector in polar

spherical coordinates is quite formidable:
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Hamilton’s Formulation of Classical Mechanics

In 1834 Hamilton reformulated classical mechanics by developing

equations of motion in terms of a scalar function instead of the vector F.

The scalar function denoted by H is called the Hamiltonian function of

a system.

For a conservative system the Hamiltonian function is simply:

VTH 
To discuss Hamilton’s formulation of classical mechanics, we express T
in terms of the momentum and not velocity.
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Hamilton’s equations of motion for a one-dimensional system:

• Newton’s equation of motion in one-dimension is a single 2nd

order differential equation.

Simultaneous solution of the two differential equations, will yield the

trajectory of the system, x(t).

How does this compare to Newton’s Second Law?
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• Hamilton’s equations of motion in one-dimension are two, 1st order

differential equation.
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Hamiltonian Description of the Classical Harmonic Oscillator

Apply Hamilton’s equations of motion to a Harmonic Oscillator.

e.g.

m

x

m m

x

can serve as a model for a

vibrating diatomic molecule.

xo = equilibrium position of the spring (resting position)
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Note: The potential energy of the system is given by the position only.

k is the spring constant. The larger the k the stiffer the spring.



Apply the Hamiltonian equations of motion and solve for x(t).
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The classical equation for the motion of a harmonic

oscillator has mathematical solutions of the form:

m

x

with

A and B are constants to be determined from the initial conditions.

For example the position and velocity of the mass at time zero.

• As expected the motion is oscillatory.

• For a given spring, we can stretch the system to ‘any’ length

and provide the system with energy in a continuous manner.

not the same in quantum mechanics!
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We will see a quantum mechanical analogue of the Hamiltonian

Function. Further, these conservation laws used here carry over into

quantum mechanics.

• If the mass starts from a stand-still, the mass will never go

beyond that point, termed the classical turning point.

x = L  at time t = 0

not the same in quantum mechanics!
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Generalized coordinates and Hamilton’s equations of Motion

The advantages of Hamilton’s formulation of classical mechanics

are not always apparent when Cartesian coordinates are used.

It turns out that Hamilton’s equations of motion are the same no

matter what choice of coordinate system we use, so any convenient

coordinate system can be adopted.

Let qk = the generalized coordinate

pk = conjugate momentum pair of qk

kqTime derivatives give the generalized velocities

Note: pk and qk are not linear momentum or velocity unless qk is a

Cartesian coordinate.

.



mg

Consider a particle sliding on the inside of a frictionless

hemispherical bowl of radius R, subject to gravity.

xy

z

The motion takes place on the

surface of the bowl and therefore is

constrained so that:

2 2 2 2x y z R

One useful set of generalized coordinates for this problem would be

the following:

1
x

R

q
2
y

R

q
3
z

R

q

11 qmp  22 qmp  33 qmp 



With these generalized coordinates and momenta, the Hamiltonian

equations of motion are:

k = 1,2,3….3N

N = number of particles

Notice that this is the same form as in Cartesian coordinates.

Having the flexibility to use any convenient coordinate system is very

important for both interpretation and solving the equations of motion.

1 2 3 3 1 2 3 3 1 2 3 3( , , ... ; , , ... ) ( , , ... )N N NH T q q q q p p p p V q q q q

The Hamiltonian of the system is then given in terms of these

generalized coordinates and their conjugate momenta.
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