Probability and Statistics

Due to the probabilistic nature of quantum mechanics, it is useful to know several basic concepts of probability and statistics.

Consider an experiment (such as rolling of a die) which has ' n ' possible outcomes, each with a probability P_{j}.

- The probability of outcome ' j ' occurring is given by P_{j}

With each experiment (or roll of the die) it is certain a result will occur. In other words there is a 100% probability of an event occurring. Thus, the sum of all probabilities is unity since one of the ' n ' outcomes must occur.

$$
1=\sum_{j=1}^{n} P_{j}
$$

Consider a 4-sided die. The probabilities are given in the table:

outcome	probability
1	0.25
2	0.25
3	0.25
4	0.25

total: 1.00

Now let's associate a value ' x_{j} ' with each outcome.
For example, say with our 4 -sided die we have numbers $1,3,7$ and 10 on the sides, instead of 1, 2, 3 and 4.

outcome, \boldsymbol{j}	result, $\boldsymbol{x}_{\boldsymbol{j}}$	Probability, $\boldsymbol{P}_{\boldsymbol{j}}$
1	1	0.25
2	3	0.25
3	7	0.25
4	10	0.25

The average or mean of the result ' x ' is given the symbol $\langle x\rangle$ and is given by:

$$
\langle x\rangle=\sum_{j=1}^{n} x_{j} P_{j}
$$

In the specific example of our 4 -side die above we have:

$$
\begin{gathered}
\langle x\rangle=(1)(0.25)+(3)(0.25)+(7)(0.25)+(10)(0.25) \\
\langle x\rangle=5.25 \longleftarrow \begin{array}{l}
\text { The average result we will } \\
\text { obtain is } 5.25 .
\end{array}
\end{gathered}
$$

The variance, σ^{2}, indicates the extent to which the set of outcomes or observations cluster around the mean value.

The variance is equal to the average of the squared deviations from the mean:

$$
\sigma^{2}=\sum_{j=1}^{n} P_{j}\left(x_{j}-\langle x\rangle\right)^{2}
$$

The standard deviation, σ, is the square root of the variance, a measure of the width of its "spread":

Discrete and Continuous Probabilities

With the case of the dice, these were discrete probability distributions:

In this case the probability distribution function is discrete.

In this course we will more often have to deal with continuous probability distributions.
For example the mass of water melons in a large batch will be given by a continuous probability since the mass of the melons can be any value greater than zero.

Such a probability distribution can be
 described by a continuous function $P(x)$

In our example, the probability of finding a water melon between mass 'a' and mass 'b' is given by the integral:

$$
P_{a-b}=\int_{a}^{b} P(x) d x
$$

As with the discrete probabilities, the sum of all probabilities must sum to unity or 100%. Thus, our continuous distribution function must satisfy the following equation:

$$
1=\int_{\substack{\text { all possible } \\ \text { values }}} P(x) d x
$$

In the case the function describing the mass of water melons we have:

$$
1=\int_{0}^{\infty} P(x) d x
$$

In analogy to the discrete distributions, the average outcome given by a continuous probability distribution is:

$$
\langle x\rangle=\int x \cdot P(x) d x
$$

Example

A very important probability distribution is a Gaussian distribution of random errors. σ^{2} is the variance. σ is the standard deviation.

$$
P(x)=\frac{1}{\sigma} \sqrt{\frac{1}{2 \pi}} e^{-x^{2} / 2 \sigma^{2}}
$$

Show that the probability distribution function 'sums' to unity:

$$
\int_{-\infty}^{+\infty} P(x) \mathrm{d} x=\int_{-\infty}^{+\infty} \sqrt{\frac{\alpha}{\pi}} e^{-\alpha x^{2}} \mathrm{~d} x \quad \text { with } \alpha=1 /\left(2 \sigma^{2}\right)
$$

$$
\begin{array}{l|l}
=\sqrt{\frac{\alpha}{\pi}} \int_{-\infty}^{+\infty} e^{-\alpha x^{2}} \mathrm{~d} x & \begin{array}{l}
\text { From a table of integrals } \\
\text { this integral is: }
\end{array} \\
=\sqrt{\frac{\alpha}{\pi}} \cdot\left(\frac{\pi}{\alpha}\right)^{1 / 2} & \left(\frac{\pi}{\alpha}\right)^{1 / 2}=\int_{-\infty}^{+\infty} e^{-\alpha x^{2}} \mathrm{~d} x
\end{array}
$$

$$
=1
$$

What integral would we have to evaluate to determine the average outcome and what should the average be?
answer: $\langle x\rangle=\int_{-\infty}^{+\infty} x \cdot \sqrt{\frac{\alpha}{\pi}} e^{-\alpha x^{2}} \mathrm{~d} x$
The average x value should be zero based on the symmetry of the probability around $x=$ zero

Standard Deviation

The standard deviation, σ, gives a measure of how spread out the results are from the mean.

For a continuous distribution the standard deviation defined in terms of the variance, σ^{2}, in analogy to the discrete definition.

$$
\begin{aligned}
\sigma^{2} & =\left\langle x^{2}\right\rangle-\langle x\rangle^{2} \\
& =\int x^{2} \cdot P(x) d x-\left(\int x \cdot P(x) d x\right)^{2}
\end{aligned}
$$

Important Application to Quantum Chemistry

 Suppose that the wave function of a system is ψ_{n}, an eigenfunction of operator $\underline{\boldsymbol{A}}$ with eigenvalue \boldsymbol{a}_{n}.Then $\underline{A} \psi_{\mathrm{n}}=a_{n} \psi_{\mathrm{n}}$ and

$$
\begin{aligned}
\langle a> & =\int \psi_{n}^{*} \underline{A}^{*} \psi_{n} \mathrm{~d} \tau=\int \psi_{n}^{*} * a_{n} \psi_{n} \mathrm{~d} \tau \\
& =a_{n} \int \psi_{n}^{*} \psi_{n} \mathrm{~d} \tau=a_{n}
\end{aligned}
$$

Furthermore:

$$
\begin{aligned}
\left\langle a^{2}>\right. & =\int \psi_{n}{ }^{*} \underline{A}^{2} \psi_{n} \mathrm{~d} \tau=\int \psi_{n}{ }^{*} a_{n} \underline{\boldsymbol{A}} \psi_{n} \mathrm{~d} \tau \\
& =\int \psi_{n}{ }^{*} a_{n}{ }^{2} \psi_{n} \mathrm{~d} \tau=a_{n}{ }^{2} \psi_{n}{ }^{*} \psi_{n} \mathrm{~d} \tau=a_{n}{ }^{2}
\end{aligned}
$$

The standard deviation in \boldsymbol{a} is

$$
\sigma_{a}{ }^{2}=\left\langle a^{2}\right\rangle-\langle a\rangle^{2}=a_{n}{ }^{2}-a_{n}{ }^{2}=0
$$

"» The only measured value is eigenvalue a_{n}

