
The Postulates of Quantum Mechanics

Some of the basic postulates of quantum mechanics will now be

introduced.

The postulates are the fundamental assumptions on which quantum

mechanics is based.

For example, Newton’s three laws are postulates of classical

mechanics.



The Postulates of Quantum Mechanics

These postulates cannot be derived!

Newton’s Laws, are postulates and are believed to be correct

for macroscopic systems based on agreement with

experiment.

The postulates of Quantum Mechanics also can not be

derived. They too are believed to be correct for both

microscopic and macroscopic worlds based on agreement

with experiment.

The postulates of quantum mechanics can be expressed in many

ways.

People present them in different order and the number of

postulates is often different (some are combined)

The postulates are connected as a whole

They may be very strange at first. Applications will help us

understand.



Classical State Function

The first postulate deals with a state function, so let’s examine the

classical state function.

The classical mechanical state of a one-particle system at a particular

time is given by 3 position coordinates and 3 velocities (or momenta)

The time evolution of the system is governed by Newton’s second law:
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Usually, given the initial positions and momenta, we can integrate

Newton’s equations of motion to obtain the whole trajectory of the

system and the state function. The the 3 coordinates and 3 velocities

completely define the system.

Heisenberg’s uncertainty principle hints that this is not valid because

we cannot simultaneously determine the position and momentum

exactly.



Postulate 1

The state of a quantum mechanical system is completely

specified by a function Y(x,y,z,t) that depends on the

coordinates and on time. This function is called the wave

function of the system. All possible information about the

system can be derived from Y.



The wave function for a one-dimensional harmonic oscillator

is:

where a and C are constants and the variable x is the

displacement of the diatomic from equilibrium.

Notice the wave function can be complex (and complicated)!

More on the properties of the wave functions later.

For this idealized system, we can derive any property of the

system from the above function.

Example of a Wave function
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Complex conjugate of the wave function is

obtained by replacing any imaginary numbers

with their negative: ii *
e.g.

The state of a quantum mechanical system is completely

specified by a function Y(x,y,z,t) that depends on the

coordinates and on the time. This function is called the wave

function of the system. All possible information about the

system can be derived from Y.

The wave function Y(x,y,z,t) has an important property that its

square is the probability distribution function for the system:

Postulate 1 (extended)

),,,(),,,(),,,( *2
tzyxtzyxtzyx YYY

),,,(* tzyxY

h

Eti

a

x

eeCtx
2

2

),(











Y
h

Eti

a

x

eeCtx
2

2

* ),(











Y



The probabilistic interpretation of the wave function

was first developed by Max Born and it is sometimes

referred to as the Born interpretation of the wave

function.

Max Born

Given this physical interpretation of the square of

the wave function, the wave function must satisfy

certain requirements.

The probability of finding the particle at a time t near the position

(x,y,z) is proportional to

2 2
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More precisely, the probability of finding the particle at time t within a

given volume element dV = dxdydz is:
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In general, Y(x,y,z,t) must satisfy the following conditions:

1. Y(x,y,z,t) must be a continuous function.

2. Y(x,y,z,t) must be single-valued and bounded.

• at a given x,y,z and t, Y can only have one value.

• the value of the wave function cannot be infinite anywhere.

There cannot be two or more probabilities of finding the particle at 

a single point in space.

There cannot be an infinite probability of finding the particle at a 

single point in space.  The probability can at most be 1 which 

corresponds to 100%.

Minimal Requirements for a Valid Wave Function

There cannot be points in space where the wave function is 

“missing”. There must be a probability associated with every point in 

space.



Examples

Which of the following functions are acceptable wave functions

according to the first two criteria for the interval given?
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3. Y(x,y,z,t) should be normalizable such that the following integral

is equal to one:

Why?

The probability of finding the particle at an instant in time,

“somewhere” in the universe must be equal to 100% or unity.

or
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P(x)

x

Consider the following probability distribution function that describes

the probability of finding a single particle along the x coordinate:

To find the probability that the particle will be between x1 and x2 we

would integrate P(x) between x1 and x2.

x1 x2

If we integrate over all space, then the probability must equal 1.
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If the wave function is not normalized, it should at least be

normalizable such that the integral is equal to a real, finite value.

3. Y should be normalized such that the following integral is equal

to one:

finite and real 

valued

If the above integral is finite and real valued, the wave function Y

can easily be normalized by multiplying by a normalization constant.

1d* YY 
space
all

YY d*

space
all



If the above is true then the normalization constant can be

determined from the following:

finite and real-

valued

And our normalized wave function is then:
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Examples

Normalize the following functions, if possible, for the intervals given.
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4. Y(x,y,z,t) should have partial derivatives

x
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z
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Conditions 1 through 4 are the requirements for a ‘well-

behaved’ function.

that are continuous functions of x, y, z.

This is a looser requirement for a ‘good’ wave function. There are

sometimes cases when this is relaxed. For example, when potential

is ill-behaved. (e.g. Coulomb potential at the nucleus is infinite)



Minimal Requirements for a Valid Wave Function

1. Y(x,y,z,t) must be a continuous function.

2. Y(x,y,z,t) must be bounded and single-valued.

3. Y(x,y,z,t) must be normalizable.

4. Y(x,y,z,t) should be smooth. (The derivatives should be

continuous).

These requirements arise from the Born-interpretation of the wave

function. It is important to understand why they arise from the Born

interpretation of the wave function.



Postulate 2

To every “observable” in classical mechanics there

corresponds an operator in quantum mechanics.

What is an operator?

An operator is a mathematical entity or symbol that tells you

to do something to whatever follows the symbol.

Then
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More to come

In these lecture notes will sometimes use (in the text) a bold 
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Postulate 2 (Complete)

To every observable in classical mechanics there

corresponds an operator in quantum mechanics. To find the

operator, write down the classical-mechanical expression for

the observable in terms of Cartesian coordinates and linear

momentum, and make the following replacements:
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h
 is the reduced Planck’s constant 

and is pronounced ‘h-bar’



Define the kinetic energy operator in one-dimension.

Define the kinetic energy operator in 3-dimensions.
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The second postulate states that for every physical observable, there

corresponds a quantum mechanical operator!

The 3rd postulate deals with measurements in quantum mechanics.

The first postulate states that the wave function of a quantum

mechanical system contains all information concerning the system.

Postulate 3

Any measurement of the observable associated with the

operator A, the only values that will ever be observed are the

eigenvalues ‘a’, which satisfy the following:

Âf af

f is an eigenfunction of the operator A

(It is not necessarily the wave function)



What are Eigenfunctions and Eigenvalues?

When a mathematical operation (such as multiplication, differentiation)

is performed on a function, the result is generally some different

function.

For example: differentiation of x2 yields a different function, 2x.

For some combinations of operations and functions, the same function is

regenerated, multiplied by a constant.

For example: differentiation of e2x yields a different function, 2e2x.

The original function is simply multiplied by 2.

Operator acts on 

function Y

It gives the exact 

function back 

multiplied by some 

constant

)()(ˆ xfaxfA 

The function is called an eigenfunction and the numeric constant is

called the eigenvalue. The above is called an eigenvalue equation.
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For any measurement of the observable associated with the

operator A, the only values that will ever be observed are the

eigenvalues an which satisfy:

Postulate 3

ˆ
n n nAf a f n = (sometimes) 0,1, 2, 3….

ˆ
n n nAf a f

The eigenvalue ‘a’ can be discrete or continuous, depending on the

operator.

An operator generally has more than one valid eigenfunction so we index 

the eigenfunctions with a subscript n.

If the eigenvalues are discrete then we usually index them from the smallest 

value to the largest value:

Âf af

If the eigenvalues are continuous, we usually drop the subscript.



Observables of the Linear Momentum, px

In any experiment measuring the observable corresponding to the

operator A, only the values a1, a2, a3,… will be observed.

Consider the linear momentum, px, which is an observable we can often 

easily measure for a given single-particle system.

By the third postulate, we will only be able to measure values that are 

eigenvalues of the following equation:

x̂p f af

It turns out that eikx is an eigenfunction of the operator px.  Check that 

this is true.
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since k can be any constant, it turns out that linear momentum is an

observable that is continuous and can take on any value.

m = 0, ±1, ±2, ±3 …

Observables of the Angular Momentum, Lz
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The angular momentum operator (in the z-direction) is represented by

the following operator in quantum mechanics:

The eigenfunctions the angular momentum is given the symbol Y.

Don’t worry about the explicit form of Y at this moment.
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m = 0, ±1, ±2, ±3 …

Notice, however, that the constant ‘m’ can only take on discrete integer

values. Thus, the eigenvalues of the angular momentum operator can

only assume discrete values.

When we go to measure the angular momentum of any system, we will

only be able to measure these discrete values.

It turns out that angular momentum is quantized. (More on the

quantization of angular momentum much later in the course)

ma 



For any measurement of the observable associated with the

operator A, the only values that will ever be observed are the

eigenvalues an, which satisfy:

Postulate 3

ˆ
n n nAf a f

Postulate 3 tells us what values of a given observable are allowable.

But what value will we actually measure?

If we have a system described by the wave function Y, the first postulate

tells us that any information we can derive about the system is contained

in the wave function.

Unfortunately, due to the probabilistic nature of quantum mechanics, we

can’t be sure which eigenvalue we will actually measure (a1, a5, a192?)

This is quite different from classical mechanics where if we knew the

state function x(t), we could tell exactly what one would measure at any

given time.



Young’s Double-Slit Experiments with 

Single Photons

Interference Pattern Made Up of Discrete Particle Detections!



If a system is in a state described by a normalized wave

function Y, then the average or mean value of the

observable that will be measured corresponding to the

operator A is given by:

Postulate 4

If we have a wave function and an operator corresponding to an

observable we want to measure, the above tells us what the average

value we will measure at a given time.

The above is called the expectation value in quantum

mechanics.
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Let’s write this out more explicitly:

Brackets are used to emphasize that we apply the operator to Y

before we integrate.

If the wave function Y is not normalized, then the expectation value

is given by:
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UNTIL NOW….

We have discussed some properties of the wave function Y. However,

we have not discussed how we determine the wave function. The next

postulate, which involves the famous Schrödinger equation, gives us

this.

Erwin Schrödinger (1887-1961)



The wave function of a system evolves in time according to

the time-dependent Schrödinger equation:

Postulate 5

Where H is the Hamiltonian operator given by:

We can use the Schrödinger equation to solve for the wave

function for any system. (in principle).
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The wave function Y(x,y,z;t) of a system can be obtained by

solving the time-dependent Schrödinger equation for that

system:

Postulate 5 (alternative expression)

where

The potential energy function V cannot be given in general

because it depends on the system.
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In this course, the systems we are interested in usually have a

potential which does not depend on time.

In this case, we can simplify things.

It turns out that if the Hamiltonian (or the potential within it)

does not change in time we can write the wave function as:

Separation of variables
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If the potential does not change in time, the wave function

can be obtained by solving for Schrödinger’s time-

independent equation.

With the total wave function given by:

Addition to Postulate 5

Thus, we don’t have to solve the time-dependent wave equation, only

the time-independent equation, because the time-dependent component

of the total wave function is always the same.

We will use Schrödinger’s time independent equation extensively in this

course.
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Stationary State Wave Function

When the Hamiltonian does not change in time, the solutions to the time-

independent wave equation are called stationary states.

The reason for this is that the probability density does not change in

time, i.e. it is time independent.

This is easily shown (in 1-D):
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Notice that the time component of the total wave function of a stationary

state simply oscillates:

This is easier to see if we let:

w is then the angular frequency of this oscillation.

Because Schrödinger’s equation has wave-like solutions, this is the

reason Schrödinger’s formulation of quantum mechanics is often called

wave mechanics.
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Postulate 1

The state of a quantum mechanical system is completely

specified by a function Y(x,y,z,t) that depends on the

coordinates of the particle and on time. This function is

called the wave function of the system. All possible

information about the system can be derived from Y.

The wave function Y(x,y,z,t) has an important property that its

square is the probability distribution function for the system:

Summary of the Postulates of Quantum Mechanics

Due to the Born interpretation of the wave function Y(x,y,z,t) must be

‘well behaved’. It must be a continuous function that is bound and single

valued everywhere. Y(x,y,z,t) must be normalizable or quadratically

integrable. Finally, the partial derivatives of Y w.r.t. to x, y and z should

be continuous.
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Postulate 2

To every observable in classical mechanics there

corresponds a linear Hermitian operator in quantum

mechanics. To find the operator, write down the classical-

mechanical expression for the observable in terms of

Cartesian coordinates and linear momentum, and make the

following replacements:
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This postulate gives us a simple recipe for obtaining quantum

mechanical observables.



Any measurement of the observable associated with the

operator A, the only values that will ever be observed are the

eigenvalues a, which satisfy:
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Postulate 3

If a system is in a state described by a normalized

wavefunction Y, then the average or mean value of the

observable corresponding to operator A is given by:
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Postulate 4

The above also called the expectation value in QM.



The wave function of a system evolves in time according to the time-

dependent Schrödinger equation:
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Where H is the Hamiltonian operator given by:
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If the potential does not change in time, the wave function can be

obtained by solving for Schrodinger’s time independent equation.

Here, the the total wave function given by:
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• The postulates of quantum mechanics replace Newton’s and

Hamilton’s equations of motion for describing the behaviour of a

given system.

• Postulate 5 furnishes the “equation of motion” that yields the wave

function describing the possible states of the system.

• Once Y(x,y,z;t) are obtained - ALL of the properties (physical

quantities) of the system can be calculated and interpreted by

applying the other postulates.

• We will obtain an understanding of quantum mechanics by

applying the postulates to a variety of chemical systems.


